Spaces:
Build error
Build error
File size: 15,008 Bytes
98f685a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
import os
os.environ["OMP_NUM_THREADS"] = "1"
import torch
from collections import Counter
from utils.text_encoder import TokenTextEncoder
from data_gen.tts.emotion import inference as EmotionEncoder
from data_gen.tts.emotion.inference import embed_utterance as Embed_utterance
from data_gen.tts.emotion.inference import preprocess_wav
from utils.multiprocess_utils import chunked_multiprocess_run
import random
import traceback
import json
from resemblyzer import VoiceEncoder
from tqdm import tqdm
from data_gen.tts.data_gen_utils import get_mel2ph, get_pitch, build_phone_encoder, is_sil_phoneme
from utils.hparams import hparams, set_hparams
import numpy as np
from utils.indexed_datasets import IndexedDatasetBuilder
from vocoders.base_vocoder import get_vocoder_cls
import pandas as pd
class BinarizationError(Exception):
pass
class EmotionBinarizer:
def __init__(self, processed_data_dir=None):
if processed_data_dir is None:
processed_data_dir = hparams['processed_data_dir']
self.processed_data_dirs = processed_data_dir.split(",")
self.binarization_args = hparams['binarization_args']
self.pre_align_args = hparams['pre_align_args']
self.item2txt = {}
self.item2ph = {}
self.item2wavfn = {}
self.item2tgfn = {}
self.item2spk = {}
self.item2emo = {}
def load_meta_data(self):
for ds_id, processed_data_dir in enumerate(self.processed_data_dirs):
self.meta_df = pd.read_csv(f"{processed_data_dir}/metadata_phone.csv", dtype=str)
for r_idx, r in tqdm(self.meta_df.iterrows(), desc='Loading meta data.'):
item_name = raw_item_name = r['item_name']
if len(self.processed_data_dirs) > 1:
item_name = f'ds{ds_id}_{item_name}'
self.item2txt[item_name] = r['txt']
self.item2ph[item_name] = r['ph']
self.item2wavfn[item_name] = r['wav_fn']
self.item2spk[item_name] = r.get('spk_name', 'SPK1') \
if self.binarization_args['with_spk_id'] else 'SPK1'
if len(self.processed_data_dirs) > 1:
self.item2spk[item_name] = f"ds{ds_id}_{self.item2spk[item_name]}"
self.item2tgfn[item_name] = f"{processed_data_dir}/mfa_outputs/{raw_item_name}.TextGrid"
self.item2emo[item_name] = r.get('others', '"Neutral"')
self.item_names = sorted(list(self.item2txt.keys()))
if self.binarization_args['shuffle']:
random.seed(1234)
random.shuffle(self.item_names)
@property
def train_item_names(self):
return self.item_names[hparams['test_num']:]
@property
def valid_item_names(self):
return self.item_names[:hparams['test_num']]
@property
def test_item_names(self):
return self.valid_item_names
def build_spk_map(self):
spk_map = set()
for item_name in self.item_names:
spk_name = self.item2spk[item_name]
spk_map.add(spk_name)
spk_map = {x: i for i, x in enumerate(sorted(list(spk_map)))}
print("| #Spk: ", len(spk_map))
assert len(spk_map) == 0 or len(spk_map) <= hparams['num_spk'], len(spk_map)
return spk_map
def build_emo_map(self):
emo_map = set()
for item_name in self.item_names:
emo_name = self.item2emo[item_name]
emo_map.add(emo_name)
emo_map = {x: i for i, x in enumerate(sorted(list(emo_map)))}
print("| #Emo: ", len(emo_map))
return emo_map
def item_name2spk_id(self, item_name):
return self.spk_map[self.item2spk[item_name]]
def item_name2emo_id(self, item_name):
return self.emo_map[self.item2emo[item_name]]
def _phone_encoder(self):
ph_set_fn = f"{hparams['binary_data_dir']}/phone_set.json"
ph_set = []
if self.binarization_args['reset_phone_dict'] or not os.path.exists(ph_set_fn):
for ph_sent in self.item2ph.values():
ph_set += ph_sent.split(' ')
ph_set = sorted(set(ph_set))
json.dump(ph_set, open(ph_set_fn, 'w'))
print("| Build phone set: ", ph_set)
else:
ph_set = json.load(open(ph_set_fn, 'r'))
print("| Load phone set: ", ph_set)
return build_phone_encoder(hparams['binary_data_dir'])
def _word_encoder(self):
fn = f"{hparams['binary_data_dir']}/word_set.json"
word_set = []
if self.binarization_args['reset_word_dict']:
for word_sent in self.item2txt.values():
word_set += [x for x in word_sent.split(' ') if x != '']
word_set = Counter(word_set)
total_words = sum(word_set.values())
word_set = word_set.most_common(hparams['word_size'])
num_unk_words = total_words - sum([x[1] for x in word_set])
word_set = [x[0] for x in word_set]
json.dump(word_set, open(fn, 'w'))
print(f"| Build word set. Size: {len(word_set)}, #total words: {total_words},"
f" #unk_words: {num_unk_words}, word_set[:10]:, {word_set[:10]}.")
