Upload 3 files
#3
by
Trangluna2002
- opened
- EasierGUI.py +2101 -0
- infer-web.py +0 -0
- infer_uvr5.py +363 -0
EasierGUI.py
ADDED
@@ -0,0 +1,2101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import subprocess, torch, os, traceback, sys, warnings, shutil, numpy as np
|
2 |
+
from mega import Mega
|
3 |
+
os.environ["no_proxy"] = "localhost, 127.0.0.1, ::1"
|
4 |
+
import threading
|
5 |
+
from time import sleep
|
6 |
+
from subprocess import Popen
|
7 |
+
import faiss
|
8 |
+
from random import shuffle
|
9 |
+
import json, datetime, requests
|
10 |
+
from gtts import gTTS
|
11 |
+
now_dir = os.getcwd()
|
12 |
+
sys.path.append(now_dir)
|
13 |
+
tmp = os.path.join(now_dir, "TEMP")
|
14 |
+
shutil.rmtree(tmp, ignore_errors=True)
|
15 |
+
shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True)
|
16 |
+
os.makedirs(tmp, exist_ok=True)
|
17 |
+
os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True)
|
18 |
+
os.makedirs(os.path.join(now_dir, "weights"), exist_ok=True)
|
19 |
+
os.environ["TEMP"] = tmp
|
20 |
+
warnings.filterwarnings("ignore")
|
21 |
+
torch.manual_seed(114514)
|
22 |
+
from i18n import I18nAuto
|
23 |
+
|
24 |
+
import signal
|
25 |
+
|
26 |
+
import math
|
27 |
+
|
28 |
+
from my_utils import load_audio, CSVutil
|
29 |
+
|
30 |
+
global DoFormant, Quefrency, Timbre
|
31 |
+
|
32 |
+
if not os.path.isdir('csvdb/'):
|
33 |
+
os.makedirs('csvdb')
|
34 |
+
frmnt, stp = open("csvdb/formanting.csv", 'w'), open("csvdb/stop.csv", 'w')
|
35 |
+
frmnt.close()
|
36 |
+
stp.close()
|
37 |
+
|
38 |
+
try:
|
39 |
+
DoFormant, Quefrency, Timbre = CSVutil('csvdb/formanting.csv', 'r', 'formanting')
|
40 |
+
DoFormant = (
|
41 |
+
lambda DoFormant: True if DoFormant.lower() == 'true' else (False if DoFormant.lower() == 'false' else DoFormant)
|
42 |
+
)(DoFormant)
|
43 |
+
except (ValueError, TypeError, IndexError):
|
44 |
+
DoFormant, Quefrency, Timbre = False, 1.0, 1.0
|
45 |
+
CSVutil('csvdb/formanting.csv', 'w+', 'formanting', DoFormant, Quefrency, Timbre)
|
46 |
+
|
47 |
+
#from MDXNet import MDXNetDereverb
|
48 |
+
|
49 |
+
# Check if we're in a Google Colab environment
|
50 |
+
if os.path.exists('/content/'):
|
51 |
+
print("\n-------------------------------\nRVC v2 Easy GUI (Colab Edition)\n-------------------------------\n")
|
52 |
+
|
53 |
+
print("-------------------------------")
|
54 |
+
# Check if the file exists at the specified path
|
55 |
+
if os.path.exists('/content/Retrieval-based-Voice-Conversion-WebUI/hubert_base.pt'):
|
56 |
+
# If the file exists, print a statement saying so
|
57 |
+
print("File /content/Retrieval-based-Voice-Conversion-WebUI/hubert_base.pt already exists. No need to download.")
|
58 |
+
else:
|
59 |
+
# If the file doesn't exist, print a statement saying it's downloading
|
60 |
+
print("File /content/Retrieval-based-Voice-Conversion-WebUI/hubert_base.pt does not exist. Starting download.")
|
61 |
+
|
62 |
+
# Make a request to the URL
|
63 |
+
response = requests.get('https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt')
|
64 |
+
|
65 |
+
# Ensure the request was successful
|
66 |
+
if response.status_code == 200:
|
67 |
+
# If the response was a success, save the content to the specified file path
|
68 |
+
with open('/content/Retrieval-based-Voice-Conversion-WebUI/hubert_base.pt', 'wb') as f:
|
69 |
+
f.write(response.content)
|
70 |
+
print("Download complete. File saved to /content/Retrieval-based-Voice-Conversion-WebUI/hubert_base.pt.")
|
71 |
+
else:
|
72 |
+
# If the response was a failure, print an error message
|
73 |
+
print("Failed to download file. Status code: " + str(response.status_code) + ".")
|
74 |
+
else:
|
75 |
+
print("\n-------------------------------\nRVC v2 Easy GUI (Local Edition)\n-------------------------------\n")
|
76 |
+
print("-------------------------------\nNot running on Google Colab, skipping download.")
|
77 |
+
|
78 |
+
def formant_apply(qfrency, tmbre):
|
79 |
+
Quefrency = qfrency
|
80 |
+
Timbre = tmbre
|
81 |
+
DoFormant = True
|
82 |
+
CSVutil('csvdb/formanting.csv', 'w+', 'formanting', DoFormant, qfrency, tmbre)
|
83 |
+
|
84 |
+
return ({"value": Quefrency, "__type__": "update"}, {"value": Timbre, "__type__": "update"})
|
85 |
+
|
86 |
+
def get_fshift_presets():
|
87 |
+
fshift_presets_list = []
|
88 |
+
for dirpath, _, filenames in os.walk("./formantshiftcfg/"):
|
89 |
+
for filename in filenames:
|
90 |
+
if filename.endswith(".txt"):
|
91 |
+
fshift_presets_list.append(os.path.join(dirpath,filename).replace('\\','/'))
|
92 |
+
|
93 |
+
if len(fshift_presets_list) > 0:
|
94 |
+
return fshift_presets_list
|
95 |
+
else:
|
96 |
+
return ''
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
def formant_enabled(cbox, qfrency, tmbre, frmntapply, formantpreset, formant_refresh_button):
|
101 |
+
|
102 |
+
if (cbox):
|
103 |
+
|
104 |
+
DoFormant = True
|
105 |
+
CSVutil('csvdb/formanting.csv', 'w+', 'formanting', DoFormant, qfrency, tmbre)
|
106 |
+
#print(f"is checked? - {cbox}\ngot {DoFormant}")
|
107 |
+
|
108 |
+
return (
|
109 |
+
{"value": True, "__type__": "update"},
|
110 |
+
{"visible": True, "__type__": "update"},
|
111 |
+
{"visible": True, "__type__": "update"},
|
112 |
+
{"visible": True, "__type__": "update"},
|
113 |
+
{"visible": True, "__type__": "update"},
|
114 |
+
{"visible": True, "__type__": "update"},
|
115 |
+
)
|
116 |
+
|
117 |
+
|
118 |
+
else:
|
119 |
+
|
120 |
+
DoFormant = False
|
121 |
+
CSVutil('csvdb/formanting.csv', 'w+', 'formanting', DoFormant, qfrency, tmbre)
|
122 |
+
|
123 |
+
#print(f"is checked? - {cbox}\ngot {DoFormant}")
|
124 |
+
return (
|
125 |
+
{"value": False, "__type__": "update"},
|
126 |
+
{"visible": False, "__type__": "update"},
|
127 |
+
{"visible": False, "__type__": "update"},
|
128 |
+
{"visible": False, "__type__": "update"},
|
129 |
+
{"visible": False, "__type__": "update"},
|
130 |
+
{"visible": False, "__type__": "update"},
|
131 |
+
{"visible": False, "__type__": "update"},
|
132 |
+
)
|
133 |
+
|
134 |
+
|
135 |
+
|
136 |
+
def preset_apply(preset, qfer, tmbr):
|
137 |
+
if str(preset) != '':
|
138 |
+
with open(str(preset), 'r') as p:
|
139 |
+
content = p.readlines()
|
140 |
+
qfer, tmbr = content[0].split('\n')[0], content[1]
|
141 |
+
|
142 |
+
formant_apply(qfer, tmbr)
|
143 |
+
else:
|
144 |
+
pass
|
145 |
+
return ({"value": qfer, "__type__": "update"}, {"value": tmbr, "__type__": "update"})
|
146 |
+
|
147 |
+
def update_fshift_presets(preset, qfrency, tmbre):
|
148 |
+
|
149 |
+
qfrency, tmbre = preset_apply(preset, qfrency, tmbre)
|
150 |
+
|
151 |
+
if (str(preset) != ''):
|
152 |
+
with open(str(preset), 'r') as p:
|
153 |
+
content = p.readlines()
|
154 |
+
qfrency, tmbre = content[0].split('\n')[0], content[1]
|
155 |
+
|
156 |
+
formant_apply(qfrency, tmbre)
|
157 |
+
else:
|
158 |
+
pass
|
159 |
+
return (
|
160 |
+
{"choices": get_fshift_presets(), "__type__": "update"},
|
161 |
+
{"value": qfrency, "__type__": "update"},
|
162 |
+
{"value": tmbre, "__type__": "update"},
|
163 |
+
)
|
164 |
+
|
165 |
+
i18n = I18nAuto()
|
166 |
+
#i18n.print()
|
167 |
+
# 判断是否有能用来训练和加速推理的N卡
|
168 |
+
ngpu = torch.cuda.device_count()
|
169 |
+
gpu_infos = []
|
170 |
+
mem = []
|
171 |
+
if (not torch.cuda.is_available()) or ngpu == 0:
|
172 |
+
if_gpu_ok = False
|
173 |
+
else:
|
174 |
+
if_gpu_ok = False
|
175 |
+
for i in range(ngpu):
|
176 |
+
gpu_name = torch.cuda.get_device_name(i)
|
177 |
+
if (
|
178 |
+
"10" in gpu_name
|
179 |
+
or "16" in gpu_name
|
180 |
+
or "20" in gpu_name
|
181 |
+
or "30" in gpu_name
|
182 |
+
or "40" in gpu_name
|
183 |
+
or "A2" in gpu_name.upper()
|
184 |
+
or "A3" in gpu_name.upper()
|
185 |
+
or "A4" in gpu_name.upper()
|
186 |
+
or "P4" in gpu_name.upper()
|
187 |
+
or "A50" in gpu_name.upper()
|
188 |
+
or "A60" in gpu_name.upper()
|
189 |
+
or "70" in gpu_name
|
190 |
+
or "80" in gpu_name
|
191 |
+
or "90" in gpu_name
|
192 |
+
or "M4" in gpu_name.upper()
|
193 |
+
or "T4" in gpu_name.upper()
|
194 |
+
or "TITAN" in gpu_name.upper()
|
195 |
+
): # A10#A100#V100#A40#P40#M40#K80#A4500
|
196 |
+
if_gpu_ok = True # 至少有一张能用的N卡
|
197 |
+
gpu_infos.append("%s\t%s" % (i, gpu_name))
|
198 |
+
mem.append(
|
199 |
+
int(
|
200 |
+
torch.cuda.get_device_properties(i).total_memory
|
201 |
+
/ 1024
|
202 |
+
/ 1024
|
203 |
+
/ 1024
|
204 |
+
+ 0.4
|
205 |
+
)
|
206 |
+
)
|
207 |
+
if if_gpu_ok == True and len(gpu_infos) > 0:
|
208 |
+
gpu_info = "\n".join(gpu_infos)
|
209 |
+
default_batch_size = min(mem) // 2
|
210 |
+
else:
|
211 |
+
gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练")
|
212 |
+
default_batch_size = 1
|
213 |
+
gpus = "-".join([i[0] for i in gpu_infos])
|
214 |
+
from lib.infer_pack.models import (
|
215 |
+
SynthesizerTrnMs256NSFsid,
|
216 |
+
SynthesizerTrnMs256NSFsid_nono,
|
217 |
+
SynthesizerTrnMs768NSFsid,
|
218 |
+
SynthesizerTrnMs768NSFsid_nono,
|
219 |
+
)
|
220 |
+
import soundfile as sf
|
221 |
+
from fairseq import checkpoint_utils
|
222 |
+
import gradio as gr
|
223 |
+
import logging
|
224 |
+
from vc_infer_pipeline import VC
|
225 |
+
from config import Config
|
226 |
+
|
227 |
+
config = Config()
|
228 |
+
# from trainset_preprocess_pipeline import PreProcess
|
229 |
+
logging.getLogger("numba").setLevel(logging.WARNING)
|
230 |
+
|
231 |
+
hubert_model = None
|
232 |
+
|
233 |
+
def load_hubert():
|
234 |
+
global hubert_model
|
235 |
+
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
|
236 |
+
["hubert_base.pt"],
|
237 |
+
suffix="",
|
238 |
+
)
|
239 |
+
hubert_model = models[0]
|
240 |
+
hubert_model = hubert_model.to(config.device)
|
241 |
+
if config.is_half:
|
242 |
+
hubert_model = hubert_model.half()
|
243 |
+
else:
|
244 |
+
hubert_model = hubert_model.float()
|
245 |
+
hubert_model.eval()
|
246 |
+
|
247 |
+
|
248 |
+
weight_root = "weights"
|
249 |
+
index_root = "logs"
|
250 |
+
names = []
|
251 |
+
for name in os.listdir(weight_root):
|
252 |
+
if name.endswith(".pth"):
|
253 |
+
names.append(name)
|
254 |
+
index_paths = []
|
255 |
+
for root, dirs, files in os.walk(index_root, topdown=False):
|
256 |
+
for name in files:
|
257 |
+
if name.endswith(".index") and "trained" not in name:
|
258 |
+
index_paths.append("%s/%s" % (root, name))
|
259 |
+
|
260 |
+
|
261 |
+
|
262 |
+
def vc_single(
|
263 |
+
sid,
|
264 |
+
input_audio_path,
|
265 |
+
f0_up_key,
|
266 |
+
f0_file,
|
267 |
+
f0_method,
|
268 |
+
file_index,
|
269 |
+
#file_index2,
|
270 |
+
# file_big_npy,
|
271 |
+
index_rate,
|
272 |
+
filter_radius,
|
273 |
+
resample_sr,
|
274 |
+
rms_mix_rate,
|
275 |
+
protect,
|
276 |
+
crepe_hop_length,
|
277 |
+
): # spk_item, input_audio0, vc_transform0,f0_file,f0method0
|
278 |
+
global tgt_sr, net_g, vc, hubert_model, version
|
279 |
+
if input_audio_path is None:
|
280 |
+
return "You need to upload an audio", None
|
281 |
+
f0_up_key = int(f0_up_key)
|
282 |
+
try:
|
283 |
+
audio = load_audio(input_audio_path, 16000, DoFormant, Quefrency, Timbre)
|
284 |
+
audio_max = np.abs(audio).max() / 0.95
|
285 |
+
if audio_max > 1:
|
286 |
+
audio /= audio_max
|
287 |
+
times = [0, 0, 0]
|
288 |
+
if hubert_model == None:
|
289 |
+
load_hubert()
|
290 |
+
if_f0 = cpt.get("f0", 1)
|
291 |
+
file_index = (
|
292 |
+
(
|
293 |
+
file_index.strip(" ")
|
294 |
+
.strip('"')
|
295 |
+
.strip("\n")
|
296 |
+
.strip('"')
|
297 |
+
.strip(" ")
|
298 |
+
.replace("trained", "added")
|
299 |
+
)
|
300 |
+
) # 防止小白写错,自动帮他替换掉
|
301 |
+
# file_big_npy = (
|
302 |
+
# file_big_npy.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
303 |
+
# )
|
304 |
+
audio_opt = vc.pipeline(
|
305 |
+
hubert_model,
|
306 |
+
net_g,
|
307 |
+
sid,
|
308 |
+
audio,
|
309 |
+
input_audio_path,
|
310 |
+
times,
|
311 |
+
f0_up_key,
|
312 |
+
f0_method,
|
313 |
+
file_index,
|
314 |
+
# file_big_npy,
|
315 |
+
index_rate,
|
316 |
+
if_f0,
|
317 |
+
filter_radius,
|
318 |
+
tgt_sr,
|
319 |
+
resample_sr,
|
320 |
+
rms_mix_rate,
|
321 |
+
version,
|
322 |
+
protect,
|
323 |
+
crepe_hop_length,
|
324 |
+
f0_file=f0_file,
|
325 |
+
)
|
326 |
+
if resample_sr >= 16000 and tgt_sr != resample_sr:
|
327 |
+
tgt_sr = resample_sr
|
328 |
+
index_info = (
|
329 |
+
"Using index:%s." % file_index
|
330 |
+
if os.path.exists(file_index)
|
331 |
+
else "Index not used."
