File size: 15,008 Bytes
98f685a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
import os

os.environ["OMP_NUM_THREADS"] = "1"
import torch
from collections import Counter
from utils.text_encoder import TokenTextEncoder
from data_gen.tts.emotion import inference as EmotionEncoder
from data_gen.tts.emotion.inference import embed_utterance as Embed_utterance
from data_gen.tts.emotion.inference import preprocess_wav
from utils.multiprocess_utils import chunked_multiprocess_run
import random
import traceback
import json
from resemblyzer import VoiceEncoder
from tqdm import tqdm
from data_gen.tts.data_gen_utils import get_mel2ph, get_pitch, build_phone_encoder, is_sil_phoneme
from utils.hparams import hparams, set_hparams
import numpy as np
from utils.indexed_datasets import IndexedDatasetBuilder
from vocoders.base_vocoder import get_vocoder_cls
import pandas as pd


class BinarizationError(Exception):
    pass


class EmotionBinarizer:
    def __init__(self, processed_data_dir=None):
        if processed_data_dir is None:
            processed_data_dir = hparams['processed_data_dir']
        self.processed_data_dirs = processed_data_dir.split(",")
        self.binarization_args = hparams['binarization_args']
        self.pre_align_args = hparams['pre_align_args']
        self.item2txt = {}
        self.item2ph = {}
        self.item2wavfn = {}
        self.item2tgfn = {}
        self.item2spk = {}
        self.item2emo = {}

    def load_meta_data(self):
        for ds_id, processed_data_dir in enumerate(self.processed_data_dirs):
            self.meta_df = pd.read_csv(f"{processed_data_dir}/metadata_phone.csv", dtype=str)
            for r_idx, r in tqdm(self.meta_df.iterrows(), desc='Loading meta data.'):
                item_name = raw_item_name = r['item_name']
                if len(self.processed_data_dirs) > 1:
                    item_name = f'ds{ds_id}_{item_name}'
                self.item2txt[item_name] = r['txt']
                self.item2ph[item_name] = r['ph']
                self.item2wavfn[item_name] = r['wav_fn']
                self.item2spk[item_name] = r.get('spk_name', 'SPK1') \
                    if self.binarization_args['with_spk_id'] else 'SPK1'
                if len(self.processed_data_dirs) > 1:
                    self.item2spk[item_name] = f"ds{ds_id}_{self.item2spk[item_name]}"
                self.item2tgfn[item_name] = f"{processed_data_dir}/mfa_outputs/{raw_item_name}.TextGrid"
                self.item2emo[item_name] = r.get('others', '"Neutral"')
        self.item_names = sorted(list(self.item2txt.keys()))
        if self.binarization_args['shuffle']:
            random.seed(1234)
            random.shuffle(self.item_names)

    @property
    def train_item_names(self):
        return self.item_names[hparams['test_num']:]

    @property
    def valid_item_names(self):
        return self.item_names[:hparams['test_num']]

    @property
    def test_item_names(self):
        return self.valid_item_names

    def build_spk_map(self):
        spk_map = set()
        for item_name in self.item_names:
            spk_name = self.item2spk[item_name]
            spk_map.add(spk_name)
        spk_map = {x: i for i, x in enumerate(sorted(list(spk_map)))}
        print("| #Spk: ", len(spk_map))
        assert len(spk_map) == 0 or len(spk_map) <= hparams['num_spk'], len(spk_map)
        return spk_map

    def build_emo_map(self):
        emo_map = set()
        for item_name in self.item_names:
            emo_name = self.item2emo[item_name]
            emo_map.add(emo_name)
        emo_map = {x: i for i, x in enumerate(sorted(list(emo_map)))}
        print("| #Emo: ", len(emo_map))
        return emo_map

    def item_name2spk_id(self, item_name):
        return self.spk_map[self.item2spk[item_name]]

    def item_name2emo_id(self, item_name):
        return self.emo_map[self.item2emo[item_name]]

