File size: 16,153 Bytes
406922d
 
 
 
 
 
4235b93
406922d
 
a6e19bf
2b82929
853de85
c255e80
4700246
c438308
c255e80
55b65ff
5ceca97
c255e80
406922d
b4e17e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
406922d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2439595
406922d
 
922691a
406922d
 
 
 
922691a
406922d
 
 
922691a
406922d
 
 
 
 
 
 
 
853de85
d953d31
 
 
 
 
4a1799c
8bbeec9
41d787a
56c4152
 
41d787a
 
b1fdec7
41d787a
 
b7618a5
 
 
 
 
 
 
b1fdec7
56c4152
ed92db4
2d5b27a
 
 
 
064f508
5ceca97
 
 
2d5b27a
 
 
 
5ceca97
2d5b27a
5ceca97
 
5d7b5ca
 
 
 
 
2d5b27a
5ceca97
2d5b27a
 
 
1cbb9a3
5ceca97
 
 
 
 
 
 
 
 
49a13b2
5ceca97
 
 
 
 
 
 
 
 
 
 
 
 
 
8fa834c
b7618a5
 
 
08d39af
8fa834c
 
9752325
 
8fa834c
b7618a5
8fa834c
 
b7618a5
 
08d39af
b7618a5
8fa834c
 
 
9752325
 
8fa834c
b7618a5
 
 
8fa834c
b7618a5
 
 
 
 
 
8fa834c
b7618a5
9752325
 
8fa834c
b7618a5
 
3a39c6a
1304379
 
b7618a5
9187600
1304379
 
 
9187600
1304379
 
 
 
 
faaca1f
1304379
357a5bc
f8f5931
08673dd
d4683ab
626608d
8ecc386
b7618a5
f8f5931
b7618a5
4520107
e8aca9f
b7618a5
ed92db4
b7618a5
 
 
d55bdc4
0972466
4520107
b7618a5
2f1738c
b7618a5
 
 
 
 
 
 
 
 
9f044f6
2f1738c
 
b7618a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f1738c
 
b7618a5
357a5bc
b7618a5
 
 
 
 
 
 
 
25af150
d55bdc4
cf43e94
56c4152
b7618a5
d0c8296
fde4447
 
771df70
fde4447
771df70
c438308
b833bfe
771df70
ecd0d87
 
 
 
 
 
 
 
861f78a
fde4447
 
 
 
c438308
771df70
41d787a
fde4447
 
 
 
 
 
 
 
 
 
 
 
 
d953d31
fde4447
 
 
 
ceeda4e
18b19dd
b7618a5
4b5bbe4
 
30157d2
 
e9cbeff
 
01ae78a
b7618a5
fde4447
a9b63e8
cdaf020
771df70
fde4447
b7618a5
a9b63e8
89ef005
0526b58
 
 
 
b7618a5
78f3d66
aca9549
8fa834c
357a5bc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
import os
import numpy as np
import torch
import torch.nn as nn
import gradio as gr
from torchvision.models import efficientnet_v2_m, EfficientNet_V2_M_Weights
from torchvision.ops import nms, box_iou
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image, ImageDraw, ImageFont, ImageFilter
from data_manager import get_dog_description
from urllib.parse import quote
from ultralytics import YOLO
import asyncio
import traceback


model_yolo = YOLO('yolov8l.pt')  


dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier", 
              "Appenzeller", "Australian_Terrier", "Bedlington_Terrier", "Bernese_Mountain_Dog", 
              "Blenheim_Spaniel", "Border_Collie", "Border_Terrier", "Boston_Bull", "Bouvier_Des_Flandres", 
              "Brabancon_Griffon", "Brittany_Spaniel", "Cardigan", "Chesapeake_Bay_Retriever", 
              "Chihuahua", "Dandie_Dinmont", "Doberman", "English_Foxhound", "English_Setter", 
              "English_Springer", "EntleBucher", "Eskimo_Dog", "French_Bulldog", "German_Shepherd", 
              "German_Short-Haired_Pointer", "Gordon_Setter", "Great_Dane", "Great_Pyrenees", 
              "Greater_Swiss_Mountain_Dog", "Ibizan_Hound", "Irish_Setter", "Irish_Terrier", 
              "Irish_Water_Spaniel", "Irish_Wolfhound", "Italian_Greyhound", "Japanese_Spaniel", 
              "Kerry_Blue_Terrier", "Labrador_Retriever", "Lakeland_Terrier", "Leonberg", "Lhasa", 
              "Maltese_Dog", "Mexican_Hairless", "Newfoundland", "Norfolk_Terrier", "Norwegian_Elkhound", 
              "Norwich_Terrier", "Old_English_Sheepdog", "Pekinese", "Pembroke", "Pomeranian", 
              "Rhodesian_Ridgeback", "Rottweiler", "Saint_Bernard", "Saluki", "Samoyed", 
              "Scotch_Terrier", "Scottish_Deerhound", "Sealyham_Terrier", "Shetland_Sheepdog", 
              "Shih-Tzu", "Siberian_Husky", "Staffordshire_Bullterrier", "Sussex_Spaniel", 
              "Tibetan_Mastiff", "Tibetan_Terrier", "Walker_Hound", "Weimaraner", 
              "Welsh_Springer_Spaniel", "West_Highland_White_Terrier", "Yorkshire_Terrier", 
              "Affenpinscher", "Basenji", "Basset", "Beagle", "Black-and-Tan_Coonhound", "Bloodhound", 
              "Bluetick", "Borzoi", "Boxer", "Briard", "Bull_Mastiff", "Cairn", "Chow", "Clumber", 
              "Cocker_Spaniel", "Collie", "Curly-Coated_Retriever", "Dhole", "Dingo", 
              "Flat-Coated_Retriever", "Giant_Schnauzer", "Golden_Retriever", "Groenendael", "Keeshond", 
              "Kelpie", "Komondor", "Kuvasz", "Malamute", "Malinois", "Miniature_Pinscher", 
              "Miniature_Poodle", "Miniature_Schnauzer", "Otterhound", "Papillon", "Pug", "Redbone", 
              "Schipperke", "Silky_Terrier", "Soft-Coated_Wheaten_Terrier", "Standard_Poodle", 
              "Standard_Schnauzer", "Toy_Poodle", "Toy_Terrier", "Vizsla", "Whippet", 
              "Wire-Haired_Fox_Terrier"]

class MultiHeadAttention(nn.Module):

    def __init__(self, in_dim, num_heads=8):
        super().__init__()
        self.num_heads = num_heads
        self.head_dim = max(1, in_dim // num_heads)
        self.scaled_dim = self.head_dim * num_heads
        self.fc_in = nn.Linear(in_dim, self.scaled_dim)
        self.query = nn.Linear(self.scaled_dim, self.scaled_dim)
        self.key = nn.Linear(self.scaled_dim, self.scaled_dim)
        self.value = nn.Linear(self.scaled_dim, self.scaled_dim)
        self.fc_out = nn.Linear(self.scaled_dim, in_dim)

    def forward(self, x):
        N = x.shape[0]
        x = self.fc_in(x)
        q = self.query(x).view(N, self.num_heads, self.head_dim)
        k = self.key(x).view(N, self.num_heads, self.head_dim)
        v = self.value(x).view(N, self.num_heads, self.head_dim)

        energy = torch.einsum("nqd,nkd->nqk", [q, k])
        attention = F.softmax(energy / (self.head_dim ** 0.5), dim=2)

        out = torch.einsum("nqk,nvd->nqd", [attention, v])
        out = out.reshape(N, self.scaled_dim)
        out = self.fc_out(out)
        return out

class BaseModel(nn.Module):
    def __init__(self, num_classes, device='cuda' if torch.cuda.is_available() else 'cpu'):
        super().__init__()
        self.device = device
        self.backbone = efficientnet_v2_m(weights=EfficientNet_V2_M_Weights.IMAGENET1K_V1)
        self.feature_dim = self.backbone.classifier[1].in_features
        self.backbone.classifier = nn.Identity()

        self.num_heads = max(1, min(8, self.feature_dim // 64))
        self.attention = MultiHeadAttention(self.feature_dim, num_heads=self.num_heads)

        self.classifier = nn.Sequential(
            nn.LayerNorm(self.feature_dim),
            nn.Dropout(0.3),
            nn.Linear(self.feature_dim, num_classes)
        )

        self.to(device)

    def forward(self, x):
        x = x.to(self.device)
        features = self.backbone(x)
        attended_features = self.attention(features)
        logits = self.classifier(attended_features)
        return logits, attended_features


num_classes = 120
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = BaseModel(num_classes=num_classes, device=device)

checkpoint = torch.load('best_model_81_dog.pth', map_location=torch.device('cpu'))
model.load_state_dict(checkpoint['model_state_dict'])

# evaluation mode
model.eval()

# Image preprocessing function
def preprocess_image(image):
    # If the image is numpy.ndarray turn into PIL.Image
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)

