File size: 11,536 Bytes
98f685a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
from utils.hparams import hparams
from modules.commons.common_layers import *
from modules.commons.common_layers import Embedding
from modules.fastspeech.tts_modules import FastspeechDecoder, DurationPredictor, LengthRegulator, PitchPredictor, \
    EnergyPredictor, FastspeechEncoder
from utils.cwt import cwt2f0
from utils.pitch_utils import f0_to_coarse, denorm_f0, norm_f0
import torch.nn as nn
from modules.commons.rel_transformer import RelTransformerEncoder, BERTRelTransformerEncoder
FS_ENCODERS = {
    'fft': lambda hp, embed_tokens, d: FastspeechEncoder(
        embed_tokens, hp['hidden_size'], hp['enc_layers'], hp['enc_ffn_kernel_size'],
        num_heads=hp['num_heads']),
}

FS_DECODERS = {
    'fft': lambda hp: FastspeechDecoder(
        hp['hidden_size'], hp['dec_layers'], hp['dec_ffn_kernel_size'], hp['num_heads']),
}


class FastSpeech2(nn.Module):
    def __init__(self, dictionary, out_dims=None):
        super().__init__()
        self.dictionary = dictionary
        self.padding_idx = dictionary.pad()
        self.enc_layers = hparams['enc_layers']
        self.dec_layers = hparams['dec_layers']
        self.hidden_size = hparams['hidden_size']
        self.encoder_embed_tokens = self.build_embedding(self.dictionary, self.hidden_size)
        if hparams.get("use_bert", False):
            self.ph_encoder = BERTRelTransformerEncoder(len(self.dictionary), hparams['hidden_size'], hparams['hidden_size'],
                hparams['ffn_hidden_size'], hparams['num_heads'], hparams['enc_layers'],
                hparams['enc_ffn_kernel_size'], hparams['dropout'], prenet=hparams['enc_prenet'], pre_ln=hparams['enc_pre_ln'])
        else:
            self.encoder = FS_ENCODERS[hparams['encoder_type']](hparams, self.encoder_embed_tokens, self.dictionary)
        self.decoder = FS_DECODERS[hparams['decoder_type']](hparams)
        self.out_dims = hparams['audio_num_mel_bins'] if out_dims is None else out_dims
        self.mel_out = Linear(self.hidden_size, self.out_dims, bias=True)

        if hparams['use_spk_id']:
            self.spk_embed_proj = Embedding(hparams['num_spk'] + 1, self.hidden_size)
            if hparams['use_split_spk_id']:
                self.spk_embed_f0 = Embedding(hparams['num_spk'] + 1, self.hidden_size)
                self.spk_embed_dur = Embedding(hparams['num_spk'] + 1, self.hidden_size)
        elif hparams['use_spk_embed']:
            self.spk_embed_proj = Linear(256, self.hidden_size, bias=True)
        predictor_hidden = hparams['predictor_hidden'] if hparams['predictor_hidden'] > 0 else self.hidden_size
        self.dur_predictor = DurationPredictor(
            self.hidden_size,
            n_chans=predictor_hidden,
            n_layers=hparams['dur_predictor_layers'],
            dropout_rate=hparams['predictor_dropout'],
            kernel_size=hparams['dur_predictor_kernel'])
        self.length_regulator = LengthRegulator()
        if hparams['use_pitch_embed']:
            self.pitch_embed = Embedding(300, self.hidden_size, self.padding_idx)
            self.pitch_predictor = PitchPredictor(
                self.hidden_size,
                n_chans=predictor_hidden,
                n_layers=hparams['predictor_layers'],
                dropout_rate=hparams['predictor_dropout'],
                odim=2 if hparams['pitch_type'] == 'frame' else 1,
                kernel_size=hparams['predictor_kernel'])
        if hparams.get('use_energy_embed', False):
            self.energy_embed = Embedding(256, self.hidden_size, self.padding_idx)
            self.energy_predictor = EnergyPredictor(
                self.hidden_size,
                n_chans=predictor_hidden,
                n_layers=hparams['predictor_layers'],
                dropout_rate=hparams['predictor_dropout'], odim=1,
                kernel_size=hparams['predictor_kernel'])

    def build_embedding(self, dictionary, embed_dim):
        num_embeddings = len(dictionary)
        emb = Embedding(num_embeddings, embed_dim, self.padding_idx)
        return emb

    def forward(self, txt_tokens, mel2ph=None, spk_embed=None,
                ref_mels=None, f0=None, uv=None, energy=None, skip_decoder=False,
                spk_embed_dur_id=None, spk_embed_f0_id=None, infer=False, **kwargs):
        ret = {}
        if hparams.get("use_bert", False):
            encoder_out = self.encoder(txt_tokens, bert_feats=kwargs['bert_feats'], ph2word=kwargs['ph2word'], ret=ret)
        else:
            encoder_out = self.encoder(txt_tokens)  # [B, T, C]
        src_nonpadding = (txt_tokens > 0).float()[:, :, None]

