Spaces:
Build error
Build error
File size: 9,396 Bytes
98f685a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
import numpy as np
import torch
import torch.distributions as dist
from torch import nn
from modules.commons.conv import ConditionalConvBlocks
from modules.commons.normalizing_flow.res_flow import ResFlow
from modules.commons.wavenet import WN
class FVAEEncoder(nn.Module):
def __init__(self, c_in, hidden_size, c_latent, kernel_size,
n_layers, c_cond=0, p_dropout=0, strides=[4], nn_type='wn'):
super().__init__()
self.strides = strides
self.hidden_size = hidden_size
if np.prod(strides) == 1:
self.pre_net = nn.Conv1d(c_in, hidden_size, kernel_size=1)
else:
self.pre_net = nn.Sequential(*[
nn.Conv1d(c_in, hidden_size, kernel_size=s * 2, stride=s, padding=s // 2)
if i == 0 else
nn.Conv1d(hidden_size, hidden_size, kernel_size=s * 2, stride=s, padding=s // 2)
for i, s in enumerate(strides)
])
if nn_type == 'wn':
self.nn = WN(hidden_size, kernel_size, 1, n_layers, c_cond, p_dropout)
elif nn_type == 'conv':
self.nn = ConditionalConvBlocks(
hidden_size, c_cond, hidden_size, None, kernel_size,
layers_in_block=2, is_BTC=False, num_layers=n_layers)
self.out_proj = nn.Conv1d(hidden_size, c_latent * 2, 1)
self.latent_channels = c_latent
def forward(self, x, nonpadding, cond):
x = self.pre_net(x)
nonpadding = nonpadding[:, :, ::np.prod(self.strides)][:, :, :x.shape[-1]]
x = x * nonpadding
x = self.nn(x, nonpadding=nonpadding, cond=cond) * nonpadding
x = self.out_proj(x)
m, logs = torch.split(x, self.latent_channels, dim=1)
z = (m + torch.randn_like(m) * torch.exp(logs))
return z, m, logs, nonpadding
class FVAEDecoder(nn.Module):
def __init__(self, c_latent, hidden_size, out_channels, kernel_size,
n_layers, c_cond=0, p_dropout=0, strides=[4], nn_type='wn'):
super().__init__()
self.strides = strides
self.hidden_size = hidden_size
self.pre_net = nn.Sequential(*[
nn.ConvTranspose1d(c_latent, hidden_size, kernel_size=s, stride=s)
if i == 0 else
nn.ConvTranspose1d(hidden_size, hidden_size, kernel_size=s, stride=s)
for i, s in enumerate(strides)
])
if nn_type == 'wn':
self.nn = WN(hidden_size, kernel_size, 1, n_layers, c_cond, p_dropout)
elif nn_type == 'conv':
self.nn = ConditionalConvBlocks(
hidden_size, c_cond, hidden_size, [1] * n_layers, kernel_size,
layers_in_block=2, is_BTC=False)
self.out_proj = nn.Conv1d(hidden_size, out_channels, 1)
def forward(self, x, nonpadding, cond):
x = self.pre_net(x)
x = x * nonpadding
x = self.nn(x, nonpadding=nonpadding, cond=cond) * nonpadding
x = self.out_proj(x)
return x
class FVAE(nn.Module):
def __init__(self,
c_in_out, hidden_size, c_latent,
kernel_size, enc_n_layers, dec_n_layers, c_cond, strides,
use_prior_flow, flow_hidden=None, flow_kernel_size=None, flow_n_steps=None,
encoder_type='wn', decoder_type='wn'):
super(FVAE, self).__init__()
self.strides = strides
self.hidden_size = hidden_size
self.latent_size = c_latent
self.use_prior_flow = use_prior_flow
if np.prod(strides) == 1:
self.g_pre_net = nn.Conv1d(c_cond, c_cond, kernel_size=1)
else:
self.g_pre_net = nn.Sequential(*[
nn.Conv1d(c_cond, c_cond, kernel_size=s * 2, stride=s, padding=s // 2)
for i, s in enumerate(strides)
])
self.encoder = FVAEEncoder(c_in_out, hidden_size, c_latent, kernel_size,
enc_n_layers, c_cond, strides=strides, nn_type=encoder_type)
if use_prior_flow:
self.prior_flow = ResFlow(
c_latent, flow_hidden, flow_kernel_size, flow_n_steps, 4, c_cond=c_cond)
self.decoder = FVAEDecoder(c_latent, hidden_size, c_in_out, kernel_size,
dec_n_layers, c_cond, strides=strides, nn_type=decoder_type)
self.prior_dist = dist.Normal(0, 1)
def forward(self, x=None, nonpadding=None, cond=None, infer=False, noise_scale=1.0, **kwargs):
"""
:param x: [B, C_in_out, T]
:param nonpadding: [B, 1, T]
:param cond: [B, C_g, T]