    # Use torchvision.transforms to process images
    transform = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])

    return transform(image).unsqueeze(0)


def get_akc_breeds_link(breed):
    base_url = "https://www.akc.org/dog-breeds/"
    breed_url = breed.lower().replace('_', '-')
    return f"{base_url}{breed_url}/"


async def predict_single_dog(image):
    image_tensor = preprocess_image(image)
    with torch.no_grad():
        output = model(image_tensor)
        logits = output[0] if isinstance(output, tuple) else output
        probabilities = F.softmax(logits, dim=1)
        topk_probs, topk_indices = torch.topk(probabilities, k=3)
        top1_prob = topk_probs[0][0].item()
        topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
        
        # Calculate relative probabilities for display
        raw_probs = [prob.item() for prob in topk_probs[0]]
        sum_probs = sum(raw_probs)
        relative_probs = [f"{(prob/sum_probs * 100):.2f}%" for prob in raw_probs]
        
    return top1_prob, topk_breeds, relative_probs
    

async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.45):
    results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
    dogs = []
    boxes = []
    for box in results.boxes:
        if box.cls == 16:  # COCO dataset class for dog is 16 
            xyxy = box.xyxy[0].tolist()
            confidence = box.conf.item()
            boxes.append((xyxy, confidence))
    
    if not boxes:
        dogs.append((image, 1.0, [0, 0, image.width, image.height]))
    else:
        nms_boxes = non_max_suppression(boxes, iou_threshold)
        
        for box, confidence in nms_boxes:
            x1, y1, x2, y2 = box
            w, h = x2 - x1, y2 - y1
            x1 = max(0, x1 - w * 0.05)
            y1 = max(0, y1 - h * 0.05)
            x2 = min(image.width, x2 + w * 0.05)
            y2 = min(image.height, y2 + h * 0.05)
            cropped_image = image.crop((x1, y1, x2, y2))
            dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
    
    return dogs


def non_max_suppression(boxes, iou_threshold):
    keep = []
    boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
    while boxes:
        current = boxes.pop(0)
        keep.append(current)
        boxes = [box for box in boxes if calculate_iou(current[0], box[0]) < iou_threshold]
    return keep

    
def calculate_iou(box1, box2):
    x1 = max(box1[0], box2[0])
    y1 = max(box1[1], box2[1])
    x2 = min(box1[2], box2[2])
    y2 = min(box1[3], box2[3])
    
    intersection = max(0, x2 - x1) * max(0, y2 - y1)
    area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
    area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
    
    iou = intersection / float(area1 + area2 - intersection)
    return iou


async def process_single_dog(image):
    top1_prob, topk_breeds, relative_probs = await predict_single_dog(image)
    
    # Case 1: Low confidence - unclear image or breed not in dataset
    if top1_prob < 0.15:
        initial_state = {
            "explanation": "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.",
            "image": None,
            "is_multi_dog": False
        }
        return initial_state["explanation"], None, initial_state

    breed = topk_breeds[0]
    
    # Case 2: High confidence - single breed result
    if top1_prob >= 0.45:
        description = get_dog_description(breed)
        formatted_description = format_description(description, breed)
        initial_state = {
            "explanation": formatted_description,
            "image": image,
            "is_multi_dog": False
        }
        return formatted_description, image, initial_state
        
    # Case 3: Medium confidence - show top 3 breeds with relative probabilities
    else:
        breeds_info = ""
        for i, (breed, prob) in enumerate(zip(topk_breeds, relative_probs)):
            description = get_dog_description(breed)
            formatted_description = format_description(description, breed)
            breeds_info += f"\n\nBreed {i+1}: **{breed}** (Confidence: {prob})\n{formatted_description}"

        initial_state = {
            "explanation": breeds_info,
            "image": image,
            "is_multi_dog": False
        }
        return breeds_info, image, initial_state
        

async def predict(image):
    if image is None:
        return "Please upload an image to start.", None, None

    try:
        if isinstance(image, np.ndarray):
            image = Image.fromarray(image)

        dogs = await detect_multiple_dogs(image)
        color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
        annotated_image = image.copy()
        draw = ImageDraw.Draw(annotated_image)
        font = ImageFont.load_default()

        dogs_info = ""

        for i, (cropped_image, detection_confidence, box) in enumerate(dogs):
            color = color_list[i % len(color_list)]
            draw.rectangle(box, outline=color, width=3)
            draw.text((box[0] + 5, box[1] + 5), f"Dog {i+1}", fill=color, font=font)
        