        # add ref style embed
        # Not implemented
        # variance encoder
        var_embed = 0

        # encoder_out_dur denotes encoder outputs for duration predictor
        # in speech adaptation, duration predictor use old speaker embedding
        if hparams['use_spk_embed']:
            spk_embed_dur = spk_embed_f0 = spk_embed = self.spk_embed_proj(spk_embed)[:, None, :]
        elif hparams['use_spk_id']:
            spk_embed_id = spk_embed
            if spk_embed_dur_id is None:
                spk_embed_dur_id = spk_embed_id
            if spk_embed_f0_id is None:
                spk_embed_f0_id = spk_embed_id
            spk_embed = self.spk_embed_proj(spk_embed_id)[:, None, :]
            spk_embed_dur = spk_embed_f0 = spk_embed
            if hparams['use_split_spk_id']:
                spk_embed_dur = self.spk_embed_dur(spk_embed_dur_id)[:, None, :]
                spk_embed_f0 = self.spk_embed_f0(spk_embed_f0_id)[:, None, :]
        else:
            spk_embed_dur = spk_embed_f0 = spk_embed = 0

        # add dur
        dur_inp = (encoder_out + var_embed + spk_embed_dur) * src_nonpadding

        mel2ph = self.add_dur(dur_inp, mel2ph, txt_tokens, ret)

        decoder_inp = F.pad(encoder_out, [0, 0, 1, 0])

        mel2ph_ = mel2ph[..., None].repeat([1, 1, encoder_out.shape[-1]])
        decoder_inp_origin = decoder_inp = torch.gather(decoder_inp, 1, mel2ph_)  # [B, T, H]

        tgt_nonpadding = (mel2ph > 0).float()[:, :, None]

        # add pitch and energy embed
        pitch_inp = (decoder_inp_origin + var_embed + spk_embed_f0) * tgt_nonpadding
        if hparams['use_pitch_embed']:
            pitch_inp_ph = (encoder_out + var_embed + spk_embed_f0) * src_nonpadding
            decoder_inp = decoder_inp + self.add_pitch(pitch_inp, f0, uv, mel2ph, ret, encoder_out=pitch_inp_ph)
        if hparams.get('use_energy_embed', False):
            decoder_inp = decoder_inp + self.add_energy(pitch_inp, energy, ret)

        ret['decoder_inp'] = decoder_inp = (decoder_inp + spk_embed) * tgt_nonpadding

        if skip_decoder:
            return ret
        ret['mel_out'] = self.run_decoder(decoder_inp, tgt_nonpadding, ret, infer=infer, **kwargs)

        return ret

    def add_dur(self, dur_input, mel2ph, txt_tokens, ret):
        """

        :param dur_input: [B, T_txt, H]
        :param mel2ph: [B, T_mel]
        :param txt_tokens: [B, T_txt]
        :param ret:
        :return:
        """
        src_padding = txt_tokens == 0
        dur_input = dur_input.detach() + hparams['predictor_grad'] * (dur_input - dur_input.detach())
        if mel2ph is None:
            dur, xs = self.dur_predictor.inference(dur_input, src_padding)
            ret['dur'] = xs
            ret['dur_choice'] = dur
            mel2ph = self.length_regulator(dur, src_padding).detach()
            # from modules.fastspeech.fake_modules import FakeLengthRegulator
            # fake_lr = FakeLengthRegulator()
            # fake_mel2ph = fake_lr(dur, (1 - src_padding.long()).sum(-1))[..., 0].detach()
            # print(mel2ph == fake_mel2ph)
        else:
            ret['dur'] = self.dur_predictor(dur_input, src_padding)
        ret['mel2ph'] = mel2ph
        return mel2ph