|
332 |
+
)
|
333 |
+
return "Success.\n %s\nTime:\n npy:%ss, f0:%ss, infer:%ss" % (
|
334 |
+
index_info,
|
335 |
+
times[0],
|
336 |
+
times[1],
|
337 |
+
times[2],
|
338 |
+
), (tgt_sr, audio_opt)
|
339 |
+
except:
|
340 |
+
info = traceback.format_exc()
|
341 |
+
print(info)
|
342 |
+
return info, (None, None)
|
343 |
+
|
344 |
+
|
345 |
+
def vc_multi(
|
346 |
+
sid,
|
347 |
+
dir_path,
|
348 |
+
opt_root,
|
349 |
+
paths,
|
350 |
+
f0_up_key,
|
351 |
+
f0_method,
|
352 |
+
file_index,
|
353 |
+
file_index2,
|
354 |
+
# file_big_npy,
|
355 |
+
index_rate,
|
356 |
+
filter_radius,
|
357 |
+
resample_sr,
|
358 |
+
rms_mix_rate,
|
359 |
+
protect,
|
360 |
+
format1,
|
361 |
+
crepe_hop_length,
|
362 |
+
):
|
363 |
+
try:
|
364 |
+
dir_path = (
|
365 |
+
dir_path.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
366 |
+
) # 防止小白拷路径头尾带了空格和"和回车
|
367 |
+
opt_root = opt_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
368 |
+
os.makedirs(opt_root, exist_ok=True)
|
369 |
+
try:
|
370 |
+
if dir_path != "":
|
371 |
+
paths = [os.path.join(dir_path, name) for name in os.listdir(dir_path)]
|
372 |
+
else:
|
373 |
+
paths = [path.name for path in paths]
|
374 |
+
except:
|
375 |
+
traceback.print_exc()
|
376 |
+
paths = [path.name for path in paths]
|
377 |
+
infos = []
|
378 |
+
for path in paths:
|
379 |
+
info, opt = vc_single(
|
380 |
+
sid,
|
381 |
+
path,
|
382 |
+
f0_up_key,
|
383 |
+
None,
|
384 |
+
f0_method,
|
385 |
+
file_index,
|
386 |
+
# file_big_npy,
|
387 |
+
index_rate,
|
388 |
+
filter_radius,
|
389 |
+
resample_sr,
|
390 |
+
rms_mix_rate,
|
391 |
+
protect,
|
392 |
+
crepe_hop_length
|
393 |
+
)
|
394 |
+
if "Success" in info:
|
395 |
+
try:
|
396 |
+
tgt_sr, audio_opt = opt
|
397 |
+
if format1 in ["wav", "flac"]:
|
398 |
+
sf.write(
|
399 |
+
"%s/%s.%s" % (opt_root, os.path.basename(path), format1),
|
400 |
+
audio_opt,
|
401 |
+
tgt_sr,
|
402 |
+
)
|
403 |
+
else:
|
404 |
+
path = "%s/%s.wav" % (opt_root, os.path.basename(path))
|
405 |
+
sf.write(
|
406 |
+
path,
|
407 |
+
audio_opt,
|
408 |
+
tgt_sr,
|
409 |
+
)
|
410 |
+
if os.path.exists(path):
|
411 |
+
os.system(
|
412 |
+
"ffmpeg -i %s -vn %s -q:a 2 -y"
|
413 |
+
% (path, path[:-4] + ".%s" % format1)
|
414 |
+
)
|
415 |
+
except:
|
416 |
+
info += traceback.format_exc()
|
417 |
+
infos.append("%s->%s" % (os.path.basename(path), info))
|
418 |
+
yield "\n".join(infos)
|
419 |
+
yield "\n".join(infos)
|
420 |
+
except:
|
421 |
+
yield traceback.format_exc()
|
422 |
+
|
423 |
+
# 一个选项卡全局只能有一个音色
|
424 |
+
def get_vc(sid):
|
425 |
+
global n_spk, tgt_sr, net_g, vc, cpt, version
|
426 |
+
if sid == "" or sid == []:
|
427 |
+
global hubert_model
|
428 |
+
if hubert_model != None: # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的
|
429 |
+
print("clean_empty_cache")
|
430 |
+
del net_g, n_spk, vc, hubert_model, tgt_sr # ,cpt
|
431 |
+
hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None
|
432 |
+
if torch.cuda.is_available():
|
433 |
+
torch.cuda.empty_cache()
|
434 |
+
###楼下不这么折腾清理不干净
|
435 |
+
if_f0 = cpt.get("f0", 1)
|
436 |
+
version = cpt.get("version", "v1")
|
437 |
+
if version == "v1":
|
438 |
+
if if_f0 == 1:
|
439 |
+
net_g = SynthesizerTrnMs256NSFsid(
|
440 |
+
*cpt["config"], is_half=config.is_half
|
441 |
+
)
|
442 |
+
else:
|
443 |
+
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
444 |
+
elif version == "v2":
|
445 |
+
if if_f0 == 1:
|
446 |
+
net_g = SynthesizerTrnMs768NSFsid(
|
447 |
+
*cpt["config"], is_half=config.is_half
|
448 |
+
)
|
449 |
+
else:
|
450 |
+
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
451 |
+
del net_g, cpt
|
452 |
+
if torch.cuda.is_available():
|
453 |
+
torch.cuda.empty_cache()
|
454 |
+
cpt = None
|
455 |
+
return {"visible": False, "__type__": "update"}
|
456 |
+
person = "%s/%s" % (weight_root, sid)
|
457 |
+
print("loading %s" % person)
|
458 |
+
cpt = torch.load(person, map_location="cpu")
|
459 |
+
tgt_sr = cpt["config"][-1]
|
460 |
+
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
|
461 |
+
if_f0 = cpt.get("f0", 1)
|
462 |
+
version = cpt.get("version", "v1")
|
463 |
+
if version == "v1":
|
464 |
+
if if_f0 == 1:
|
465 |
+
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
|
466 |
+
else:
|
467 |
+
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
468 |
+
elif version == "v2":
|
469 |
+
if if_f0 == 1:
|
470 |
+
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
|
471 |
+
else:
|
472 |
+
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
473 |
+
del net_g.enc_q
|
474 |
+
print(net_g.load_state_dict(cpt["weight"], strict=False))
|
475 |
+
net_g.eval().to(config.device)
|
476 |
+
if config.is_half:
|
477 |
+
net_g = net_g.half()
|
478 |
+
else:
|
479 |
+
net_g = net_g.float()
|
480 |
+
vc = VC(tgt_sr, config)
|
481 |
+
n_spk = cpt["config"][-3]
|
482 |
+
return {"visible": False, "maximum": n_spk, "__type__": "update"}
|
483 |
+
|
484 |
+
|
485 |
+
def change_choices():
|
486 |
+
names = []
|
487 |
+
for name in os.listdir(weight_root):
|
488 |
+
if name.endswith(".pth"):
|
489 |
+
names.append(name)
|
490 |
+
index_paths = []
|
491 |
+
for root, dirs, files in os.walk(index_root, topdown=False):
|
492 |
+
for name in files:
|
493 |
+
if name.endswith(".index") and "trained" not in name:
|
494 |
+
index_paths.append("%s/%s" % (root, name))
|
495 |
+
return {"choices": sorted(names), "__type__": "update"}, {
|
496 |
+
"choices": sorted(index_paths),
|
497 |
+
"__type__": "update",
|
498 |
+
}
|
499 |
+
|
500 |
+
|
501 |
+
def clean():
|
502 |
+
return {"value": "", "__type__": "update"}
|
503 |
+
|
504 |
+
|
505 |
+
sr_dict = {
|
506 |
+
"32k": 32000,
|
507 |
+
"40k": 40000,
|
508 |
+
"48k": 48000,
|
509 |
+
}
|
510 |
+
|
511 |
+
|
512 |
+
def if_done(done, p):
|
513 |
+
while 1:
|
514 |
+
if p.poll() == None:
|
515 |
+
sleep(0.5)
|
516 |
+
else:
|
517 |
+
break
|
518 |
+
done[0] = True
|
519 |
+
|
520 |
+
|
521 |
+
def if_done_multi(done, ps):
|
522 |
+
while 1:
|
523 |
+
# poll==None代表进程未结束
|
524 |
+
# 只要有一个进程未结束都不停
|
525 |
+
flag = 1
|
526 |
+
for p in ps:
|
527 |
+
if p.poll() == None:
|
528 |
+
flag = 0
|
529 |
+
sleep(0.5)
|
530 |
+
break
|
531 |
+
if flag == 1:
|
532 |
+
break
|
533 |
+
done[0] = True
|
534 |
+
|
535 |
+
|
536 |
+
def preprocess_dataset(trainset_dir, exp_dir, sr, n_p):
|
537 |
+
sr = sr_dict[sr]
|
538 |
+
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
|
539 |
+
f = open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "w")
|
540 |
+
f.close()
|
541 |
+
cmd = (
|
542 |
+
config.python_cmd
|
543 |
+
+ " trainset_preprocess_pipeline_print.py %s %s %s %s/logs/%s "
|
544 |
+
% (trainset_dir, sr, n_p, now_dir, exp_dir)
|
545 |
+
+ str(config.noparallel)
|
546 |
+
)
|
547 |
+
print(cmd)
|
548 |
+
p = Popen(cmd, shell=True) # , stdin=PIPE, stdout=PIPE,stderr=PIPE,cwd=now_dir
|
549 |
+
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
550 |
+
done = [False]
|
551 |
+
threading.Thread(
|
552 |
+
target=if_done,
|
553 |
+
args=(
|
554 |
+
done,
|
555 |
+
p,
|
556 |
+
),
|
557 |
+
).start()
|
558 |
+
while 1:
|
559 |
+
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
|
560 |
+
yield (f.read())
|
561 |
+
sleep(1)
|
562 |
+
if done[0] == True:
|
563 |
+
break
|
564 |
+
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
|
565 |
+
log = f.read()
|
566 |
+
print(log)
|
567 |
+
yield log
|
568 |
+
|
569 |
+
# but2.click(extract_f0,[gpus6,np7,f0method8,if_f0_3,trainset_dir4],[info2])
|
570 |
+
def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19, echl):
|
571 |
+
gpus = gpus.split("-")
|
572 |
+
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
|
573 |
+
f = open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "w")
|
574 |
+
f.close()
|
575 |
+
if if_f0:
|
576 |
+
cmd = config.python_cmd + " extract_f0_print.py %s/logs/%s %s %s %s" % (
|
577 |
+
now_dir,
|
578 |
+
exp_dir,
|
579 |
+
n_p,
|
580 |
+
f0method,
|
581 |
+
echl,
|
582 |
+
)
|
583 |
+
print(cmd)
|
584 |
+
p = Popen(cmd, shell=True, cwd=now_dir) # , stdin=PIPE, stdout=PIPE,stderr=PIPE
|
585 |
+
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
586 |
+
done = [False]
|
587 |
+
threading.Thread(
|
588 |
+
target=if_done,
|
589 |
+
args=(
|
590 |
+
done,
|
591 |
+
p,
|
592 |
+
),
|
593 |
+
).start()
|
594 |
+
while 1:
|
595 |
+
with open(
|
596 |
+
"%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r"
|
597 |
+
) as f:
|
598 |
+
yield (f.read())
|
599 |
+
sleep(1)
|
600 |
+
if done[0] == True:
|
601 |
+
break
|
602 |
+
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
603 |
+
log = f.read()
|
604 |
+
print(log)
|
605 |
+
yield log
|
606 |
+
####对不同part分别开多进程
|
607 |
+
"""
|
608 |
+
n_part=int(sys.argv[1])
|
609 |
+
i_part=int(sys.argv[2])
|
610 |
+
i_gpu=sys.argv[3]
|
611 |
+
exp_dir=sys.argv[4]
|
612 |
+
os.environ["CUDA_VISIBLE_DEVICES"]=str(i_gpu)
|
613 |
+
"""
|
614 |
+
leng = len(gpus)
|
615 |
+
ps = []
|
616 |
+
for idx, n_g in enumerate(gpus):
|
617 |
+
cmd = (
|
618 |
+
config.python_cmd
|
619 |
+
+ " extract_feature_print.py %s %s %s %s %s/logs/%s %s"
|
620 |
+
% (
|
621 |
+
config.device,
|
622 |
+
leng,
|
623 |
+
idx,
|
624 |
+
n_g,
|
625 |
+
now_dir,
|
626 |
+
exp_dir,
|
627 |
+
version19,
|
628 |
+
)
|
629 |
+
)
|
630 |
+
print(cmd)
|
631 |
+
p = Popen(
|
632 |
+
cmd, shell=True, cwd=now_dir
|
633 |
+
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
634 |
+
ps.append(p)
|
635 |
+
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
636 |
+
done = [False]
|
637 |
+
threading.Thread(
|
638 |
+
target=if_done_multi,
|
639 |
+
args=(
|
640 |
+
done,
|
641 |
+
ps,
|
642 |
+
),
|
643 |
+
).start()
|
644 |
+
while 1:
|
645 |
+
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
646 |
+
yield (f.read())
|
647 |
+
sleep(1)
|
648 |
+
if done[0] == True:
|
649 |
+
break
|
650 |
+
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
651 |
+
log = f.read()
|
652 |
+
print(log)
|
653 |
+
yield log
|
654 |
+
|
655 |
+
|
656 |
+
def change_sr2(sr2, if_f0_3, version19):
|
657 |
+
path_str = "" if version19 == "v1" else "_v2"
|
658 |
+
f0_str = "f0" if if_f0_3 else ""
|
659 |
+
if_pretrained_generator_exist = os.access("pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), os.F_OK)
|
660 |
+
if_pretrained_discriminator_exist = os.access("pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK)
|
661 |
+
if (if_pretrained_generator_exist == False):
|
662 |
+
print("pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), "not exist, will not use pretrained model")
|
663 |
+
if (if_pretrained_discriminator_exist == False):
|
664 |
+
print("pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), "not exist, will not use pretrained model")
|
665 |
+
return (
|
666 |
+
("pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2)) if if_pretrained_generator_exist else "",
|
667 |
+
("pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2)) if if_pretrained_discriminator_exist else "",
|
668 |
+
{"visible": True, "__type__": "update"}
|
669 |
+
)
|
670 |
+
|
671 |
+
def change_version19(sr2, if_f0_3, version19):
|
672 |
+
path_str = "" if version19 == "v1" else "_v2"
|
673 |
+
f0_str = "f0" if if_f0_3 else ""
|
674 |
+
if_pretrained_generator_exist = os.access("pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), os.F_OK)
|
675 |
+
if_pretrained_discriminator_exist = os.access("pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK)
|
676 |
+
if (if_pretrained_generator_exist == False):
|
677 |
+
print("pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), "not exist, will not use pretrained model")
|
678 |
+
if (if_pretrained_discriminator_exist == False):
|
679 |
+
print("pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), "not exist, will not use pretrained model")
|
680 |
+
return (
|
681 |
+
("pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2)) if if_pretrained_generator_exist else "",
|
682 |
+
("pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2)) if if_pretrained_discriminator_exist else "",
|
683 |
+
)
|
684 |
+
|
685 |
+
|
686 |
+
def change_f0(if_f0_3, sr2, version19): # f0method8,pretrained_G14,pretrained_D15
|
687 |
+
