Spaces:
Build error
Build error
File size: 2,715 Bytes
98f685a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
import glob
import logging
import os
import re
import torch
def get_last_checkpoint(work_dir, steps=None):
checkpoint = None
last_ckpt_path = None
ckpt_paths = get_all_ckpts(work_dir, steps)
if len(ckpt_paths) > 0:
last_ckpt_path = ckpt_paths[0]
checkpoint = torch.load(last_ckpt_path, map_location='cpu')
logging.info(f'load module from checkpoint: {last_ckpt_path}')
return checkpoint, last_ckpt_path
def get_all_ckpts(work_dir, steps=None):
if steps is None:
ckpt_path_pattern = f'{work_dir}/model_ckpt_steps_*.ckpt'
else:
ckpt_path_pattern = f'{work_dir}/model_ckpt_steps_{steps}.ckpt'
return sorted(glob.glob(ckpt_path_pattern),
key=lambda x: -int(re.findall('.*steps\_(\d+)\.ckpt', x)[0]))
def load_ckpt(cur_model, ckpt_base_dir, model_name='model', force=True, strict=True):
if os.path.isfile(ckpt_base_dir):
base_dir = os.path.dirname(ckpt_base_dir)
ckpt_path = ckpt_base_dir
checkpoint = torch.load(ckpt_base_dir, map_location='cpu')
else:
base_dir = ckpt_base_dir
checkpoint, ckpt_path = get_last_checkpoint(ckpt_base_dir)
if checkpoint is not None:
state_dict = checkpoint["state_dict"]
if len([k for k in state_dict.keys() if '.' in k]) > 0:
state_dict = {k[len(model_name) + 1:]: v for k, v in state_dict.items()
if k.startswith(f'{model_name}.')}
else:
if '.' not in model_name:
state_dict = state_dict[model_name]
else:
base_model_name = model_name.split('.')[0]
rest_model_name = model_name[len(base_model_name) + 1:]
state_dict = {
k[len(rest_model_name) + 1:]: v for k, v in state_dict[base_model_name].items()
if k.startswith(f'{rest_model_name}.')}
if not strict:
cur_model_state_dict = cur_model.state_dict()
unmatched_keys = []
for key, param in state_dict.items():
if key in cur_model_state_dict:
new_param = cur_model_state_dict[key]
if new_param.shape != param.shape:
unmatched_keys.append(key)
print("| Unmatched keys: ", key, new_param.shape, param.shape)
for key in unmatched_keys:
del state_dict[key]
cur_model.load_state_dict(state_dict, strict=strict)
print(f"| load '{model_name}' from '{ckpt_path}'.")
else:
e_msg = f"| ckpt not found in {base_dir}."
if force:
assert False, e_msg
else:
print(e_msg)
|