else:
word_set = json.load(open(fn, 'r'))
print("| Load word set. Size: ", len(word_set), word_set[:10])
return TokenTextEncoder(None, vocab_list=word_set, replace_oov='<UNK>')
def meta_data(self, prefix):
if prefix == 'valid':
item_names = self.valid_item_names
elif prefix == 'test':
item_names = self.test_item_names
else:
item_names = self.train_item_names
for item_name in item_names:
ph = self.item2ph[item_name]
txt = self.item2txt[item_name]
tg_fn = self.item2tgfn.get(item_name)
wav_fn = self.item2wavfn[item_name]
spk_id = self.item_name2spk_id(item_name)
emotion = self.item_name2emo_id(item_name)
yield item_name, ph, txt, tg_fn, wav_fn, spk_id, emotion
def process(self):
self.load_meta_data()
os.makedirs(hparams['binary_data_dir'], exist_ok=True)
self.spk_map = self.build_spk_map()
print("| spk_map: ", self.spk_map)
spk_map_fn = f"{hparams['binary_data_dir']}/spk_map.json"
json.dump(self.spk_map, open(spk_map_fn, 'w'))
self.emo_map = self.build_emo_map()
print("| emo_map: ", self.emo_map)
emo_map_fn = f"{hparams['binary_data_dir']}/emo_map.json"
json.dump(self.emo_map, open(emo_map_fn, 'w'))
self.phone_encoder = self._phone_encoder()
self.word_encoder = None
EmotionEncoder.load_model(hparams['emotion_encoder_path'])
if self.binarization_args['with_word']:
self.word_encoder = self._word_encoder()
self.process_data('valid')
self.process_data('test')
self.process_data('train')
def process_data(self, prefix):
data_dir = hparams['binary_data_dir']
args = []
builder = IndexedDatasetBuilder(f'{data_dir}/{prefix}')
ph_lengths = []
mel_lengths = []
f0s = []
total_sec = 0
if self.binarization_args['with_spk_embed']:
voice_encoder = VoiceEncoder().cuda()
meta_data = list(self.meta_data(prefix))
for m in meta_data:
args.append(list(m) + [(self.phone_encoder, self.word_encoder), self.binarization_args])
num_workers = self.num_workers
for f_id, (_, item) in enumerate(
zip(tqdm(meta_data), chunked_multiprocess_run(self.process_item, args, num_workers=num_workers))):
if item is None:
continue
item['spk_embed'] = voice_encoder.embed_utterance(item['wav']) \
if self.binarization_args['with_spk_embed'] else None
processed_wav = preprocess_wav(item['wav_fn'])
item['emo_embed'] = Embed_utterance(processed_wav)
if not self.binarization_args['with_wav'] and 'wav' in item:
del item['wav']
builder.add_item(item)
mel_lengths.append(item['len'])
if 'ph_len' in item:
ph_lengths.append(item['ph_len'])
total_sec += item['sec']
if item.get('f0') is not None:
f0s.append(item['f0'])
builder.finalize()
np.save(f'{data_dir}/{prefix}_lengths.npy', mel_lengths)
if len(ph_lengths) > 0:
np.save(f'{data_dir}/{prefix}_ph_lengths.npy', ph_lengths)
if len(f0s) > 0:
f0s = np.concatenate(f0s, 0)
f0s = f0s[f0s != 0]
np.save(f'{data_dir}/{prefix}_f0s_mean_std.npy', [np.mean(f0s).item(), np.std(f0s).item()])
print(f"| {prefix} total duration: {total_sec:.3f}s")
@classmethod
def process_item(cls, item_name, ph, txt, tg_fn, wav_fn, spk_id, emotion, encoder, binarization_args):
res = {'item_name': item_name, 'txt': txt, 'ph': ph, 'wav_fn': wav_fn, 'spk_id': spk_id, 'emotion': emotion}
if binarization_args['with_linear']:
wav, mel, linear_stft = get_vocoder_cls(hparams).wav2spec(wav_fn) # , return_linear=True
res['linear'] = linear_stft
else:
wav, mel = get_vocoder_cls(hparams).wav2spec(wav_fn)
wav = wav.astype(np.float16)
res.update({'mel': mel, 'wav': wav,
'sec': len(wav) / hparams['audio_sample_rate'], 'len': mel.shape[0]})
try:
if binarization_args['with_f0']:
cls.get_pitch(res)
if binarization_args['with_f0cwt']:
cls.get_f0cwt(res)
if binarization_args['with_txt']:
ph_encoder, word_encoder = encoder
try:
res['phone'] = ph_encoder.encode(ph)
res['ph_len'] = len(res['phone'])
except:
traceback.print_exc()
raise BinarizationError(f"Empty phoneme")