path_str = "" if version19 == "v1" else "_v2"
|
688 |
+
if_pretrained_generator_exist = os.access("pretrained%s/f0G%s.pth" % (path_str, sr2), os.F_OK)
|
689 |
+
if_pretrained_discriminator_exist = os.access("pretrained%s/f0D%s.pth" % (path_str, sr2), os.F_OK)
|
690 |
+
if (if_pretrained_generator_exist == False):
|
691 |
+
print("pretrained%s/f0G%s.pth" % (path_str, sr2), "not exist, will not use pretrained model")
|
692 |
+
if (if_pretrained_discriminator_exist == False):
|
693 |
+
print("pretrained%s/f0D%s.pth" % (path_str, sr2), "not exist, will not use pretrained model")
|
694 |
+
if if_f0_3:
|
695 |
+
return (
|
696 |
+
{"visible": True, "__type__": "update"},
|
697 |
+
"pretrained%s/f0G%s.pth" % (path_str, sr2) if if_pretrained_generator_exist else "",
|
698 |
+
"pretrained%s/f0D%s.pth" % (path_str, sr2) if if_pretrained_discriminator_exist else "",
|
699 |
+
)
|
700 |
+
return (
|
701 |
+
{"visible": False, "__type__": "update"},
|
702 |
+
("pretrained%s/G%s.pth" % (path_str, sr2)) if if_pretrained_generator_exist else "",
|
703 |
+
("pretrained%s/D%s.pth" % (path_str, sr2)) if if_pretrained_discriminator_exist else "",
|
704 |
+
)
|
705 |
+
|
706 |
+
|
707 |
+
global log_interval
|
708 |
+
|
709 |
+
|
710 |
+
def set_log_interval(exp_dir, batch_size12):
|
711 |
+
log_interval = 1
|
712 |
+
|
713 |
+
folder_path = os.path.join(exp_dir, "1_16k_wavs")
|
714 |
+
|
715 |
+
if os.path.exists(folder_path) and os.path.isdir(folder_path):
|
716 |
+
wav_files = [f for f in os.listdir(folder_path) if f.endswith(".wav")]
|
717 |
+
if wav_files:
|
718 |
+
sample_size = len(wav_files)
|
719 |
+
log_interval = math.ceil(sample_size / batch_size12)
|
720 |
+
if log_interval > 1:
|
721 |
+
log_interval += 1
|
722 |
+
return log_interval
|
723 |
+
|
724 |
+
# but3.click(click_train,[exp_dir1,sr2,if_f0_3,save_epoch10,total_epoch11,batch_size12,if_save_latest13,pretrained_G14,pretrained_D15,gpus16])
|
725 |
+
def click_train(
|
726 |
+
exp_dir1,
|
727 |
+
sr2,
|
728 |
+
if_f0_3,
|
729 |
+
spk_id5,
|
730 |
+
save_epoch10,
|
731 |
+
total_epoch11,
|
732 |
+
batch_size12,
|
733 |
+
if_save_latest13,
|
734 |
+
pretrained_G14,
|
735 |
+
pretrained_D15,
|
736 |
+
gpus16,
|
737 |
+
if_cache_gpu17,
|
738 |
+
if_save_every_weights18,
|
739 |
+
version19,
|
740 |
+
):
|
741 |
+
CSVutil('csvdb/stop.csv', 'w+', 'formanting', False)
|
742 |
+
# 生成filelist
|
743 |
+
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
744 |
+
os.makedirs(exp_dir, exist_ok=True)
|
745 |
+
gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir)
|
746 |
+
feature_dir = (
|
747 |
+
"%s/3_feature256" % (exp_dir)
|
748 |
+
if version19 == "v1"
|
749 |
+
else "%s/3_feature768" % (exp_dir)
|
750 |
+
)
|
751 |
+
|
752 |
+
log_interval = set_log_interval(exp_dir, batch_size12)
|
753 |
+
|
754 |
+
if if_f0_3:
|
755 |
+
f0_dir = "%s/2a_f0" % (exp_dir)
|
756 |
+
f0nsf_dir = "%s/2b-f0nsf" % (exp_dir)
|
757 |
+
names = (
|
758 |
+
set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)])
|
759 |
+
& set([name.split(".")[0] for name in os.listdir(feature_dir)])
|
760 |
+
& set([name.split(".")[0] for name in os.listdir(f0_dir)])
|
761 |
+
& set([name.split(".")[0] for name in os.listdir(f0nsf_dir)])
|
762 |
+
)
|
763 |
+
else:
|
764 |
+
names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set(
|
765 |
+
[name.split(".")[0] for name in os.listdir(feature_dir)]
|
766 |
+
)
|
767 |
+
opt = []
|
768 |
+
for name in names:
|
769 |
+
if if_f0_3:
|
770 |
+
opt.append(
|
771 |
+
"%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"
|
772 |
+
% (
|
773 |
+
gt_wavs_dir.replace("\\", "\\\\"),
|
774 |
+
name,
|
775 |
+
feature_dir.replace("\\", "\\\\"),
|
776 |
+
name,
|
777 |
+
f0_dir.replace("\\", "\\\\"),
|
778 |
+
name,
|
779 |
+
f0nsf_dir.replace("\\", "\\\\"),
|
780 |
+
name,
|
781 |
+
spk_id5,
|
782 |
+
)
|
783 |
+
)
|
784 |
+
else:
|
785 |
+
opt.append(
|
786 |
+
"%s/%s.wav|%s/%s.npy|%s"
|
787 |
+
% (
|
788 |
+
gt_wavs_dir.replace("\\", "\\\\"),
|
789 |
+
name,
|
790 |
+
feature_dir.replace("\\", "\\\\"),
|
791 |
+
name,
|
792 |
+
spk_id5,
|
793 |
+
)
|
794 |
+
)
|
795 |
+
fea_dim = 256 if version19 == "v1" else 768
|
796 |
+
if if_f0_3:
|
797 |
+
for _ in range(2):
|
798 |
+
opt.append(
|
799 |
+
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
|
800 |
+
% (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5)
|
801 |
+
)
|
802 |
+
else:
|
803 |
+
for _ in range(2):
|
804 |
+
opt.append(
|
805 |
+
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s"
|
806 |
+
% (now_dir, sr2, now_dir, fea_dim, spk_id5)
|
807 |
+
)
|
808 |
+
shuffle(opt)
|
809 |
+
with open("%s/filelist.txt" % exp_dir, "w") as f:
|
810 |
+
f.write("\n".join(opt))
|
811 |
+
print("write filelist done")
|
812 |
+
# 生成config#无需生成config
|
813 |
+
# cmd = python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e mi-test -sr 40k -f0 1 -bs 4 -g 0 -te 10 -se 5 -pg pretrained/f0G40k.pth -pd pretrained/f0D40k.pth -l 1 -c 0"
|
814 |
+
print("use gpus:", gpus16)
|
815 |
+
if pretrained_G14 == "":
|
816 |
+
print("no pretrained Generator")
|
817 |
+
if pretrained_D15 == "":
|
818 |
+
print("no pretrained Discriminator")
|
819 |
+
if gpus16:
|
820 |
+
cmd = (
|
821 |
+
config.python_cmd
|
822 |
+
+ " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s -li %s"
|
823 |
+
% (
|
824 |
+
exp_dir1,
|
825 |
+
sr2,
|
826 |
+
1 if if_f0_3 else 0,
|
827 |
+
batch_size12,
|
828 |
+
gpus16,
|
829 |
+
total_epoch11,
|
830 |
+
save_epoch10,
|
831 |
+
("-pg %s" % pretrained_G14) if pretrained_G14 != "" else "",
|
832 |
+
("-pd %s" % pretrained_D15) if pretrained_D15 != "" else "",
|
833 |
+
1 if if_save_latest13 == True else 0,
|
834 |
+
1 if if_cache_gpu17 == True else 0,
|
835 |
+
1 if if_save_every_weights18 == True else 0,
|
836 |
+
version19,
|
837 |
+
log_interval,
|
838 |
+
)
|
839 |
+
)
|
840 |
+
else:
|
841 |
+
cmd = (
|
842 |
+
config.python_cmd
|
843 |
+
+ " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s -li %s"
|
844 |
+
% (
|
845 |
+
exp_dir1,
|
846 |
+
sr2,
|
847 |
+
1 if if_f0_3 else 0,
|
848 |
+
batch_size12,
|
849 |
+
total_epoch11,
|
850 |
+
save_epoch10,
|
851 |
+
("-pg %s" % pretrained_G14) if pretrained_G14 != "" else "\b",
|
852 |
+
("-pd %s" % pretrained_D15) if pretrained_D15 != "" else "\b",
|
853 |
+
1 if if_save_latest13 == True else 0,
|
854 |
+
1 if if_cache_gpu17 == True else 0,
|
855 |
+
1 if if_save_every_weights18 == True else 0,
|
856 |
+
version19,
|
857 |
+
log_interval,
|
858 |
+
)
|
859 |
+
)
|
860 |
+
print(cmd)
|
861 |
+
p = Popen(cmd, shell=True, cwd=now_dir)
|
862 |
+
global PID
|
863 |
+
PID = p.pid
|
864 |
+
p.wait()
|
865 |
+
return ("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log", {"visible": False, "__type__": "update"}, {"visible": True, "__type__": "update"})
|
866 |
+
|
867 |
+
|
868 |
+
# but4.click(train_index, [exp_dir1], info3)
|
869 |
+
def train_index(exp_dir1, version19):
|
870 |
+
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
871 |
+
os.makedirs(exp_dir, exist_ok=True)
|
872 |
+
feature_dir = (
|
873 |
+
"%s/3_feature256" % (exp_dir)
|
874 |
+
if version19 == "v1"
|
875 |
+
else "%s/3_feature768" % (exp_dir)
|
876 |
+
)
|
877 |
+
if os.path.exists(feature_dir) == False:
|
878 |
+
return "请先进行特征提取!"
|
879 |
+
listdir_res = list(os.listdir(feature_dir))
|
880 |
+
if len(listdir_res) == 0:
|
881 |
+
return "请先进行特征提取!"
|
882 |
+
npys = []
|
883 |
+
for name in sorted(listdir_res):
|
884 |
+
phone = np.load("%s/%s" % (feature_dir, name))
|
885 |
+
npys.append(phone)
|
886 |
+
big_npy = np.concatenate(npys, 0)
|
887 |
+
big_npy_idx = np.arange(big_npy.shape[0])
|
888 |
+
np.random.shuffle(big_npy_idx)
|
889 |
+
big_npy = big_npy[big_npy_idx]
|
890 |
+
np.save("%s/total_fea.npy" % exp_dir, big_npy)
|
891 |
+
# n_ivf = big_npy.shape[0] // 39
|
892 |
+
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
|
893 |
+
infos = []
|
894 |
+
infos.append("%s,%s" % (big_npy.shape, n_ivf))
|
895 |
+
yield "\n".join(infos)
|
896 |
+
index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf)
|
897 |
+
# index = faiss.index_factory(256if version19=="v1"else 768, "IVF%s,PQ128x4fs,RFlat"%n_ivf)
|
898 |
+
infos.append("training")
|
899 |
+
yield "\n".join(infos)
|
900 |
+
index_ivf = faiss.extract_index_ivf(index) #
|
901 |
+
index_ivf.nprobe = 1
|
902 |
+
index.train(big_npy)
|
903 |
+
faiss.write_index(
|
904 |
+
index,
|
905 |
+
"%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
906 |
+
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
907 |
+
)
|
908 |
+
# faiss.write_index(index, '%s/trained_IVF%s_Flat_FastScan_%s.index'%(exp_dir,n_ivf,version19))
|
909 |
+
infos.append("adding")
|
910 |
+
yield "\n".join(infos)
|
911 |
+
batch_size_add = 8192
|
912 |
+
for i in range(0, big_npy.shape[0], batch_size_add):
|
913 |
+
index.add(big_npy[i : i + batch_size_add])
|
914 |
+
faiss.write_index(
|
915 |
+
index,
|
916 |
+
"%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
917 |
+
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
918 |
+
)
|
919 |
+
infos.append(
|
920 |
+
"成功构建索引,added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
921 |
+
% (n_ivf, index_ivf.nprobe, exp_dir1, version19)
|
922 |
+
)
|
923 |
+
# faiss.write_index(index, '%s/added_IVF%s_Flat_FastScan_%s.index'%(exp_dir,n_ivf,version19))
|
924 |
+
# infos.append("成功构建索引,added_IVF%s_Flat_FastScan_%s.index"%(n_ivf,version19))
|
925 |
+
yield "\n".join(infos)
|
926 |
+
|
927 |
+
|
928 |
+
# but5.click(train1key, [exp_dir1, sr2, if_f0_3, trainset_dir4, spk_id5, gpus6, np7, f0method8, save_epoch10, total_epoch11, batch_size12, if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17], info3)
|
929 |
+
def train1key(
|
930 |
+
exp_dir1,
|
931 |
+
sr2,
|
932 |
+
if_f0_3,
|
933 |
+
trainset_dir4,
|
934 |
+
spk_id5,
|
935 |
+
np7,
|
936 |
+
f0method8,
|
937 |
+
save_epoch10,
|
938 |
+
total_epoch11,
|
939 |
+
batch_size12,
|
940 |
+
if_save_latest13,
|
941 |
+
pretrained_G14,
|
942 |
+
pretrained_D15,
|
943 |
+
gpus16,
|
944 |
+
if_cache_gpu17,
|
945 |
+
if_save_every_weights18,
|
946 |
+
version19,
|
947 |
+
echl
|
948 |
+
):
|
949 |
+
infos = []
|
950 |
+
|
951 |
+
def get_info_str(strr):
|
952 |
+
infos.append(strr)
|
953 |
+
return "\n".join(infos)
|
954 |
+
|
955 |
+
model_log_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
956 |
+
preprocess_log_path = "%s/preprocess.log" % model_log_dir
|
957 |
+
extract_f0_feature_log_path = "%s/extract_f0_feature.log" % model_log_dir
|
958 |
+
gt_wavs_dir = "%s/0_gt_wavs" % model_log_dir
|
959 |
+
feature_dir = (
|
960 |
+
"%s/3_feature256" % model_log_dir
|
961 |
+
if version19 == "v1"
|
962 |
+
else "%s/3_feature768" % model_log_dir
|
963 |
+
)
|
964 |
+
|
965 |
+
os.makedirs(model_log_dir, exist_ok=True)
|
966 |
+
#########step1:处理数据
|
967 |
+
open(preprocess_log_path, "w").close()
|
968 |
+
cmd = (
|
969 |
+
config.python_cmd
|
970 |
+
+ " trainset_preprocess_pipeline_print.py %s %s %s %s "
|
971 |
+
% (trainset_dir4, sr_dict[sr2], np7, model_log_dir)
|
972 |
+
+ str(config.noparallel)
|
973 |
+
)
|
974 |
+
yield get_info_str(i18n("step1:正在处理数据"))
|
975 |
+
yield get_info_str(cmd)
|
976 |
+
p = Popen(cmd, shell=True)
|
977 |
+
p.wait()
|
978 |
+
with open(preprocess_log_path, "r") as f:
|
979 |
+
print(f.read())
|
980 |
+
#########step2a:提取音高
|
981 |
+
open(extract_f0_feature_log_path, "w")
|
982 |
+
if if_f0_3:
|
983 |
+
yield get_info_str("step2a:正在提取音高")
|
984 |
+
cmd = config.python_cmd + " extract_f0_print.py %s %s %s %s" % (
|
985 |
+
model_log_dir,
|
986 |
+
np7,
|
987 |
+
f0method8,
|
988 |
+
echl
|
989 |
+
)
|
990 |
+
yield get_info_str(cmd)
|
991 |
+
p = Popen(cmd, shell=True, cwd=now_dir)
|
992 |
+
p.wait()
|
993 |
+
with open(extract_f0_feature_log_path, "r") as f:
|
994 |
+
print(f.read())
|
995 |
+
else:
|
996 |
+
yield get_info_str(i18n("step2a:无需提取音高"))
|
997 |
+
#######step2b:提取特征
|
998 |
+
yield get_info_str(i18n("step2b:正在提取���征"))
|
999 |
+
gpus = gpus16.split("-")
|
1000 |
+
leng = len(gpus)
|
1001 |
+
ps = []
|
1002 |
+
for idx, n_g in enumerate(gpus):
|
1003 |
+
cmd = config.python_cmd + " extract_feature_print.py %s %s %s %s %s %s" % (