:return:
"""
if nonpadding is None:
nonpadding = 1
cond_sqz = self.g_pre_net(cond)
if not infer:
z_q, m_q, logs_q, nonpadding_sqz = self.encoder(x, nonpadding, cond_sqz)
q_dist = dist.Normal(m_q, logs_q.exp())
if self.use_prior_flow:
logqx = q_dist.log_prob(z_q)
z_p = self.prior_flow(z_q, nonpadding_sqz, cond_sqz)
logpx = self.prior_dist.log_prob(z_p)
loss_kl = ((logqx - logpx) * nonpadding_sqz).sum() / nonpadding_sqz.sum() / logqx.shape[1]
else:
loss_kl = torch.distributions.kl_divergence(q_dist, self.prior_dist)
loss_kl = (loss_kl * nonpadding_sqz).sum() / nonpadding_sqz.sum() / z_q.shape[1]
z_p = None
return z_q, loss_kl, z_p, m_q, logs_q
else:
latent_shape = [cond_sqz.shape[0], self.latent_size, cond_sqz.shape[2]]
z_p = torch.randn(latent_shape).to(cond.device) * noise_scale
if self.use_prior_flow:
z_p = self.prior_flow(z_p, 1, cond_sqz, reverse=True)
return z_p
class SyntaFVAE(nn.Module):
def __init__(self,
c_in_out, hidden_size, c_latent,
kernel_size, enc_n_layers, dec_n_layers, c_cond, strides,
use_prior_flow, flow_hidden=None, flow_kernel_size=None, flow_n_steps=None,
encoder_type='wn', decoder_type='wn'):
super(SyntaFVAE, self).__init__()
self.strides = strides
self.hidden_size = hidden_size
self.latent_size = c_latent
self.use_prior_flow = use_prior_flow
if np.prod(strides) == 1:
self.g_pre_net = nn.Conv1d(c_cond, c_cond, kernel_size=1)
else:
self.g_pre_net = nn.Sequential(*[
nn.Conv1d(c_cond, c_cond, kernel_size=s * 2, stride=s, padding=s // 2)
for i, s in enumerate(strides)
])
self.encoder = FVAEEncoder(c_in_out, hidden_size, c_latent, kernel_size,
enc_n_layers, c_cond, strides=strides, nn_type=encoder_type)
if use_prior_flow:
self.prior_flow = ResFlow(
c_latent, flow_hidden, flow_kernel_size, flow_n_steps, 4, c_cond=c_cond)
self.decoder = FVAEDecoder(c_latent, hidden_size, c_in_out, kernel_size,
dec_n_layers, c_cond, strides=strides, nn_type=decoder_type)
self.prior_dist = dist.Normal(0, 1)
self.graph_encoder = GraphAuxEnc(in_dim=hidden_size, hid_dim=hidden_size,out_dim=hidden_size)
def forward(self, x=None, nonpadding=None, cond=None, infer=False, noise_scale=1.0,
mel2word=None, ph2word=None, graph_lst=None, etypes_lst=None):
"""
:param x: target mel, [B, C_in_out, T]
:param nonpadding: [B, 1, T]
:param cond: phoneme encoding, [B, C_g, T]
:return:
"""
word_len = ph2word.max(dim=1)[0]
ph_encoding_for_graph = cond.detach() + 0.1 * (cond - cond.detach()) # only 0.1x grad can pass through
_, ph_out_word_encoding_for_graph = GraphAuxEnc.ph_encoding_to_word_encoding(ph_encoding_for_graph.transpose(1,2), mel2word, word_len)
t_m = mel2word.shape[-1]
g_graph = self.graph_encoder.word_forward(graph_lst=graph_lst, word_encoding=ph_out_word_encoding_for_graph, etypes_lst=etypes_lst)
g_graph = g_graph.transpose(1,2)
g_graph = GraphAuxEnc._postprocess_word2ph(g_graph,mel2word,t_m)
g_graph = g_graph.transpose(1,2)
cond = cond + g_graph * 1.
if nonpadding is None:
nonpadding = 1
cond_sqz = self.g_pre_net(cond)
if not infer:
z_q, m_q, logs_q, nonpadding_sqz = self.encoder(x, nonpadding, cond_sqz)
q_dist = dist.Normal(m_q, logs_q.exp())
if self.use_prior_flow:
logqx = q_dist.log_prob(z_q)
z_p = self.prior_flow(z_q, nonpadding_sqz, cond_sqz)
logpx = self.prior_dist.log_prob(z_p)
loss_kl = ((logqx - logpx) * nonpadding_sqz).sum() / nonpadding_sqz.sum() / logqx.shape[1]
else:
loss_kl = torch.distributions.kl_divergence(q_dist, self.prior_dist)
loss_kl = (loss_kl * nonpadding_sqz).sum() / nonpadding_sqz.sum() / z_q.shape[1]
z_p = None
return z_q, loss_kl, z_p, m_q, logs_q
else:
latent_shape = [cond_sqz.shape[0], self.latent_size, cond_sqz.shape[2]]
z_p = torch.randn(latent_shape).to(cond.device) * noise_scale
if self.use_prior_flow:
z_p = self.prior_flow(z_p, 1, cond_sqz, reverse=True)
return z_p |