if binarization_args['with_align']:
cls.get_align(tg_fn, res)
if binarization_args['trim_eos_bos']:
bos_dur = res['dur'][0]
eos_dur = res['dur'][-1]
res['mel'] = mel[bos_dur:-eos_dur]
res['f0'] = res['f0'][bos_dur:-eos_dur]
res['pitch'] = res['pitch'][bos_dur:-eos_dur]
res['mel2ph'] = res['mel2ph'][bos_dur:-eos_dur]
res['wav'] = wav[bos_dur * hparams['hop_size']:-eos_dur * hparams['hop_size']]
res['dur'] = res['dur'][1:-1]
res['len'] = res['mel'].shape[0]
if binarization_args['with_word']:
cls.get_word(res, word_encoder)
except BinarizationError as e:
print(f"| Skip item ({e}). item_name: {item_name}, wav_fn: {wav_fn}")
return None
except Exception as e:
traceback.print_exc()
print(f"| Skip item. item_name: {item_name}, wav_fn: {wav_fn}")
return None
return res
@staticmethod
def get_align(tg_fn, res):
ph = res['ph']
mel = res['mel']
phone_encoded = res['phone']
if tg_fn is not None and os.path.exists(tg_fn):
mel2ph, dur = get_mel2ph(tg_fn, ph, mel, hparams)
else:
raise BinarizationError(f"Align not found")
if mel2ph.max() - 1 >= len(phone_encoded):
raise BinarizationError(
f"Align does not match: mel2ph.max() - 1: {mel2ph.max() - 1}, len(phone_encoded): {len(phone_encoded)}")
res['mel2ph'] = mel2ph
res['dur'] = dur
@staticmethod
def get_pitch(res):
wav, mel = res['wav'], res['mel']
f0, pitch_coarse = get_pitch(wav, mel, hparams)
if sum(f0) == 0:
raise BinarizationError("Empty f0")
res['f0'] = f0
res['pitch'] = pitch_coarse
@staticmethod
def get_f0cwt(res):
from utils.cwt import get_cont_lf0, get_lf0_cwt
f0 = res['f0']
uv, cont_lf0_lpf = get_cont_lf0(f0)
logf0s_mean_org, logf0s_std_org = np.mean(cont_lf0_lpf), np.std(cont_lf0_lpf)
cont_lf0_lpf_norm = (cont_lf0_lpf - logf0s_mean_org) / logf0s_std_org
Wavelet_lf0, scales = get_lf0_cwt(cont_lf0_lpf_norm)
if np.any(np.isnan(Wavelet_lf0)):
raise BinarizationError("NaN CWT")
res['cwt_spec'] = Wavelet_lf0
res['cwt_scales'] = scales
res['f0_mean'] = logf0s_mean_org
res['f0_std'] = logf0s_std_org
@staticmethod
def get_word(res, word_encoder):
ph_split = res['ph'].split(" ")
# ph side mapping to word
ph_words = [] # ['<BOS>', 'N_AW1_', ',', 'AE1_Z_|', 'AO1_L_|', 'B_UH1_K_S_|', 'N_AA1_T_|', ....]
ph2word = np.zeros([len(ph_split)], dtype=int)
last_ph_idx_for_word = [] # [2, 11, ...]
for i, ph in enumerate(ph_split):
if ph == '|':
last_ph_idx_for_word.append(i)
elif not ph[0].isalnum():
if ph not in ['<BOS>']:
last_ph_idx_for_word.append(i - 1)
last_ph_idx_for_word.append(i)
start_ph_idx_for_word = [0] + [i + 1 for i in last_ph_idx_for_word[:-1]]
for i, (s_w, e_w) in enumerate(zip(start_ph_idx_for_word, last_ph_idx_for_word)):
ph_words.append(ph_split[s_w:e_w + 1])
ph2word[s_w:e_w + 1] = i
ph2word = ph2word.tolist()
ph_words = ["_".join(w) for w in ph_words]
# mel side mapping to word
mel2word = []
dur_word = [0 for _ in range(len(ph_words))]
for i, m2p in enumerate(res['mel2ph']):
word_idx = ph2word[m2p - 1]
mel2word.append(ph2word[m2p - 1])
dur_word[word_idx] += 1
ph2word = [x + 1 for x in ph2word] # 0预留给padding
mel2word = [x + 1 for x in mel2word] # 0预留给padding
res['ph_words'] = ph_words # [T_word]
res['ph2word'] = ph2word # [T_ph]
res['mel2word'] = mel2word # [T_mel]
res['dur_word'] = dur_word # [T_word]
words = [x for x in res['txt'].split(" ") if x != '']
while len(words) > 0 and is_sil_phoneme(words[0]):
words = words[1:]
while len(words) > 0 and is_sil_phoneme(words[-1]):
words = words[:-1]
words = ['<BOS>'] + words + ['<EOS>']
word_tokens = word_encoder.encode(" ".join(words))
res['words'] = words
res['word_tokens'] = word_tokens
assert len(words) == len(ph_words), [words, ph_words]
@property
def num_workers(self):
return int(os.getenv('N_PROC', hparams.get('N_PROC', os.cpu_count())))
if __name__ == "__main__":
set_hparams()
EmotionBinarizer().process()
|