|
1004 |
+
config.device,
|
1005 |
+
leng,
|
1006 |
+
idx,
|
1007 |
+
n_g,
|
1008 |
+
model_log_dir,
|
1009 |
+
version19,
|
1010 |
+
)
|
1011 |
+
yield get_info_str(cmd)
|
1012 |
+
p = Popen(
|
1013 |
+
cmd, shell=True, cwd=now_dir
|
1014 |
+
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
1015 |
+
ps.append(p)
|
1016 |
+
for p in ps:
|
1017 |
+
p.wait()
|
1018 |
+
with open(extract_f0_feature_log_path, "r") as f:
|
1019 |
+
print(f.read())
|
1020 |
+
#######step3a:训练模型
|
1021 |
+
yield get_info_str(i18n("step3a:正在训练模型"))
|
1022 |
+
# 生成filelist
|
1023 |
+
if if_f0_3:
|
1024 |
+
f0_dir = "%s/2a_f0" % model_log_dir
|
1025 |
+
f0nsf_dir = "%s/2b-f0nsf" % model_log_dir
|
1026 |
+
names = (
|
1027 |
+
set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)])
|
1028 |
+
& set([name.split(".")[0] for name in os.listdir(feature_dir)])
|
1029 |
+
& set([name.split(".")[0] for name in os.listdir(f0_dir)])
|
1030 |
+
& set([name.split(".")[0] for name in os.listdir(f0nsf_dir)])
|
1031 |
+
)
|
1032 |
+
else:
|
1033 |
+
names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set(
|
1034 |
+
[name.split(".")[0] for name in os.listdir(feature_dir)]
|
1035 |
+
)
|
1036 |
+
opt = []
|
1037 |
+
for name in names:
|
1038 |
+
if if_f0_3:
|
1039 |
+
opt.append(
|
1040 |
+
"%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"
|
1041 |
+
% (
|
1042 |
+
gt_wavs_dir.replace("\\", "\\\\"),
|
1043 |
+
name,
|
1044 |
+
feature_dir.replace("\\", "\\\\"),
|
1045 |
+
name,
|
1046 |
+
f0_dir.replace("\\", "\\\\"),
|
1047 |
+
name,
|
1048 |
+
f0nsf_dir.replace("\\", "\\\\"),
|
1049 |
+
name,
|
1050 |
+
spk_id5,
|
1051 |
+
)
|
1052 |
+
)
|
1053 |
+
else:
|
1054 |
+
opt.append(
|
1055 |
+
"%s/%s.wav|%s/%s.npy|%s"
|
1056 |
+
% (
|
1057 |
+
gt_wavs_dir.replace("\\", "\\\\"),
|
1058 |
+
name,
|
1059 |
+
feature_dir.replace("\\", "\\\\"),
|
1060 |
+
name,
|
1061 |
+
spk_id5,
|
1062 |
+
)
|
1063 |
+
)
|
1064 |
+
fea_dim = 256 if version19 == "v1" else 768
|
1065 |
+
if if_f0_3:
|
1066 |
+
for _ in range(2):
|
1067 |
+
opt.append(
|
1068 |
+
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
|
1069 |
+
% (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5)
|
1070 |
+
)
|
1071 |
+
else:
|
1072 |
+
for _ in range(2):
|
1073 |
+
opt.append(
|
1074 |
+
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s"
|
1075 |
+
% (now_dir, sr2, now_dir, fea_dim, spk_id5)
|
1076 |
+
)
|
1077 |
+
shuffle(opt)
|
1078 |
+
with open("%s/filelist.txt" % model_log_dir, "w") as f:
|
1079 |
+
f.write("\n".join(opt))
|
1080 |
+
yield get_info_str("write filelist done")
|
1081 |
+
if gpus16:
|
1082 |
+
cmd = (
|
1083 |
+
config.python_cmd
|
1084 |
+
+" train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s"
|
1085 |
+
% (
|
1086 |
+
exp_dir1,
|
1087 |
+
sr2,
|
1088 |
+
1 if if_f0_3 else 0,
|
1089 |
+
batch_size12,
|
1090 |
+
gpus16,
|
1091 |
+
total_epoch11,
|
1092 |
+
save_epoch10,
|
1093 |
+
("-pg %s" % pretrained_G14) if pretrained_G14 != "" else "",
|
1094 |
+
("-pd %s" % pretrained_D15) if pretrained_D15 != "" else "",
|
1095 |
+
1 if if_save_latest13 == True else 0,
|
1096 |
+
1 if if_cache_gpu17 == True else 0,
|
1097 |
+
1 if if_save_every_weights18 == True else 0,
|
1098 |
+
version19,
|
1099 |
+
)
|
1100 |
+
)
|
1101 |
+
else:
|
1102 |
+
cmd = (
|
1103 |
+
config.python_cmd
|
1104 |
+
+ " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s"
|
1105 |
+
% (
|
1106 |
+
exp_dir1,
|
1107 |
+
sr2,
|
1108 |
+
1 if if_f0_3 else 0,
|
1109 |
+
batch_size12,
|
1110 |
+
total_epoch11,
|
1111 |
+
save_epoch10,
|
1112 |
+
("-pg %s" % pretrained_G14) if pretrained_G14 != "" else "",
|
1113 |
+
("-pd %s" % pretrained_D15) if pretrained_D15 != "" else "",
|
1114 |
+
1 if if_save_latest13 == True else 0,
|
1115 |
+
1 if if_cache_gpu17 == True else 0,
|
1116 |
+
1 if if_save_every_weights18 == True else 0,
|
1117 |
+
version19,
|
1118 |
+
)
|
1119 |
+
)
|
1120 |
+
yield get_info_str(cmd)
|
1121 |
+
p = Popen(cmd, shell=True, cwd=now_dir)
|
1122 |
+
p.wait()
|
1123 |
+
yield get_info_str(i18n("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"))
|
1124 |
+
#######step3b:训练索引
|
1125 |
+
npys = []
|
1126 |
+
listdir_res = list(os.listdir(feature_dir))
|
1127 |
+
for name in sorted(listdir_res):
|
1128 |
+
phone = np.load("%s/%s" % (feature_dir, name))
|
1129 |
+
npys.append(phone)
|
1130 |
+
big_npy = np.concatenate(npys, 0)
|
1131 |
+
|
1132 |
+
big_npy_idx = np.arange(big_npy.shape[0])
|
1133 |
+
np.random.shuffle(big_npy_idx)
|
1134 |
+
big_npy = big_npy[big_npy_idx]
|
1135 |
+
np.save("%s/total_fea.npy" % model_log_dir, big_npy)
|
1136 |
+
|
1137 |
+
# n_ivf = big_npy.shape[0] // 39
|
1138 |
+
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
|
1139 |
+
yield get_info_str("%s,%s" % (big_npy.shape, n_ivf))
|
1140 |
+
index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf)
|
1141 |
+
yield get_info_str("training index")
|
1142 |
+
index_ivf = faiss.extract_index_ivf(index) #
|
1143 |
+
index_ivf.nprobe = 1
|
1144 |
+
index.train(big_npy)
|
1145 |
+
faiss.write_index(
|
1146 |
+
index,
|
1147 |
+
"%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
1148 |
+
% (model_log_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
1149 |
+
)
|
1150 |
+
yield get_info_str("adding index")
|
1151 |
+
batch_size_add = 8192
|
1152 |
+
for i in range(0, big_npy.shape[0], batch_size_add):
|
1153 |
+
index.add(big_npy[i : i + batch_size_add])
|
1154 |
+
faiss.write_index(
|
1155 |
+
index,
|
1156 |
+
"%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
1157 |
+
% (model_log_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
1158 |
+
)
|
1159 |
+
yield get_info_str(
|
1160 |
+
"成功构建索引, added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
1161 |
+
% (n_ivf, index_ivf.nprobe, exp_dir1, version19)
|
1162 |
+
)
|
1163 |
+
yield get_info_str(i18n("全流程结束!"))
|
1164 |
+
|
1165 |
+
|
1166 |
+
def whethercrepeornah(radio):
|
1167 |
+
mango = True if radio == 'mangio-crepe' or radio == 'mangio-crepe-tiny' else False
|
1168 |
+
return ({"visible": mango, "__type__": "update"})
|
1169 |
+
|
1170 |
+
# ckpt_path2.change(change_info_,[ckpt_path2],[sr__,if_f0__])
|
1171 |
+
def change_info_(ckpt_path):
|
1172 |
+
if (
|
1173 |
+
os.path.exists(ckpt_path.replace(os.path.basename(ckpt_path), "train.log"))
|
1174 |
+
== False
|
1175 |
+
):
|
1176 |
+
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
|
1177 |
+
try:
|
1178 |
+
with open(
|
1179 |
+
ckpt_path.replace(os.path.basename(ckpt_path), "train.log"), "r"
|
1180 |
+
) as f:
|
1181 |
+
info = eval(f.read().strip("\n").split("\n")[0].split("\t")[-1])
|
1182 |
+
sr, f0 = info["sample_rate"], info["if_f0"]
|
1183 |
+
version = "v2" if ("version" in info and info["version"] == "v2") else "v1"
|
1184 |
+
return sr, str(f0), version
|
1185 |
+
except:
|
1186 |
+
traceback.print_exc()
|
1187 |
+
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
|
1188 |
+
|
1189 |
+
|
1190 |
+
from lib.infer_pack.models_onnx import SynthesizerTrnMsNSFsidM
|
1191 |
+
|
1192 |
+
|
1193 |
+
def export_onnx(ModelPath, ExportedPath, MoeVS=True):
|
1194 |
+
cpt = torch.load(ModelPath, map_location="cpu")
|
1195 |
+
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
|
1196 |
+
hidden_channels = 256 if cpt.get("version","v1")=="v1"else 768#cpt["config"][-2] # hidden_channels,为768Vec做准备
|
1197 |
+
|
1198 |
+
test_phone = torch.rand(1, 200, hidden_channels) # hidden unit
|
1199 |
+
test_phone_lengths = torch.tensor([200]).long() # hidden unit 长度(貌似没啥用)
|
1200 |
+
test_pitch = torch.randint(size=(1, 200), low=5, high=255) # 基频(单位赫兹)
|
1201 |
+
test_pitchf = torch.rand(1, 200) # nsf基频
|
1202 |
+
test_ds = torch.LongTensor([0]) # 说话人ID
|
1203 |
+
test_rnd = torch.rand(1, 192, 200) # 噪声(加入随机因子)
|
1204 |
+
|
1205 |
+
device = "cpu" # 导出时设备(不影响使用模型)
|
1206 |
+
|
1207 |
+
|
1208 |
+
net_g = SynthesizerTrnMsNSFsidM(
|
1209 |
+
*cpt["config"], is_half=False,version=cpt.get("version","v1")
|
1210 |
+
) # fp32导出(C++要支持fp16必须手动将内存重新排列所以暂时不用fp16)
|
1211 |
+
net_g.load_state_dict(cpt["weight"], strict=False)
|
1212 |
+
input_names = ["phone", "phone_lengths", "pitch", "pitchf", "ds", "rnd"]
|
1213 |
+
output_names = [
|
1214 |
+
"audio",
|
1215 |
+
]
|
1216 |
+
# net_g.construct_spkmixmap(n_speaker) 多角色混合轨道导出
|
1217 |
+
torch.onnx.export(
|
1218 |
+
net_g,
|
1219 |
+
(
|
1220 |
+
test_phone.to(device),
|
1221 |
+
test_phone_lengths.to(device),
|
1222 |
+
test_pitch.to(device),
|
1223 |
+
test_pitchf.to(device),
|
1224 |
+
test_ds.to(device),
|
1225 |
+
test_rnd.to(device),
|
1226 |
+
),
|
1227 |
+
ExportedPath,
|
1228 |
+
dynamic_axes={
|
1229 |
+
"phone": [1],
|
1230 |
+
"pitch": [1],
|
1231 |
+
"pitchf": [1],
|
1232 |
+
"rnd": [2],
|
1233 |
+
},
|
1234 |
+
do_constant_folding=False,
|
1235 |
+
opset_version=16,
|
1236 |
+
verbose=False,
|
1237 |
+
input_names=input_names,
|
1238 |
+
output_names=output_names,
|
1239 |
+
)
|
1240 |
+
return "Finished"
|
1241 |
+
|
1242 |
+
#region RVC WebUI App
|
1243 |
+
|
1244 |
+
def get_presets():
|
1245 |
+
data = None
|
1246 |
+
with open('../inference-presets.json', 'r') as file:
|
1247 |
+
data = json.load(file)
|
1248 |
+
preset_names = []
|
1249 |
+
for preset in data['presets']:
|
1250 |
+
preset_names.append(preset['name'])
|
1251 |
+
|
1252 |
+
return preset_names
|
1253 |
+
|
1254 |
+
def change_choices2():
|
1255 |
+
audio_files=[]
|
1256 |
+
for filename in os.listdir("./audios"):
|
1257 |
+
if filename.endswith(('.wav','.mp3','.ogg','.flac','.m4a','.aac','.mp4')):
|
1258 |
+
audio_files.append(os.path.join('./audios',filename).replace('\\', '/'))
|
1259 |
+
return {"choices": sorted(audio_files), "__type__": "update"}, {"__type__": "update"}
|
1260 |
+
|
1261 |
+
audio_files=[]
|
1262 |
+
for filename in os.listdir("./audios"):
|
1263 |
+
if filename.endswith(('.wav','.mp3','.ogg','.flac','.m4a','.aac','.mp4')):
|
1264 |
+
audio_files.append(os.path.join('./audios',filename).replace('\\', '/'))
|
1265 |
+
|
1266 |
+
def get_index():
|
1267 |
+
if check_for_name() != '':
|
1268 |
+
chosen_model=sorted(names)[0].split(".")[0]
|
1269 |
+
logs_path="./logs/"+chosen_model
|
1270 |
+
if os.path.exists(logs_path):
|
1271 |
+
for file in os.listdir(logs_path):
|
1272 |
+
if file.endswith(".index"):
|
1273 |
+
return os.path.join(logs_path, file)
|
1274 |
+
return ''
|
1275 |
+
else:
|
1276 |
+
return ''
|
1277 |
+
|
1278 |
+
def get_indexes():
|
1279 |
+
indexes_list=[]
|
1280 |
+
for dirpath, dirnames, filenames in os.walk("./logs/"):
|
1281 |
+
for filename in filenames:
|
1282 |
+
if filename.endswith(".index"):
|
1283 |
+
indexes_list.append(os.path.join(dirpath,filename))
|
1284 |
+
if len(indexes_list) > 0:
|
1285 |
+
return indexes_list
|
1286 |
+
else:
|
1287 |
+
return ''
|
1288 |
+
|
1289 |
+
def get_name():
|
1290 |
+
if len(audio_files) > 0:
|
1291 |
+
return sorted(audio_files)[0]
|
1292 |
+
else:
|
1293 |
+
return ''
|
1294 |
+
|
1295 |
+
def save_to_wav(record_button):
|
1296 |
+
if record_button is None:
|
1297 |
+
pass
|
1298 |
+
else:
|
1299 |
+
path_to_file=record_button
|
1300 |
+
new_name = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+'.wav'
|
1301 |
+
new_path='./audios/'+new_name
|
1302 |
+
shutil.move(path_to_file,new_path)
|
1303 |
+
return new_path
|
1304 |
+
|
1305 |
+
def save_to_wav2(dropbox):
|
1306 |
+
file_path=dropbox.name
|
1307 |
+
shutil.move(file_path,'./audios')
|
1308 |
+
return os.path.join('./audios',os.path.basename(file_path))
|
1309 |
+
|
1310 |
+
def match_index(sid0):
|
1311 |
+
folder=sid0.split(".")[0]
|
1312 |
+
parent_dir="./logs/"+folder
|
1313 |
+
if os.path.exists(parent_dir):
|
1314 |
+
for filename in os.listdir(parent_dir):
|
1315 |
+
if filename.endswith(".index"):
|
1316 |
+
index_path=os.path.join(parent_dir,filename)
|
1317 |
+
return index_path
|
1318 |
+
else:
|
1319 |
+
return ''
|
1320 |
+
|
1321 |
+
def check_for_name():
|
1322 |
+
if len(names) > 0:
|
1323 |
+
return sorted(names)[0]
|
1324 |
+
else:
|
1325 |
+
return ''
|
1326 |
+
|
1327 |
+
def download_from_url(url, model):
|
1328 |
+
if url == '':
|
1329 |
+
return "URL cannot be left empty."