    def _phone_encoder(self):
        ph_set_fn = f"{hparams['binary_data_dir']}/phone_set.json"
        ph_set = []
        if self.binarization_args['reset_phone_dict'] or not os.path.exists(ph_set_fn):
            for ph_sent in self.item2ph.values():
                ph_set += ph_sent.split(' ')
            ph_set = sorted(set(ph_set))
            json.dump(ph_set, open(ph_set_fn, 'w'))
            print("| Build phone set: ", ph_set)
        else:
            ph_set = json.load(open(ph_set_fn, 'r'))
            print("| Load phone set: ", ph_set)
        return build_phone_encoder(hparams['binary_data_dir'])

    def _word_encoder(self):
        fn = f"{hparams['binary_data_dir']}/word_set.json"
        word_set = []
        if self.binarization_args['reset_word_dict']:
            for word_sent in self.item2txt.values():
                word_set += [x for x in word_sent.split(' ') if x != '']
            word_set = Counter(word_set)
            total_words = sum(word_set.values())
            word_set = word_set.most_common(hparams['word_size'])
            num_unk_words = total_words - sum([x[1] for x in word_set])
            word_set = [x[0] for x in word_set]
            json.dump(word_set, open(fn, 'w'))
            print(f"| Build word set. Size: {len(word_set)}, #total words: {total_words},"
                  f" #unk_words: {num_unk_words}, word_set[:10]:, {word_set[:10]}.")
        else:
            word_set = json.load(open(fn, 'r'))
            print("| Load word set. Size: ", len(word_set), word_set[:10])
        return TokenTextEncoder(None, vocab_list=word_set, replace_oov='<UNK>')

    def meta_data(self, prefix):
        if prefix == 'valid':
            item_names = self.valid_item_names
        elif prefix == 'test':
            item_names = self.test_item_names
        else:
            item_names = self.train_item_names
        for item_name in item_names:
            ph = self.item2ph[item_name]
            txt = self.item2txt[item_name]
            tg_fn = self.item2tgfn.get(item_name)
            wav_fn = self.item2wavfn[item_name]
            spk_id = self.item_name2spk_id(item_name)
            emotion = self.item_name2emo_id(item_name)
            yield item_name, ph, txt, tg_fn, wav_fn, spk_id, emotion

    def process(self):
        self.load_meta_data()
        os.makedirs(hparams['binary_data_dir'], exist_ok=True)
        self.spk_map = self.build_spk_map()
        print("| spk_map: ", self.spk_map)
        spk_map_fn = f"{hparams['binary_data_dir']}/spk_map.json"
        json.dump(self.spk_map, open(spk_map_fn, 'w'))

        self.emo_map = self.build_emo_map()
        print("| emo_map: ", self.emo_map)
        emo_map_fn = f"{hparams['binary_data_dir']}/emo_map.json"
        json.dump(self.emo_map, open(emo_map_fn, 'w'))

        self.phone_encoder = self._phone_encoder()
        self.word_encoder = None
        EmotionEncoder.load_model(hparams['emotion_encoder_path'])

        if self.binarization_args['with_word']:
            self.word_encoder = self._word_encoder()
        self.process_data('valid')
        self.process_data('test')
        self.process_data('train')

    def process_data(self, prefix):
        data_dir = hparams['binary_data_dir']
        args = []
        builder = IndexedDatasetBuilder(f'{data_dir}/{prefix}')
        ph_lengths = []
        mel_lengths = []
        f0s = []
        total_sec = 0
        if self.binarization_args['with_spk_embed']:
            voice_encoder = VoiceEncoder().cuda()