            top1_prob, topk_breeds, relative_probs = await predict_single_dog(cropped_image)
            combined_confidence = detection_confidence * top1_prob
            
            dogs_info += f'<div class="dog-info" style="border-left: 5px solid {color}; margin-bottom: 20px; padding: 15px;">'
            dogs_info += f'<h2>Dog {i+1}</h2>'
            
            if combined_confidence < 0.2:
                dogs_info += "<p>The image is unclear or the breed is not in the dataset. Please upload a clearer image.</p>"
                
            elif top1_prob >= 0.45:
                breed = topk_breeds[0]
                description = get_dog_description(breed)
                dogs_info += format_description_html(description, breed)
                
            else:
                dogs_info += "<h3>Top 3 possible breeds:</h3>"
                for breed, prob in zip(topk_breeds, relative_probs):
                    description = get_dog_description(breed)
                    dogs_info += f"<div class='breed-section'>"
                    dogs_info += f"<h4>{breed} (Confidence: {prob})</h4>"
                    dogs_info += format_description_html(description, breed)
                    dogs_info += "</div>"
            
            dogs_info += '</div>'

        html_output = f"""
        <style>
        .dog-info {{ 
            border: 1px solid #ddd; 
            margin-bottom: 20px; 
            padding: 15px; 
            border-radius: 5px; 
            box-shadow: 0 2px 5px rgba(0,0,0,0.1); 
        }}
        .dog-info h2 {{ 
            background-color: #f0f0f0; 
            padding: 10px; 
            margin: -15px -15px 15px -15px; 
            border-radius: 5px 5px 0 0; 
        }}
        .breed-section {{
            margin-bottom: 20px;
            padding: 10px;
            background-color: #f8f8f8;
            border-radius: 5px;
        }}
        </style>
        {dogs_info}
        """

        initial_state = {
            "dogs_info": dogs_info,
            "image": annotated_image,
            "is_multi_dog": len(dogs) > 1,
            "html_output": html_output
        }
        
        return html_output, annotated_image, initial_state

    except Exception as e:
        error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
        print(error_msg)
        return error_msg, None, None


def show_details_html(choice, previous_output, initial_state):
    if not choice:
        return previous_output, gr.update(visible=True), initial_state

    try:
        breed = choice.split("More about ")[-1]
        description = get_dog_description(breed)
        formatted_description = format_description_html(description, breed)
        
        html_output = f"""
        <div class="dog-info">
            <h2>{breed}</h2>
            {formatted_description}
        </div>
        """
        
        initial_state["current_description"] = html_output
        initial_state["original_buttons"] = initial_state.get("buttons", [])
        
        return html_output, gr.update(visible=True), initial_state
    except Exception as e:
        error_msg = f"An error occurred while showing details: {e}"
        print(error_msg)
        return f"<p style='color: red;'>{error_msg}</p>", gr.update(visible=True), initial_state


def format_description_html(description, breed):
    html = "<ul style='list-style-type: none; padding-left: 0;'>"
    if isinstance(description, dict):
        for key, value in description.items():
            html += f"<li style='margin-bottom: 10px;'><strong>{key}:</strong> {value}</li>"
    elif isinstance(description, str):
        html += f"<li>{description}</li>"
    else:
        html += f"<li>No description available for {breed}</li>"
    html += "</ul>"
    akc_link = get_akc_breeds_link(breed)
    html += f'<p><a href="{akc_link}" target="_blank">Learn more about {breed} on the AKC website</a></p>'
    return html


with gr.Blocks() as iface:
    gr.HTML("<h1 style='text-align: center;'>๐Ÿถ Dog Breed Classifier ๐Ÿ”</h1>")
    gr.HTML("<p style='text-align: center;'>Upload a picture of a dog, and the model will predict its breed and provide detailed information!</p>")
    gr.HTML("<p style='text-align: center; color: #666; font-size: 0.9em;'>Note: This is an AI model and predictions may not always be 100% accurate. The model provides its best estimates based on training data.</p>")
    
    
    with gr.Row():
        input_image = gr.Image(label="Upload a dog image", type="pil")
        output_image = gr.Image(label="Annotated Image")
    
    output = gr.HTML(label="Prediction Results")
    initial_state = gr.State()
    
    input_image.change(
        predict,
        inputs=input_image,
        outputs=[output, output_image, initial_state]
    )
    
    gr.Examples(
        examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'French_Bulldog.jpeg', 'Samoyed.jpg'],
        inputs=input_image
    )
    
    gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog_Breed_Classifier">Dog Breed Classifier</a>')

if __name__ == "__main__":
    iface.launch()