|
1330 |
+
if model =='':
|
1331 |
+
return "You need to name your model. For example: My-Model"
|
1332 |
+
url = url.strip()
|
1333 |
+
zip_dirs = ["zips", "unzips"]
|
1334 |
+
for directory in zip_dirs:
|
1335 |
+
if os.path.exists(directory):
|
1336 |
+
shutil.rmtree(directory)
|
1337 |
+
os.makedirs("zips", exist_ok=True)
|
1338 |
+
os.makedirs("unzips", exist_ok=True)
|
1339 |
+
zipfile = model + '.zip'
|
1340 |
+
zipfile_path = './zips/' + zipfile
|
1341 |
+
try:
|
1342 |
+
if "drive.google.com" in url:
|
1343 |
+
subprocess.run(["gdown", url, "--fuzzy", "-O", zipfile_path])
|
1344 |
+
elif "mega.nz" in url:
|
1345 |
+
m = Mega()
|
1346 |
+
m.download_url(url, './zips')
|
1347 |
+
else:
|
1348 |
+
subprocess.run(["wget", url, "-O", zipfile_path])
|
1349 |
+
for filename in os.listdir("./zips"):
|
1350 |
+
if filename.endswith(".zip"):
|
1351 |
+
zipfile_path = os.path.join("./zips/",filename)
|
1352 |
+
shutil.unpack_archive(zipfile_path, "./unzips", 'zip')
|
1353 |
+
else:
|
1354 |
+
return "No zipfile found."
|
1355 |
+
for root, dirs, files in os.walk('./unzips'):
|
1356 |
+
for file in files:
|
1357 |
+
file_path = os.path.join(root, file)
|
1358 |
+
if file.endswith(".index"):
|
1359 |
+
os.mkdir(f'./logs/{model}')
|
1360 |
+
shutil.copy2(file_path,f'./logs/{model}')
|
1361 |
+
elif "G_" not in file and "D_" not in file and file.endswith(".pth"):
|
1362 |
+
shutil.copy(file_path,f'./weights/{model}.pth')
|
1363 |
+
shutil.rmtree("zips")
|
1364 |
+
shutil.rmtree("unzips")
|
1365 |
+
return "Success."
|
1366 |
+
except:
|
1367 |
+
return "There's been an error."
|
1368 |
+
def success_message(face):
|
1369 |
+
return f'{face.name} has been uploaded.', 'None'
|
1370 |
+
def mouth(size, face, voice, faces):
|
1371 |
+
if size == 'Half':
|
1372 |
+
size = 2
|
1373 |
+
else:
|
1374 |
+
size = 1
|
1375 |
+
if faces == 'None':
|
1376 |
+
character = face.name
|
1377 |
+
else:
|
1378 |
+
if faces == 'Ben Shapiro':
|
1379 |
+
character = '/content/wav2lip-HD/inputs/ben-shapiro-10.mp4'
|
1380 |
+
elif faces == 'Andrew Tate':
|
1381 |
+
character = '/content/wav2lip-HD/inputs/tate-7.mp4'
|
1382 |
+
command = "python inference.py " \
|
1383 |
+
"--checkpoint_path checkpoints/wav2lip.pth " \
|
1384 |
+
f"--face {character} " \
|
1385 |
+
f"--audio {voice} " \
|
1386 |
+
"--pads 0 20 0 0 " \
|
1387 |
+
"--outfile /content/wav2lip-HD/outputs/result.mp4 " \
|
1388 |
+
"--fps 24 " \
|
1389 |
+
f"--resize_factor {size}"
|
1390 |
+
process = subprocess.Popen(command, shell=True, cwd='/content/wav2lip-HD/Wav2Lip-master')
|
1391 |
+
stdout, stderr = process.communicate()
|
1392 |
+
return '/content/wav2lip-HD/outputs/result.mp4', 'Animation completed.'
|
1393 |
+
eleven_voices = ['Adam','Antoni','Josh','Arnold','Sam','Bella','Rachel','Domi','Elli']
|
1394 |
+
eleven_voices_ids=['pNInz6obpgDQGcFmaJgB','ErXwobaYiN019PkySvjV','TxGEqnHWrfWFTfGW9XjX','VR6AewLTigWG4xSOukaG','yoZ06aMxZJJ28mfd3POQ','EXAVITQu4vr4xnSDxMaL','21m00Tcm4TlvDq8ikWAM','AZnzlk1XvdvUeBnXmlld','MF3mGyEYCl7XYWbV9V6O']
|
1395 |
+
chosen_voice = dict(zip(eleven_voices, eleven_voices_ids))
|
1396 |
+
|
1397 |
+
def stoptraining(mim):
|
1398 |
+
if int(mim) == 1:
|
1399 |
+
try:
|
1400 |
+
CSVutil('csvdb/stop.csv', 'w+', 'stop', 'True')
|
1401 |
+
os.kill(PID, signal.SIGTERM)
|
1402 |
+
except Exception as e:
|
1403 |
+
print(f"Couldn't click due to {e}")
|
1404 |
+
return (
|
1405 |
+
{"visible": False, "__type__": "update"},
|
1406 |
+
{"visible": True, "__type__": "update"},
|
1407 |
+
)
|
1408 |
+
|
1409 |
+
|
1410 |
+
def elevenTTS(xiapi, text, id, lang):
|
1411 |
+
if xiapi!= '' and id !='':
|
1412 |
+
choice = chosen_voice[id]
|
1413 |
+
CHUNK_SIZE = 1024
|
1414 |
+
url = f"https://api.elevenlabs.io/v1/text-to-speech/{choice}"
|
1415 |
+
headers = {
|
1416 |
+
"Accept": "audio/mpeg",
|
1417 |
+
"Content-Type": "application/json",
|
1418 |
+
"xi-api-key": xiapi
|
1419 |
+
}
|
1420 |
+
if lang == 'en':
|
1421 |
+
data = {
|
1422 |
+
"text": text,
|
1423 |
+
"model_id": "eleven_monolingual_v1",
|
1424 |
+
"voice_settings": {
|
1425 |
+
"stability": 0.5,
|
1426 |
+
"similarity_boost": 0.5
|
1427 |
+
}
|
1428 |
+
}
|
1429 |
+
else:
|
1430 |
+
data = {
|
1431 |
+
"text": text,
|
1432 |
+
"model_id": "eleven_multilingual_v1",
|
1433 |
+
"voice_settings": {
|
1434 |
+
"stability": 0.5,
|
1435 |
+
"similarity_boost": 0.5
|
1436 |
+
}
|
1437 |
+
}
|
1438 |
+
|
1439 |
+
response = requests.post(url, json=data, headers=headers)
|
1440 |
+
with open('./temp_eleven.mp3', 'wb') as f:
|
1441 |
+
for chunk in response.iter_content(chunk_size=CHUNK_SIZE):
|
1442 |
+
if chunk:
|
1443 |
+
f.write(chunk)
|
1444 |
+
aud_path = save_to_wav('./temp_eleven.mp3')
|
1445 |
+
return aud_path, aud_path
|
1446 |
+
else:
|
1447 |
+
tts = gTTS(text, lang=lang)
|
1448 |
+
tts.save('./temp_gTTS.mp3')
|
1449 |
+
aud_path = save_to_wav('./temp_gTTS.mp3')
|
1450 |
+
return aud_path, aud_path
|
1451 |
+
|
1452 |
+
def upload_to_dataset(files, dir):
|
1453 |
+
if dir == '':
|
1454 |
+
dir = './dataset'
|
1455 |
+
if not os.path.exists(dir):
|
1456 |
+
os.makedirs(dir)
|
1457 |
+
count = 0
|
1458 |
+
for file in files:
|
1459 |
+
path=file.name
|
1460 |
+
shutil.copy2(path,dir)
|
1461 |
+
count += 1
|
1462 |
+
return f' {count} files uploaded to {dir}.'
|
1463 |
+
|
1464 |
+
def zip_downloader(model):
|
1465 |
+
if not os.path.exists(f'./weights/{model}.pth'):
|
1466 |
+
return {"__type__": "update"}, f'Make sure the Voice Name is correct. I could not find {model}.pth'
|
1467 |
+
index_found = False
|
1468 |
+
for file in os.listdir(f'./logs/{model}'):
|
1469 |
+
if file.endswith('.index') and 'added' in file:
|
1470 |
+
log_file = file
|
1471 |
+
index_found = True
|
1472 |
+
if index_found:
|
1473 |
+
return [f'./weights/{model}.pth', f'./logs/{model}/{log_file}'], "Done"
|
1474 |
+
else:
|
1475 |
+
return f'./weights/{model}.pth', "Could not find Index file."
|
1476 |
+
|
1477 |
+
with gr.Blocks(theme=gr.themes.Base(), title='Mangio-RVC-Web 💻') as app:
|
1478 |
+
with gr.Tabs():
|
1479 |
+
with gr.TabItem("Inference"):
|
1480 |
+
gr.HTML("<h1> Easy GUI v2 (rejekts) - adapted to Mangio-RVC-Fork 💻 [With extra features and fixes by kalomaze & alexlnkp]</h1>")
|
1481 |
+
|
1482 |
+
# Inference Preset Row
|
1483 |
+
# with gr.Row():
|
1484 |
+
# mangio_preset = gr.Dropdown(label="Inference Preset", choices=sorted(get_presets()))
|
1485 |
+
# mangio_preset_name_save = gr.Textbox(
|
1486 |
+
# label="Your preset name"
|
1487 |
+
# )
|
1488 |
+
# mangio_preset_save_btn = gr.Button('Save Preset', variant="primary")
|
1489 |
+
|
1490 |
+
# Other RVC stuff
|
1491 |
+
with gr.Row():
|
1492 |
+
sid0 = gr.Dropdown(label="1.Choose your Model.", choices=sorted(names), value=check_for_name())
|
1493 |
+
refresh_button = gr.Button("Refresh", variant="primary")
|
1494 |
+
if check_for_name() != '':
|
1495 |
+
get_vc(sorted(names)[0])
|
1496 |
+
vc_transform0 = gr.Number(label="Optional: You can change the pitch here or leave it at 0.", value=0)
|
1497 |
+
#clean_button = gr.Button(i18n("卸载音色省显存"), variant="primary")
|
1498 |
+
spk_item = gr.Slider(
|
1499 |
+
minimum=0,
|
1500 |
+
maximum=2333,
|
1501 |
+
step=1,
|
1502 |
+
label=i18n("请选择说话人id"),
|
1503 |
+
value=0,
|
1504 |
+
visible=False,
|
1505 |
+
interactive=True,
|
1506 |
+
)
|
1507 |
+
#clean_button.click(fn=clean, inputs=[], outputs=[sid0])
|
1508 |
+
sid0.change(
|
1509 |
+
fn=get_vc,
|
1510 |
+
inputs=[sid0],
|
1511 |
+
outputs=[spk_item],
|
1512 |
+
)
|
1513 |
+
but0 = gr.Button("Convert", variant="primary")
|
1514 |
+
with gr.Row():
|
1515 |
+
with gr.Column():
|
1516 |
+
with gr.Row():
|
1517 |
+
dropbox = gr.File(label="Drop your audio here & hit the Reload button.")
|
1518 |
+
with gr.Row():
|
1519 |
+
record_button=gr.Audio(source="microphone", label="OR Record audio.", type="filepath")
|
1520 |
+
with gr.Row():
|
1521 |
+
input_audio0 = gr.Dropdown(
|
1522 |
+
label="2.Choose your audio.",
|
1523 |
+
value="./audios/someguy.mp3",
|
1524 |
+
choices=audio_files
|
1525 |
+
)
|
1526 |
+
dropbox.upload(fn=save_to_wav2, inputs=[dropbox], outputs=[input_audio0])
|
1527 |
+
dropbox.upload(fn=change_choices2, inputs=[], outputs=[input_audio0])
|
1528 |
+
refresh_button2 = gr.Button("Refresh", variant="primary", size='sm')
|
1529 |
+
record_button.change(fn=save_to_wav, inputs=[record_button], outputs=[input_audio0])
|
1530 |
+
record_button.change(fn=change_choices2, inputs=[], outputs=[input_audio0])
|
1531 |
+
with gr.Row():
|
1532 |
+
with gr.Accordion('Text To Speech', open=False):
|
1533 |
+
with gr.Column():
|
1534 |
+
lang = gr.Radio(label='Chinese & Japanese do not work with ElevenLabs currently.',choices=['en','es','fr','pt','zh-CN','de','hi','ja'], value='en')
|
1535 |
+
api_box = gr.Textbox(label="Enter your API Key for ElevenLabs, or leave empty to use GoogleTTS", value='')
|
1536 |
+
elevenid=gr.Dropdown(label="Voice:", choices=eleven_voices)
|
1537 |
+
with gr.Column():
|
1538 |
+
tfs = gr.Textbox(label="Input your Text", interactive=True, value="This is a test.")