        meta_data = list(self.meta_data(prefix))
        for m in meta_data:
            args.append(list(m) + [(self.phone_encoder, self.word_encoder), self.binarization_args])
        num_workers = self.num_workers
        for f_id, (_, item) in enumerate(
                zip(tqdm(meta_data), chunked_multiprocess_run(self.process_item, args, num_workers=num_workers))):
            if item is None:
                continue
            item['spk_embed'] = voice_encoder.embed_utterance(item['wav']) \
                if self.binarization_args['with_spk_embed'] else None
            processed_wav = preprocess_wav(item['wav_fn'])
            item['emo_embed'] = Embed_utterance(processed_wav)
            if not self.binarization_args['with_wav'] and 'wav' in item:
                del item['wav']
            builder.add_item(item)
            mel_lengths.append(item['len'])
            if 'ph_len' in item:
                ph_lengths.append(item['ph_len'])
            total_sec += item['sec']
            if item.get('f0') is not None:
                f0s.append(item['f0'])
        builder.finalize()
        np.save(f'{data_dir}/{prefix}_lengths.npy', mel_lengths)
        if len(ph_lengths) > 0:
            np.save(f'{data_dir}/{prefix}_ph_lengths.npy', ph_lengths)
        if len(f0s) > 0:
            f0s = np.concatenate(f0s, 0)
            f0s = f0s[f0s != 0]
            np.save(f'{data_dir}/{prefix}_f0s_mean_std.npy', [np.mean(f0s).item(), np.std(f0s).item()])
        print(f"| {prefix} total duration: {total_sec:.3f}s")

    @classmethod
    def process_item(cls, item_name, ph, txt, tg_fn, wav_fn, spk_id, emotion, encoder, binarization_args):
        res = {'item_name': item_name, 'txt': txt, 'ph': ph, 'wav_fn': wav_fn, 'spk_id': spk_id, 'emotion': emotion}
        if binarization_args['with_linear']:
            wav, mel, linear_stft = get_vocoder_cls(hparams).wav2spec(wav_fn) # , return_linear=True
            res['linear'] = linear_stft
        else:
            wav, mel = get_vocoder_cls(hparams).wav2spec(wav_fn)
        wav = wav.astype(np.float16)
        res.update({'mel': mel, 'wav': wav,
                    'sec': len(wav) / hparams['audio_sample_rate'], 'len': mel.shape[0]})
        try:
            if binarization_args['with_f0']:
                cls.get_pitch(res)
                if binarization_args['with_f0cwt']:
                    cls.get_f0cwt(res)
            if binarization_args['with_txt']:
                ph_encoder, word_encoder = encoder
                try:
                    res['phone'] = ph_encoder.encode(ph)
                    res['ph_len'] = len(res['phone'])
                except:
                    traceback.print_exc()
                    raise BinarizationError(f"Empty phoneme")
                if binarization_args['with_align']:
                    cls.get_align(tg_fn, res)
                    if binarization_args['trim_eos_bos']:
                        bos_dur = res['dur'][0]
                        eos_dur = res['dur'][-1]
                        res['mel'] = mel[bos_dur:-eos_dur]
                        res['f0'] = res['f0'][bos_dur:-eos_dur]
                        res['pitch'] = res['pitch'][bos_dur:-eos_dur]
                        res['mel2ph'] = res['mel2ph'][bos_dur:-eos_dur]
                        res['wav'] = wav[bos_dur * hparams['hop_size']:-eos_dur * hparams['hop_size']]
                        res['dur'] = res['dur'][1:-1]
                        res['len'] = res['mel'].shape[0]
                if binarization_args['with_word']:
                    cls.get_word(res, word_encoder)
        except BinarizationError as e:
            print(f"| Skip item ({e}). item_name: {item_name}, wav_fn: {wav_fn}")
            return None
        except Exception as e:
            traceback.print_exc()
            print(f"| Skip item. item_name: {item_name}, wav_fn: {wav_fn}")
            return None
        return res

    @staticmethod
    def get_align(tg_fn, res):
        ph = res['ph']
        mel = res['mel']
        phone_encoded = res['phone']
        if tg_fn is not None and os.path.exists(tg_fn):
            mel2ph, dur = get_mel2ph(tg_fn, ph, mel, hparams)
        else:
            raise BinarizationError(f"Align not found")
        if mel2ph.max() - 1 >= len(phone_encoded):
            raise BinarizationError(
                f"Align does not match: mel2ph.max() - 1: {mel2ph.max() - 1}, len(phone_encoded): {len(phone_encoded)}")
        res['mel2ph'] = mel2ph
        res['dur'] = dur