    def add_energy(self, decoder_inp, energy, ret):
        decoder_inp = decoder_inp.detach() + hparams['predictor_grad'] * (decoder_inp - decoder_inp.detach())
        ret['energy_pred'] = energy_pred = self.energy_predictor(decoder_inp)[:, :, 0]
        if energy is None:
            energy = energy_pred
        energy = torch.clamp(energy * 256 // 4, max=255).long()
        energy_embed = self.energy_embed(energy)
        return energy_embed

    def add_pitch(self, decoder_inp, f0, uv, mel2ph, ret, encoder_out=None):
        if hparams['pitch_type'] == 'ph':
            pitch_pred_inp = encoder_out.detach() + hparams['predictor_grad'] * (encoder_out - encoder_out.detach())
            pitch_padding = encoder_out.sum().abs() == 0
            ret['pitch_pred'] = pitch_pred = self.pitch_predictor(pitch_pred_inp)
            if f0 is None:
                f0 = pitch_pred[:, :, 0]
            ret['f0_denorm'] = f0_denorm = denorm_f0(f0, None, hparams, pitch_padding=pitch_padding)
            pitch = f0_to_coarse(f0_denorm)  # start from 0 [B, T_txt]
            pitch = F.pad(pitch, [1, 0])
            pitch = torch.gather(pitch, 1, mel2ph)  # [B, T_mel]
            pitch_embed = self.pitch_embed(pitch)
            return pitch_embed
        decoder_inp = decoder_inp.detach() + hparams['predictor_grad'] * (decoder_inp - decoder_inp.detach())

        pitch_padding = mel2ph == 0

        if hparams['pitch_type'] == 'cwt':
            pitch_padding = None
            ret['cwt'] = cwt_out = self.cwt_predictor(decoder_inp)
            stats_out = self.cwt_stats_layers(encoder_out[:, 0, :])  # [B, 2]
            mean = ret['f0_mean'] = stats_out[:, 0]
            std = ret['f0_std'] = stats_out[:, 1]
            cwt_spec = cwt_out[:, :, :10]
            if f0 is None:
                std = std * hparams['cwt_std_scale']
                f0 = self.cwt2f0_norm(cwt_spec, mean, std, mel2ph)
                if hparams['use_uv']:
                    assert cwt_out.shape[-1] == 11
                    uv = cwt_out[:, :, -1] > 0
        elif hparams['pitch_ar']:
            ret['pitch_pred'] = pitch_pred = self.pitch_predictor(decoder_inp, f0 if self.training else None)
            if f0 is None:
                f0 = pitch_pred[:, :, 0]
        else:
            ret['pitch_pred'] = pitch_pred = self.pitch_predictor(decoder_inp)
            if f0 is None:
                f0 = pitch_pred[:, :, 0]
            if hparams['use_uv'] and uv is None:
                uv = pitch_pred[:, :, 1] > 0
        ret['f0_denorm'] = f0_denorm = denorm_f0(f0, uv, hparams, pitch_padding=pitch_padding)
        if pitch_padding is not None:
            f0[pitch_padding] = 0

        pitch = f0_to_coarse(f0_denorm)  # start from 0
        pitch_embed = self.pitch_embed(pitch)
        return pitch_embed

    def run_decoder(self, decoder_inp, tgt_nonpadding, ret, infer, **kwargs):
        x = decoder_inp  # [B, T, H]
        x = self.decoder(x)
        x = self.mel_out(x)
        return x * tgt_nonpadding

    def cwt2f0_norm(self, cwt_spec, mean, std, mel2ph):
        f0 = cwt2f0(cwt_spec, mean, std, hparams['cwt_scales'])
        f0 = torch.cat(
            [f0] + [f0[:, -1:]] * (mel2ph.shape[1] - f0.shape[1]), 1)
        f0_norm = norm_f0(f0, None, hparams)
        return f0_norm

    def out2mel(self, out):
        return out

    @staticmethod
    def mel_norm(x):
        return (x + 5.5) / (6.3 / 2) - 1

    @staticmethod
    def mel_denorm(x):
        return (x + 1) * (6.3 / 2) - 5.5

    def expand_states(self, h, mel2ph):
        h = F.pad(h, [0, 0, 1, 0])
        mel2ph_ = mel2ph[..., None].repeat([1, 1, h.shape[-1]])
        h = torch.gather(h, 1, mel2ph_)  # [B, T, H]
        return h