|
1539 |
+
tts_button = gr.Button(value="Speak")
|
1540 |
+
tts_button.click(fn=elevenTTS, inputs=[api_box,tfs, elevenid, lang], outputs=[record_button, input_audio0])
|
1541 |
+
with gr.Row():
|
1542 |
+
with gr.Accordion('Wav2Lip', open=False):
|
1543 |
+
with gr.Row():
|
1544 |
+
size = gr.Radio(label='Resolution:',choices=['Half','Full'])
|
1545 |
+
face = gr.UploadButton("Upload A Character",type='file')
|
1546 |
+
faces = gr.Dropdown(label="OR Choose one:", choices=['None','Ben Shapiro','Andrew Tate'])
|
1547 |
+
with gr.Row():
|
1548 |
+
preview = gr.Textbox(label="Status:",interactive=False)
|
1549 |
+
face.upload(fn=success_message,inputs=[face], outputs=[preview, faces])
|
1550 |
+
with gr.Row():
|
1551 |
+
animation = gr.Video(type='filepath')
|
1552 |
+
refresh_button2.click(fn=change_choices2, inputs=[], outputs=[input_audio0, animation])
|
1553 |
+
with gr.Row():
|
1554 |
+
animate_button = gr.Button('Animate')
|
1555 |
+
|
1556 |
+
with gr.Column():
|
1557 |
+
with gr.Accordion("Index Settings", open=False):
|
1558 |
+
file_index1 = gr.Dropdown(
|
1559 |
+
label="3. Path to your added.index file (if it didn't automatically find it.)",
|
1560 |
+
choices=get_indexes(),
|
1561 |
+
value=get_index(),
|
1562 |
+
interactive=True,
|
1563 |
+
)
|
1564 |
+
sid0.change(fn=match_index, inputs=[sid0],outputs=[file_index1])
|
1565 |
+
refresh_button.click(
|
1566 |
+
fn=change_choices, inputs=[], outputs=[sid0, file_index1]
|
1567 |
+
)
|
1568 |
+
# file_big_npy1 = gr.Textbox(
|
1569 |
+
# label=i18n("特征文件路径"),
|
1570 |
+
# value="E:\\codes\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
|
1571 |
+
# interactive=True,
|
1572 |
+
# )
|
1573 |
+
index_rate1 = gr.Slider(
|
1574 |
+
minimum=0,
|
1575 |
+
maximum=1,
|
1576 |
+
label=i18n("检索特征占比"),
|
1577 |
+
value=0.66,
|
1578 |
+
interactive=True,
|
1579 |
+
)
|
1580 |
+
vc_output2 = gr.Audio(
|
1581 |
+
label="Output Audio (Click on the Three Dots in the Right Corner to Download)",
|
1582 |
+
type='filepath',
|
1583 |
+
interactive=False,
|
1584 |
+
)
|
1585 |
+
animate_button.click(fn=mouth, inputs=[size, face, vc_output2, faces], outputs=[animation, preview])
|
1586 |
+
with gr.Accordion("Advanced Settings", open=False):
|
1587 |
+
f0method0 = gr.Radio(
|
1588 |
+
label="Optional: Change the Pitch Extraction Algorithm.\nExtraction methods are sorted from 'worst quality' to 'best quality'.\nmangio-crepe may or may not be better than rmvpe in cases where 'smoothness' is more important, but rmvpe is the best overall.",
|
1589 |
+
choices=["pm", "dio", "crepe-tiny", "mangio-crepe-tiny", "crepe", "harvest", "mangio-crepe", "rmvpe"], # Fork Feature. Add Crepe-Tiny
|
1590 |
+
value="rmvpe",
|
1591 |
+
interactive=True,
|
1592 |
+
)
|
1593 |
+
|
1594 |
+
crepe_hop_length = gr.Slider(
|
1595 |
+
minimum=1,
|
1596 |
+
maximum=512,
|
1597 |
+
step=1,
|
1598 |
+
label="Mangio-Crepe Hop Length. Higher numbers will reduce the chance of extreme pitch changes but lower numbers will increase accuracy. 64-192 is a good range to experiment with.",
|
1599 |
+
value=120,
|
1600 |
+
interactive=True,
|
1601 |
+
visible=False,
|
1602 |
+
)
|
1603 |
+
f0method0.change(fn=whethercrepeornah, inputs=[f0method0], outputs=[crepe_hop_length])
|
1604 |
+
filter_radius0 = gr.Slider(
|
1605 |
+
minimum=0,
|
1606 |
+
maximum=7,
|
1607 |
+
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
|
1608 |
+
value=3,
|
1609 |
+
step=1,
|
1610 |
+
interactive=True,
|
1611 |
+
)
|
1612 |
+
resample_sr0 = gr.Slider(
|
1613 |
+
minimum=0,
|
1614 |
+
maximum=48000,
|
1615 |
+
label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
|
1616 |
+
value=0,
|
1617 |
+
step=1,
|
1618 |
+
interactive=True,
|
1619 |
+
visible=False
|
1620 |
+
)
|
1621 |
+
rms_mix_rate0 = gr.Slider(
|
1622 |
+
minimum=0,
|
1623 |
+
maximum=1,
|
1624 |
+
label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"),
|
1625 |
+
value=0.21,
|
1626 |
+
interactive=True,
|
1627 |
+
)
|
1628 |
+
protect0 = gr.Slider(
|
1629 |
+
minimum=0,
|
1630 |
+
maximum=0.5,
|
1631 |
+
label=i18n("保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"),
|
1632 |
+
value=0.33,
|
1633 |
+
step=0.01,
|
1634 |
+
interactive=True,
|
1635 |
+
)
|
1636 |
+
formanting = gr.Checkbox(
|
1637 |
+
value=bool(DoFormant),
|
1638 |
+
label="[EXPERIMENTAL] Formant shift inference audio",
|
1639 |
+
info="Used for male to female and vice-versa conversions",
|
1640 |
+
interactive=True,
|
1641 |
+
visible=True,
|
1642 |
+
)
|
1643 |
+
|
1644 |
+
formant_preset = gr.Dropdown(
|
1645 |
+
value='',
|
1646 |
+
choices=get_fshift_presets(),
|
1647 |
+
label="browse presets for formanting",
|
1648 |
+
visible=bool(DoFormant),
|
1649 |
+
)
|
1650 |
+
formant_refresh_button = gr.Button(
|
1651 |
+
value='\U0001f504',
|
1652 |
+
visible=bool(DoFormant),
|
1653 |
+
variant='primary',
|
1654 |
+
)
|
1655 |
+
#formant_refresh_button = ToolButton( elem_id='1')
|
1656 |
+
#create_refresh_button(formant_preset, lambda: {"choices": formant_preset}, "refresh_list_shiftpresets")
|
1657 |
+
|
1658 |
+
qfrency = gr.Slider(
|
1659 |
+
value=Quefrency,
|
1660 |
+
info="Default value is 1.0",
|
1661 |
+
label="Quefrency for formant shifting",
|
1662 |
+
minimum=0.0,
|
1663 |
+
maximum=16.0,
|
1664 |
+
step=0.1,
|
1665 |
+
visible=bool(DoFormant),
|
1666 |
+
interactive=True,
|
1667 |
+
)
|
1668 |
+
tmbre = gr.Slider(
|
1669 |
+
value=Timbre,
|
1670 |
+
info="Default value is 1.0",
|
1671 |
+
label="Timbre for formant shifting",
|
1672 |
+
minimum=0.0,
|
1673 |
+
maximum=16.0,
|
1674 |
+
step=0.1,
|
1675 |
+
visible=bool(DoFormant),
|
1676 |
+
interactive=True,
|
1677 |
+
)
|
1678 |
+
|
1679 |
+
formant_preset.change(fn=preset_apply, inputs=[formant_preset, qfrency, tmbre], outputs=[qfrency, tmbre])
|
1680 |
+
frmntbut = gr.Button("Apply", variant="primary", visible=bool(DoFormant))
|
1681 |
+
formanting.change(fn=formant_enabled,inputs=[formanting,qfrency,tmbre,frmntbut,formant_preset,formant_refresh_button],outputs=[formanting,qfrency,tmbre,frmntbut,formant_preset,formant_refresh_button])
|
1682 |
+
frmntbut.click(fn=formant_apply,inputs=[qfrency, tmbre], outputs=[qfrency, tmbre])
|
1683 |
+
formant_refresh_button.click(fn=update_fshift_presets,inputs=[formant_preset, qfrency, tmbre],outputs=[formant_preset, qfrency, tmbre])
|
1684 |
+
with gr.Row():
|
1685 |
+
vc_output1 = gr.Textbox("")
|
1686 |
+
f0_file = gr.File(label=i18n("F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调"), visible=False)
|
1687 |
+
|
1688 |
+
but0.click(
|
1689 |
+
vc_single,
|
1690 |
+
[
|
1691 |
+
spk_item,
|
1692 |
+
input_audio0,
|
1693 |
+
vc_transform0,
|
1694 |
+
f0_file,
|
1695 |
+
f0method0,
|
1696 |
+
file_index1,
|
1697 |
+
# file_index2,
|
1698 |
+
# file_big_npy1,
|
1699 |
+
index_rate1,
|
1700 |
+
filter_radius0,
|
1701 |
+
resample_sr0,
|
1702 |
+
rms_mix_rate0,
|
1703 |
+
protect0,
|
1704 |
+
crepe_hop_length
|
1705 |
+
],
|
1706 |
+
[vc_output1, vc_output2],
|
1707 |
+
)
|
1708 |
+
|
1709 |
+
with gr.Accordion("Batch Conversion",open=False):
|
1710 |
+
with gr.Row():
|
1711 |
+
with gr.Column():
|
1712 |
+
vc_transform1 = gr.Number(
|
1713 |
+
label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0
|
1714 |
+
)
|
1715 |
+
opt_input = gr.Textbox(label=i18n("指定输出文件夹"), value="opt")
|
1716 |
+
f0method1 = gr.Radio(
|
1717 |
+
label=i18n(
|
1718 |
+
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU"
|
1719 |
+
),
|
1720 |
+
choices=["pm", "harvest", "crepe", "rmvpe"],
|
1721 |
+
value="rmvpe",
|
1722 |
+
interactive=True,
|
1723 |
+
)
|
1724 |
+
filter_radius1 = gr.Slider(
|
1725 |
+
minimum=0,
|
1726 |
+
maximum=7,
|
1727 |
+
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
|
1728 |
+
value=3,
|
1729 |
+
step=1,
|
1730 |
+
interactive=True,
|
1731 |
+
)
|
1732 |
+
with gr.Column():
|
1733 |
+
file_index3 = gr.Textbox(
|
1734 |
+
label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
|
1735 |
+
value="",
|
1736 |
+
interactive=True,
|
1737 |
+
)
|
1738 |
+
file_index4 = gr.Dropdown(
|
1739 |
+
label=i18n("自动检测index路径,下拉式选择(dropdown)"),
|
1740 |
+
choices=sorted(index_paths),
|
1741 |
+
interactive=True,
|
1742 |
+
)
|
1743 |
+
refresh_button.click(
|
1744 |
+
fn=lambda: change_choices()[1],
|
1745 |
+
inputs=[],
|
1746 |
+
outputs=file_index4,
|
1747 |
+
)
|
1748 |
+
# file_big_npy2 = gr.Textbox(
|
1749 |
+
# label=i18n("特征文件路径"),
|
1750 |
+
# value="E:\\codes\\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
|
1751 |
+
# interactive=True,
|
1752 |
+
# )
|
1753 |
+
index_rate2 = gr.Slider(
|
1754 |
+
minimum=0,
|
1755 |
+
maximum=1,
|
1756 |
+
label=i18n("检索特征占比"),
|
1757 |
+
value=1,
|
1758 |
+
interactive=True,
|
1759 |
+
)
|
1760 |
+
with gr.Column():
|
1761 |
+
resample_sr1 = gr.Slider(
|
1762 |
+
minimum=0,
|
1763 |
+
maximum=48000,
|
1764 |
+
label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
|
1765 |
+
value=0,
|
1766 |
+
step=1,
|
1767 |
+
interactive=True,
|
1768 |
+
)
|
1769 |
+
rms_mix_rate1 = gr.Slider(
|
1770 |
+
minimum=0,
|
1771 |
+
maximum=1,
|
1772 |
+
label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"),
|
1773 |
+
value=1,
|
1774 |
+
interactive=True,
|
1775 |
+
)
|
1776 |
+
protect1 = gr.Slider(
|
1777 |
+
minimum=0,
|
1778 |
+
maximum=0.5,
|
1779 |
+
label=i18n(
|
1780 |
+
"保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"
|
1781 |
+
),
|
1782 |
+
value=0.33,
|
1783 |
+
step=0.01,
|
1784 |
+
interactive=True,
|
1785 |
+
)
|
1786 |
+
with gr.Column():
|
1787 |
+
dir_input = gr.Textbox(
|
1788 |
+
label=i18n("输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)"),
|
1789 |
+
value="E:\codes\py39\\test-20230416b\\todo-songs",
|
1790 |
+
)
|
1791 |
+
inputs = gr.File(
|
1792 |
+
file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹")
|
1793 |
+
)
|
1794 |
+
with gr.Row():
|
1795 |
+
format1 = gr.Radio(
|
1796 |
+
label=i18n("导出文件格式"),
|
1797 |
+
choices=["wav", "flac", "mp3", "m4a"],
|
1798 |
+
value="flac",
|
1799 |
+
interactive=True,
|
1800 |
+
)
|
1801 |
+
but1 = gr.Button(i18n("转换"), variant="primary")
|
1802 |
+
vc_output3 = gr.Textbox(label=i18n("输出信息"))
|
1803 |
+
but1.click(
|
1804 |
+
vc_multi,
|
1805 |
+
[
|
1806 |
+
spk_item,
|
1807 |
+
dir_input,
|
1808 |
+
opt_input,
|
1809 |
+
inputs,
|
1810 |
+
vc_transform1,
|
1811 |
+
f0method1,
|
1812 |
+
file_index3,
|
1813 |
+
file_index4,
|
1814 |
+
# file_big_npy2,
|
1815 |
+
index_rate2,
|
1816 |
+
filter_radius1,
|
1817 |
+
resample_sr1,
|
1818 |
+
rms_mix_rate1,
|
1819 |
+
protect1,
|
1820 |
+
format1,
|
1821 |
+
crepe_hop_length,
|
1822 |
+
],
|
1823 |
+
[vc_output3],
|
1824 |
+
)
|
1825 |
+
but1.click(fn=lambda: easy_uploader.clear())
|
1826 |
+
with gr.TabItem("Download Model"):
|
1827 |
+
with gr.Row():
|
1828 |
+
url=gr.Textbox(label="Enter the URL to the Model:")
|
1829 |
+
with gr.Row():
|
1830 |
+
model = gr.Textbox(label="Name your model:")
|
1831 |
+
download_button=gr.Button("Download")
|
1832 |
+
with gr.Row():
|
1833 |
+
status_bar=gr.Textbox(label="")
|
1834 |
+
download_button.click(fn=download_from_url, inputs=[url, model], outputs=[status_bar])
|
1835 |
+
with gr.Row():
|
1836 |
+
gr.Markdown(
|
1837 |
+
"""
|
1838 |
+
Original RVC:https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI
|
1839 |
+
Mangio's RVC Fork:https://github.com/Mangio621/Mangio-RVC-Fork
|
1840 |
+
❤️ If you like the EasyGUI, help me keep it.❤️
|
1841 |
+
https://paypal.me/lesantillan
|
1842 |
+
"""
|
1843 |
+
)
|
1844 |
+
|
1845 |
+
def has_two_files_in_pretrained_folder():
|
1846 |
+
pretrained_folder = "./pretrained/"
|
1847 |
+
if not os.path.exists(pretrained_folder):
|
1848 |
+
return False
|
1849 |
+
|
1850 |
+
files_in_folder = os.listdir(pretrained_folder)
|
1851 |
+
num_files = len(files_in_folder)
|
1852 |
+
return num_files >= 2
|
1853 |
+
|
1854 |
+
if has_two_files_in_pretrained_folder():
|
1855 |
+
print("Pretrained weights are downloaded. Training tab enabled!\n-------------------------------")
|
1856 |
+
with gr.TabItem("Train", visible=False):
|
1857 |
+
with gr.Row():
|
1858 |
+
with gr.Column():
|
1859 |
+
exp_dir1 = gr.Textbox(label="Voice Name:", value="My-Voice")
|
1860 |
+
sr2 = gr.Radio(
|
1861 |
+
label=i18n("目标采样率"),
|
1862 |
+
choices=["40k", "48k"],
|
1863 |
+
value="40k",
|
1864 |
+
interactive=True,
|
1865 |
+
visible=False
|
1866 |
+
)
|
1867 |
+
if_f0_3 = gr.Radio(
|
1868 |
+
label=i18n("模型是否带音高指导(唱歌一定要, 语音可以不要)"),
|
1869 |
+
choices=[True, False],
|
1870 |
+
value=True,
|
1871 |
+
interactive=True,
|
1872 |
+
visible=False
|
1873 |
+
)
|
1874 |
+
version19 = gr.Radio(
|
1875 |
+
label="RVC version",
|
1876 |
+
choices=["v1", "v2"],
|
1877 |
+
value="v2",
|
1878 |
+
interactive=True,
|
1879 |
+
visible=False,
|
1880 |
+
)
|
1881 |
+
np7 = gr.Slider(
|
1882 |
+
minimum=0,
|
1883 |
+
maximum=config.n_cpu,
|
1884 |
+
step=1,
|
1885 |
+
label="# of CPUs for data processing (Leave as it is)",
|
1886 |
+
value=config.n_cpu,
|
1887 |
+
interactive=True,
|
1888 |
+
visible=True
|
1889 |
+
)
|
1890 |
+
trainset_dir4 = gr.Textbox(label="Path to your dataset (audios, not zip):", value="./dataset")
|
1891 |
+
easy_uploader = gr.Files(label='OR Drop your audios here. They will be uploaded in your dataset path above.',file_types=['audio'])
|
1892 |
+
but1 = gr.Button("1. Process The Dataset", variant="primary")
|
1893 |
+
info1 = gr.Textbox(label="Status (wait until it says 'end preprocess'):", value="")
|
1894 |
+
easy_uploader.upload(fn=upload_to_dataset, inputs=[easy_uploader, trainset_dir4], outputs=[info1])
|
1895 |
+
but1.click(
|
1896 |
+
preprocess_dataset, [trainset_dir4, exp_dir1, sr2, np7], [info1]
|
1897 |
+
)
|
1898 |
+
with gr.Column():
|
1899 |
+
spk_id5 = gr.Slider(
|
1900 |
+
minimum=0,
|
1901 |
+
maximum=4,
|
1902 |
+
step=1,
|
1903 |
+
label=i18n("请指定说话人id"),
|
1904 |
+
value=0,
|
1905 |
+
interactive=True,
|
1906 |
+
visible=False
|
1907 |
+
)
|
1908 |
+
with gr.Accordion('GPU Settings', open=False, visible=False):
|
1909 |
+
gpus6 = gr.Textbox(
|
1910 |
+
label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"),
|
1911 |
+
value=gpus,
|
1912 |
+
interactive=True,
|
1913 |
+
visible=False
|
1914 |
+
)
|
1915 |
+
gpu_info9 = gr.Textbox(label=i18n("显卡信息"), value=gpu_info)
|
1916 |
+
f0method8 = gr.Radio(
|
1917 |
+
label=i18n(
|
1918 |
+
"选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢"
|
1919 |
+
),
|
1920 |
+
choices=["harvest","crepe", "mangio-crepe", "rmvpe"], # Fork feature: Crepe on f0 extraction for training.