    @staticmethod
    def get_pitch(res):
        wav, mel = res['wav'], res['mel']
        f0, pitch_coarse = get_pitch(wav, mel, hparams)
        if sum(f0) == 0:
            raise BinarizationError("Empty f0")
        res['f0'] = f0
        res['pitch'] = pitch_coarse

    @staticmethod
    def get_f0cwt(res):
        from utils.cwt import get_cont_lf0, get_lf0_cwt
        f0 = res['f0']
        uv, cont_lf0_lpf = get_cont_lf0(f0)
        logf0s_mean_org, logf0s_std_org = np.mean(cont_lf0_lpf), np.std(cont_lf0_lpf)
        cont_lf0_lpf_norm = (cont_lf0_lpf - logf0s_mean_org) / logf0s_std_org
        Wavelet_lf0, scales = get_lf0_cwt(cont_lf0_lpf_norm)
        if np.any(np.isnan(Wavelet_lf0)):
            raise BinarizationError("NaN CWT")
        res['cwt_spec'] = Wavelet_lf0
        res['cwt_scales'] = scales
        res['f0_mean'] = logf0s_mean_org
        res['f0_std'] = logf0s_std_org

    @staticmethod
    def get_word(res, word_encoder):
        ph_split = res['ph'].split(" ")
        # ph side mapping to word
        ph_words = []  # ['<BOS>', 'N_AW1_', ',', 'AE1_Z_|', 'AO1_L_|', 'B_UH1_K_S_|', 'N_AA1_T_|', ....]
        ph2word = np.zeros([len(ph_split)], dtype=int)
        last_ph_idx_for_word = []  # [2, 11, ...]
        for i, ph in enumerate(ph_split):
            if ph == '|':
                last_ph_idx_for_word.append(i)
            elif not ph[0].isalnum():
                if ph not in ['<BOS>']:
                    last_ph_idx_for_word.append(i - 1)
                last_ph_idx_for_word.append(i)
        start_ph_idx_for_word = [0] + [i + 1 for i in last_ph_idx_for_word[:-1]]
        for i, (s_w, e_w) in enumerate(zip(start_ph_idx_for_word, last_ph_idx_for_word)):
            ph_words.append(ph_split[s_w:e_w + 1])
            ph2word[s_w:e_w + 1] = i
        ph2word = ph2word.tolist()
        ph_words = ["_".join(w) for w in ph_words]

        # mel side mapping to word
        mel2word = []
        dur_word = [0 for _ in range(len(ph_words))]
        for i, m2p in enumerate(res['mel2ph']):
            word_idx = ph2word[m2p - 1]
            mel2word.append(ph2word[m2p - 1])
            dur_word[word_idx] += 1
        ph2word = [x + 1 for x in ph2word]  # 0预留给padding
        mel2word = [x + 1 for x in mel2word]  # 0预留给padding
        res['ph_words'] = ph_words  # [T_word]
        res['ph2word'] = ph2word  # [T_ph]
        res['mel2word'] = mel2word  # [T_mel]
        res['dur_word'] = dur_word  # [T_word]
        words = [x for x in res['txt'].split(" ") if x != '']
        while len(words) > 0 and is_sil_phoneme(words[0]):
            words = words[1:]
        while len(words) > 0 and is_sil_phoneme(words[-1]):
            words = words[:-1]
        words = ['<BOS>'] + words + ['<EOS>']
        word_tokens = word_encoder.encode(" ".join(words))
        res['words'] = words
        res['word_tokens'] = word_tokens
        assert len(words) == len(ph_words), [words, ph_words]

    @property
    def num_workers(self):
        return int(os.getenv('N_PROC', hparams.get('N_PROC', os.cpu_count())))


if __name__ == "__main__":
    set_hparams()
    EmotionBinarizer().process()