|
1921 |
+
value="rmvpe",
|
1922 |
+
interactive=True,
|
1923 |
+
)
|
1924 |
+
|
1925 |
+
extraction_crepe_hop_length = gr.Slider(
|
1926 |
+
minimum=1,
|
1927 |
+
maximum=512,
|
1928 |
+
step=1,
|
1929 |
+
label=i18n("crepe_hop_length"),
|
1930 |
+
value=128,
|
1931 |
+
interactive=True,
|
1932 |
+
visible=False,
|
1933 |
+
)
|
1934 |
+
f0method8.change(fn=whethercrepeornah, inputs=[f0method8], outputs=[extraction_crepe_hop_length])
|
1935 |
+
but2 = gr.Button("2. Pitch Extraction", variant="primary")
|
1936 |
+
info2 = gr.Textbox(label="Status(Check the Colab Notebook's cell output):", value="", max_lines=8)
|
1937 |
+
but2.click(
|
1938 |
+
extract_f0_feature,
|
1939 |
+
[gpus6, np7, f0method8, if_f0_3, exp_dir1, version19, extraction_crepe_hop_length],
|
1940 |
+
[info2],
|
1941 |
+
)
|
1942 |
+
with gr.Row():
|
1943 |
+
with gr.Column():
|
1944 |
+
total_epoch11 = gr.Slider(
|
1945 |
+
minimum=1,
|
1946 |
+
maximum=5000,
|
1947 |
+
step=10,
|
1948 |
+
label="Total # of training epochs (IF you choose a value too high, your model will sound horribly overtrained.):",
|
1949 |
+
value=250,
|
1950 |
+
interactive=True,
|
1951 |
+
)
|
1952 |
+
butstop = gr.Button(
|
1953 |
+
"Stop Training",
|
1954 |
+
variant='primary',
|
1955 |
+
visible=False,
|
1956 |
+
)
|
1957 |
+
but3 = gr.Button("3. Train Model", variant="primary", visible=True)
|
1958 |
+
|
1959 |
+
but3.click(fn=stoptraining, inputs=[gr.Number(value=0, visible=False)], outputs=[but3, butstop])
|
1960 |
+
butstop.click(fn=stoptraining, inputs=[gr.Number(value=1, visible=False)], outputs=[butstop, but3])
|
1961 |
+
|
1962 |
+
|
1963 |
+
but4 = gr.Button("4.Train Index", variant="primary")
|
1964 |
+
info3 = gr.Textbox(label="Status(Check the Colab Notebook's cell output):", value="", max_lines=10)
|
1965 |
+
with gr.Accordion("Training Preferences (You can leave these as they are)", open=False):
|
1966 |
+
#gr.Markdown(value=i18n("step3: 填写训练设置, 开始训练模型和索引"))
|
1967 |
+
with gr.Column():
|
1968 |
+
save_epoch10 = gr.Slider(
|
1969 |
+
minimum=1,
|
1970 |
+
maximum=200,
|
1971 |
+
step=1,
|
1972 |
+
label="Backup every X amount of epochs:",
|
1973 |
+
value=10,
|
1974 |
+
interactive=True,
|
1975 |
+
)
|
1976 |
+
batch_size12 = gr.Slider(
|
1977 |
+
minimum=1,
|
1978 |
+
maximum=40,
|
1979 |
+
step=1,
|
1980 |
+
label="Batch Size (LEAVE IT unless you know what you're doing!):",
|
1981 |
+
value=default_batch_size,
|
1982 |
+
interactive=True,
|
1983 |
+
)
|
1984 |
+
if_save_latest13 = gr.Checkbox(
|
1985 |
+
label="Save only the latest '.ckpt' file to save disk space.",
|
1986 |
+
value=True,
|
1987 |
+
interactive=True,
|
1988 |
+
)
|
1989 |
+
if_cache_gpu17 = gr.Checkbox(
|
1990 |
+
label="Cache all training sets to GPU memory. Caching small datasets (less than 10 minutes) can speed up training, but caching large datasets will consume a lot of GPU memory and may not provide much speed improvement.",
|
1991 |
+
value=False,
|
1992 |
+
interactive=True,
|
1993 |
+
)
|
1994 |
+
if_save_every_weights18 = gr.Checkbox(
|
1995 |
+
label="Save a small final model to the 'weights' folder at each save point.",
|
1996 |
+
value=True,
|
1997 |
+
interactive=True,
|
1998 |
+
)
|
1999 |
+
zip_model = gr.Button('5. Download Model')
|
2000 |
+
zipped_model = gr.Files(label='Your Model and Index file can be downloaded here:')
|
2001 |
+
zip_model.click(fn=zip_downloader, inputs=[exp_dir1], outputs=[zipped_model, info3])
|
2002 |
+
with gr.Group():
|
2003 |
+
with gr.Accordion("Base Model Locations:", open=False, visible=False):
|
2004 |
+
pretrained_G14 = gr.Textbox(
|
2005 |
+
label=i18n("加载预训练底模G路径"),
|
2006 |
+
value="pretrained_v2/f0G40k.pth",
|
2007 |
+
interactive=True,
|
2008 |
+
)
|
2009 |
+
pretrained_D15 = gr.Textbox(
|
2010 |
+
label=i18n("加载预训练底模D路径"),
|
2011 |
+
value="pretrained_v2/f0D40k.pth",
|
2012 |
+
interactive=True,
|
2013 |
+
)
|
2014 |
+
gpus16 = gr.Textbox(
|
2015 |
+
label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"),
|
2016 |
+
value=gpus,
|
2017 |
+
interactive=True,
|
2018 |
+
)
|
2019 |
+
sr2.change(
|
2020 |
+
change_sr2,
|
2021 |
+
[sr2, if_f0_3, version19],
|
2022 |
+
[pretrained_G14, pretrained_D15, version19],
|
2023 |
+
)
|
2024 |
+
version19.change(
|
2025 |
+
change_version19,
|
2026 |
+
[sr2, if_f0_3, version19],
|
2027 |
+
[pretrained_G14, pretrained_D15],
|
2028 |
+
)
|
2029 |
+
if_f0_3.change(
|
2030 |
+
change_f0,
|
2031 |
+
[if_f0_3, sr2, version19],
|
2032 |
+
[f0method8, pretrained_G14, pretrained_D15],
|
2033 |
+
)
|
2034 |
+
but5 = gr.Button(i18n("一键训练"), variant="primary", visible=False)
|
2035 |
+
but3.click(
|
2036 |
+
click_train,
|
2037 |
+
[
|
2038 |
+
exp_dir1,
|
2039 |
+
sr2,
|
2040 |
+
if_f0_3,
|
2041 |
+
spk_id5,
|
2042 |
+
save_epoch10,
|
2043 |
+
total_epoch11,
|
2044 |
+
batch_size12,
|
2045 |
+
if_save_latest13,
|
2046 |
+
pretrained_G14,
|
2047 |
+
pretrained_D15,
|
2048 |
+
gpus16,
|
2049 |
+
if_cache_gpu17,
|
2050 |
+
if_save_every_weights18,
|
2051 |
+
version19,
|
2052 |
+
],
|
2053 |
+
[
|
2054 |
+
info3,
|
2055 |
+
butstop,
|
2056 |
+
but3,
|
2057 |
+
],
|
2058 |
+
)
|
2059 |
+
but4.click(train_index, [exp_dir1, version19], info3)
|
2060 |
+
but5.click(
|
2061 |
+
train1key,
|
2062 |
+
[
|
2063 |
+
exp_dir1,
|
2064 |
+
sr2,
|
2065 |
+
if_f0_3,
|
2066 |
+
trainset_dir4,
|
2067 |
+
spk_id5,
|
2068 |
+
np7,
|
2069 |
+
f0method8,
|
2070 |
+
save_epoch10,
|
2071 |
+
total_epoch11,
|
2072 |
+
batch_size12,
|
2073 |
+
if_save_latest13,
|
2074 |
+
pretrained_G14,
|
2075 |
+
pretrained_D15,
|
2076 |
+
gpus16,
|
2077 |
+
if_cache_gpu17,
|
2078 |
+
if_save_every_weights18,
|
2079 |
+
version19,
|
2080 |
+
extraction_crepe_hop_length
|
2081 |
+
],
|
2082 |
+
info3,
|
2083 |
+
)
|
2084 |
+
|
2085 |
+
else:
|
2086 |
+
print(
|
2087 |
+
"Pretrained weights not downloaded. Disabling training tab.\n"
|
2088 |
+
"Wondering how to train a voice? Visit here for the RVC model training guide: https://t.ly/RVC_Training_Guide\n"
|
2089 |
+
"-------------------------------\n"
|
2090 |
+
)
|
2091 |
+
|
2092 |
+
if config.iscolab or config.paperspace: # Share gradio link for colab and paperspace (FORK FEATURE)
|
2093 |
+
app.queue(concurrency_count=511, max_size=1022).launch(share=True, quiet=True)
|
2094 |
+
else:
|
2095 |
+
app.queue(concurrency_count=511, max_size=1022).launch(
|
2096 |
+
server_name="0.0.0.0",
|
2097 |
+
inbrowser=not config.noautoopen,
|
2098 |
+
server_port=config.listen_port,
|
2099 |
+
quiet=True,
|
2100 |
+
)
|
2101 |
+
#endregion
|
infer-web.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
infer_uvr5.py
ADDED
@@ -0,0 +1,363 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, sys, torch, warnings, pdb
|
2 |
+
|
3 |
+
now_dir = os.getcwd()
|
4 |
+
sys.path.append(now_dir)
|
5 |
+
from json import load as ll
|
6 |
+
|
7 |
+
warnings.filterwarnings("ignore")
|
8 |
+
import librosa
|
9 |
+
import importlib
|
10 |
+
import numpy as np
|
11 |
+
import hashlib, math
|
12 |
+
from tqdm import tqdm
|
13 |
+
from lib.uvr5_pack.lib_v5 import spec_utils
|
14 |
+
from lib.uvr5_pack.utils import _get_name_params, inference
|
15 |
+
from lib.uvr5_pack.lib_v5.model_param_init import ModelParameters
|
16 |
+
import soundfile as sf
|
17 |
+
from lib.uvr5_pack.lib_v5.nets_new import CascadedNet
|
18 |
+
from lib.uvr5_pack.lib_v5 import nets_61968KB as nets
|
19 |
+
|
20 |
+
|
21 |
+
class _audio_pre_:
|
22 |
+
def __init__(self, agg, model_path, device, is_half):
|
23 |
+
self.model_path = model_path
|
24 |
+
self.device = device
|
25 |
+
self.data = {
|
26 |
+
# Processing Options
|
27 |
+
"postprocess": False,
|
28 |
+
"tta": False,
|
29 |
+
# Constants
|
30 |
+
"window_size": 512,
|
31 |
+
"agg": agg,
|
32 |
+
"high_end_process": "mirroring",
|
33 |
+
}
|
34 |
+
mp = ModelParameters("lib/uvr5_pack/lib_v5/modelparams/4band_v2.json")
|
35 |
+
model = nets.CascadedASPPNet(mp.param["bins"] * 2)
|
36 |
+
cpk = torch.load(model_path, map_location="cpu")
|
37 |
+
model.load_state_dict(cpk)
|
38 |
+
model.eval()
|
39 |
+
if is_half:
|
40 |
+
model = model.half().to(device)
|
41 |
+
else:
|
42 |
+
model = model.to(device)
|
43 |
+
|
44 |
+
self.mp = mp
|
45 |
+
self.model = model
|
46 |
+
|
47 |
+
def _path_audio_(self, music_file, ins_root=None, vocal_root=None, format="flac"):
|
48 |
+
if ins_root is None and vocal_root is None:
|
49 |
+
return "No save root."
|
50 |
+
name = os.path.basename(music_file)
|
51 |
+
if ins_root is not None:
|
52 |
+
os.makedirs(ins_root, exist_ok=True)
|
53 |
+
if vocal_root is not None:
|
54 |
+
os.makedirs(vocal_root, exist_ok=True)
|
55 |
+
X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {}
|
56 |
+
bands_n = len(self.mp.param["band"])
|
57 |
+
# print(bands_n)
|
58 |
+
for d in range(bands_n, 0, -1):
|
59 |
+
bp = self.mp.param["band"][d]
|
60 |
+
if d == bands_n: # high-end band
|
61 |
+
(
|
62 |
+
X_wave[d],
|
63 |
+
_,
|
64 |
+
) = librosa.core.load( # 理论上librosa读取可能对某些音频有bug,应该上ffmpeg读取,但是太麻烦了弃坑
|
65 |
+
music_file,
|
66 |
+
bp["sr"],
|
67 |
+
False,
|
68 |
+
dtype=np.float32,
|
69 |
+
res_type=bp["res_type"],
|
70 |
+
)
|
71 |
+
if X_wave[d].ndim == 1:
|
72 |
+
X_wave[d] = np.asfortranarray([X_wave[d], X_wave[d]])
|
73 |
+
else: # lower bands
|
74 |
+
X_wave[d] = librosa.core.resample(
|
75 |
+
X_wave[d + 1],
|
76 |
+
self.mp.param["band"][d + 1]["sr"],
|
77 |
+
bp["sr"],
|
78 |
+
res_type=bp["res_type"],
|
79 |
+
)
|
80 |
+
# Stft of wave source
|
81 |
+
X_spec_s[d] = spec_utils.wave_to_spectrogram_mt(
|
82 |
+
X_wave[d],
|
83 |
+
bp["hl"],
|
84 |
+
bp["n_fft"],
|
85 |
+
self.mp.param["mid_side"],
|
86 |
+
self.mp.param["mid_side_b2"],
|
87 |
+
self.mp.param["reverse"],
|
88 |
+
)
|
89 |
+
# pdb.set_trace()
|
90 |
+
if d == bands_n and self.data["high_end_process"] != "none":
|
91 |
+
input_high_end_h = (bp["n_fft"] // 2 - bp["crop_stop"]) + (
|
92 |
+
self.mp.param["pre_filter_stop"] - self.mp.param["pre_filter_start"]
|
93 |
+
)
|
94 |
+
input_high_end = X_spec_s[d][
|
95 |
+
:, bp["n_fft"] // 2 - input_high_end_h : bp["n_fft"] // 2, :
|
96 |
+
]
|
97 |
+
|
98 |
+
X_spec_m = spec_utils.combine_spectrograms(X_spec_s, self.mp)
|
99 |
+
aggresive_set = float(self.data["agg"] / 100)
|
100 |
+
aggressiveness = {
|
101 |
+
"value": aggresive_set,
|
102 |
+
"split_bin": self.mp.param["band"][1]["crop_stop"],
|
103 |
+
}
|
104 |
+
with torch.no_grad():
|
105 |
+
pred, X_mag, X_phase = inference(
|
106 |
+
X_spec_m, self.device, self.model, aggressiveness, self.data
|
107 |
+
)
|
108 |
+
# Postprocess
|
109 |
+
if self.data["postprocess"]:
|
110 |
+
pred_inv = np.clip(X_mag - pred, 0, np.inf)
|
111 |
+
pred = spec_utils.mask_silence(pred, pred_inv)
|
112 |
+
y_spec_m = pred * X_phase
|
113 |
+
v_spec_m = X_spec_m - y_spec_m
|
114 |
+
|
115 |
+
if ins_root is not None:
|
116 |
+
if self.data["high_end_process"].startswith("mirroring"):
|
117 |
+
input_high_end_ = spec_utils.mirroring(
|
118 |
+
self.data["high_end_process"], y_spec_m, input_high_end, self.mp
|
119 |
+
)
|
120 |
+
wav_instrument = spec_utils.cmb_spectrogram_to_wave(
|
121 |
+
y_spec_m, self.mp, input_high_end_h, input_high_end_
|
122 |
+
)
|
123 |
+
else:
|
124 |
+
wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp)
|
125 |
+
print("%s instruments done" % name)
|
126 |
+
if format in ["wav", "flac"]:
|
127 |
+
sf.write(
|
128 |
+
os.path.join(
|
129 |
+
ins_root,
|
130 |
+
"instrument_{}_{}.{}".format(name, self.data["agg"], format),
|
131 |
+
),
|
132 |
+
(np.array(wav_instrument) * 32768).astype("int16"),
|
133 |
+
self.mp.param["sr"],
|
134 |
+
) #
|
135 |
+
else:
|
136 |
+
path = os.path.join(
|
137 |
+
ins_root, "instrument_{}_{}.wav".format(name, self.data["agg"])
|
138 |
+
)
|
139 |
+
sf.write(
|
140 |
+
path,
|
141 |
+
(np.array(wav_instrument) * 32768).astype("int16"),
|
142 |
+
self.mp.param["sr"],
|
143 |
+
)
|
144 |
+
if os.path.exists(path):
|
145 |
+
os.system(
|
146 |
+
"ffmpeg -i %s -vn %s -q:a 2 -y"
|
147 |
+
% (path, path[:-4] + ".%s" % format)
|
148 |
+
)
|
149 |
+
if vocal_root is not None:
|
150 |
+
if self.data["high_end_process"].startswith("mirroring"):
|
151 |
+
input_high_end_ = spec_utils.mirroring(
|
152 |
+
self.data["high_end_process"], v_spec_m, input_high_end, self.mp
|
153 |
+
)
|
154 |
+
wav_vocals = spec_utils.cmb_spectrogram_to_wave(
|
155 |
+
v_spec_m, self.mp, input_high_end_h, input_high_end_
|
156 |
+
)
|
157 |
+
else:
|
158 |
+
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp)
|
159 |
+
print("%s vocals done" % name)
|
160 |
+
if format in ["wav", "flac"]:
|
161 |
+
sf.write(
|
162 |
+
os.path.join(
|
163 |
+
vocal_root,
|
164 |
+
"vocal_{}_{}.{}".format(name, self.data["agg"], format),
|
165 |
+
),
|
166 |
+
(np.array(wav_vocals) * 32768).astype("int16"),
|
167 |
+
self.mp.param["sr"],
|
168 |
+
)
|
169 |
+
else:
|
170 |
+
path = os.path.join(
|
171 |
+
vocal_root, "vocal_{}_{}.wav".format(name, self.data["agg"])
|
172 |
+
)
|
173 |
+
sf.write(
|
174 |
+
path,
|
175 |
+
(np.array(wav_vocals) * 32768).astype("int16"),
|
176 |
+
self.mp.param["sr"],
|
177 |
+
)
|
178 |
+
if os.path.exists(path):
|
179 |
+
os.system(
|
180 |
+
"ffmpeg -i %s -vn %s -q:a 2 -y"
|
181 |
+
% (path, path[:-4] + ".%s" % format)
|
182 |
+
)
|
183 |
+
|
184 |
+
|
185 |
+
class _audio_pre_new:
|
186 |
+
def __init__(self, agg, model_path, device, is_half):
|
187 |
+
self.model_path = model_path
|
188 |
+
self.device = device
|
189 |
+
self.data = {
|
190 |
+
# Processing Options
|
191 |
+
"postprocess": False,
|
192 |
+
"tta": False,
|
193 |
+
# Constants
|
194 |
+
"window_size": 512,
|
195 |
+
"agg": agg,
|
196 |
+
"high_end_process": "mirroring",
|
197 |
+
}
|
198 |
+
mp = ModelParameters("lib/uvr5_pack/lib_v5/modelparams/4band_v3.json")
|
199 |
+
nout = 64 if "DeReverb" in model_path else 48
|
200 |
+
model = CascadedNet(mp.param["bins"] * 2, nout)
|
201 |
+
cpk = torch.load(model_path, map_location="cpu")
|
202 |
+
model.load_state_dict(cpk)
|
203 |
+
model.eval()
|
204 |
+
if is_half:
|
205 |
+
model = model.half().to(device)
|
206 |
+
else:
|
207 |
+
model = model.to(device)
|
208 |
+
|
209 |
+
self.mp = mp
|
210 |
+
self.model = model
|
211 |
+
|
212 |
+
def _path_audio_(
|
213 |
+
self, music_file, vocal_root=None, ins_root=None, format="flac"
|
214 |
+
): # 3个VR模型vocal和ins是反的
|
215 |
+
if ins_root is None and vocal_root is None:
|
216 |
+
return "No save root."
|
217 |
+
name = os.path.basename(music_file)
|
218 |
+
if ins_root is not None:
|
219 |
+
os.makedirs(ins_root, exist_ok=True)
|
220 |
+
if vocal_root is not None:
|
221 |
+
os.makedirs(vocal_root, exist_ok=True)
|
222 |
+
X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {}
|
223 |
+
bands_n = len(self.mp.param["band"])
|
224 |
+
# print(bands_n)
|
225 |
+
for d in range(bands_n, 0, -1):
|
226 |
+
bp = self.mp.param["band"][d]
|
227 |
+
if d == bands_n: # high-end band
|
228 |
+
(
|
229 |
+
X_wave[d],
|
230 |
+
_,
|
231 |
+
) = librosa.core.load( # 理论上librosa读取可能对某些音频有bug,应该上ffmpeg读取,但是太麻烦了弃坑
|
232 |
+
music_file,
|
233 |
+
bp["sr"],
|
234 |
+
False,
|
235 |
+
dtype=np.float32,
|
236 |
+
res_type=bp["res_type"],
|
237 |
+
)
|
238 |
+
if X_wave[d].ndim == 1:
|
239 |
+
X_wave[d] = np.asfortranarray([X_wave[d], X_wave[d]])
|
240 |
+
else: # lower bands
|
241 |
+
X_wave[d] = librosa.core.resample(
|
242 |
+
X_wave[d + 1],
|
243 |
+
self.mp.param["band"][d + 1]["sr"],
|
244 |
+
bp["sr"],
|
245 |
+
res_type=bp["res_type"],
|
246 |
+
)
|
247 |
+
# Stft of wave source
|
248 |
+
X_spec_s[d] = spec_utils.wave_to_spectrogram_mt(
|
249 |
+
X_wave[d],
|
250 |
+
bp["hl"],
|
251 |
+
bp["n_fft"],
|
252 |
+
self.mp.param["mid_side"],
|
253 |
+
self.mp.param["mid_side_b2"],
|
254 |
+
self.mp.param["reverse"],
|
255 |
+
)
|
256 |
+
# pdb.set_trace()
|
257 |
+
if d == bands_n and self.data["high_end_process"] != "none":
|
258 |
+
input_high_end_h = (bp["n_fft"] // 2 - bp["crop_stop"]) + (
|
259 |
+
self.mp.param["pre_filter_stop"] - self.mp.param["pre_filter_start"]
|
260 |
+
)
|
261 |
+
input_high_end = X_spec_s[d][
|
262 |
+
:, bp["n_fft"] // 2 - input_high_end_h : bp["n_fft"] // 2, :
|
263 |
+
]
|
264 |
+
|
265 |
+
X_spec_m = spec_utils.combine_spectrograms(X_spec_s, self.mp)
|
266 |
+
aggresive_set = float(self.data["agg"] / 100)
|
267 |
+
aggressiveness = {
|
268 |
+
"value": aggresive_set,
|
269 |
+
"split_bin": self.mp.param["band"][1]["crop_stop"],
|
270 |
+
}
|
271 |
+
with torch.no_grad():
|
272 |
+
pred, X_mag, X_phase = inference(
|
273 |
+
X_spec_m, self.device, self.model, aggressiveness, self.data
|
274 |
+
)
|
275 |
+
# Postprocess
|
276 |
+
if self.data["postprocess"]:
|
277 |
+
pred_inv = np.clip(X_mag - pred, 0, np.inf)
|
278 |
+
pred = spec_utils.mask_silence(pred, pred_inv)
|
279 |
+
y_spec_m = pred * X_phase
|
280 |
+
v_spec_m = X_spec_m - y_spec_m
|
281 |
+
|
282 |
+
if ins_root is not None:
|
283 |
+
if self.data["high_end_process"].startswith("mirroring"):
|
284 |
+
input_high_end_ = spec_utils.mirroring(
|
285 |
+
self.data["high_end_process"], y_spec_m, input_high_end, self.mp
|
286 |
+
)
|
287 |
+
wav_instrument = spec_utils.cmb_spectrogram_to_wave(
|
288 |
+
y_spec_m, self.mp, input_high_end_h, input_high_end_
|
289 |
+
)
|
290 |
+
else:
|
291 |
+
wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp)
|
292 |
+
print("%s instruments done" % name)
|
293 |
+
if format in ["wav", "flac"]:
|
294 |
+
sf.write(
|
295 |
+
os.path.join(
|
296 |
+
ins_root,
|
297 |
+
"instrument_{}_{}.{}".format(name, self.data["agg"], format),
|
298 |
+
),
|
299 |
+
(np.array(wav_instrument) * 32768).astype("int16"),
|
300 |
+
self.mp.param["sr"],
|
301 |
+
) #
|
302 |
+
else:
|
303 |
+
path = os.path.join(
|
304 |
+
ins_root, "instrument_{}_{}.wav".format(name, self.data["agg"])
|
305 |
+
)
|
306 |
+
sf.write(
|
307 |
+
path,
|
308 |
+
(np.array(wav_instrument) * 32768).astype("int16"),
|
309 |
+
self.mp.param["sr"],
|
310 |
+
)
|
311 |
+
if os.path.exists(path):
|
312 |
+
os.system(
|
313 |
+
"ffmpeg -i %s -vn %s -q:a 2 -y"
|
314 |
+
% (path, path[:-4] + ".%s" % format)
|
315 |
+
)
|
316 |
+
if vocal_root is not None:
|
317 |
+
if self.data["high_end_process"].startswith("mirroring"):
|
318 |
+
input_high_end_ = spec_utils.mirroring(
|
319 |
+
self.data["high_end_process"], v_spec_m, input_high_end, self.mp
|
320 |
+
)
|
321 |
+
wav_vocals = spec_utils.cmb_spectrogram_to_wave(
|
322 |
+
v_spec_m, self.mp, input_high_end_h, input_high_end_
|
323 |
+
)
|
324 |
+
else:
|
325 |
+
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp)
|
326 |
+
print("%s vocals done" % name)
|
327 |
+
if format in ["wav", "flac"]:
|
328 |
+
sf.write(
|
329 |
+
os.path.join(
|
330 |
+
vocal_root,
|
331 |
+
"vocal_{}_{}.{}".format(name, self.data["agg"], format),
|
332 |
+
),
|
333 |
+
(np.array(wav_vocals) * 32768).astype("int16"),
|
334 |
+
self.mp.param["sr"],
|
335 |
+
)
|
336 |
+
else:
|
337 |
+
path = os.path.join(
|
338 |
+
vocal_root, "vocal_{}_{}.wav".format(name, self.data["agg"])
|
339 |
+
)
|
340 |
+
sf.write(
|
341 |
+
path,
|
342 |
+
(np.array(wav_vocals) * 32768).astype("int16"),
|
343 |
+
self.mp.param["sr"],
|
344 |
+
)
|
345 |
+
if os.path.exists(path):
|
346 |
+
os.system(
|
347 |
+
"ffmpeg -i %s -vn %s -q:a 2 -y"
|
348 |
+
% (path, path[:-4] + ".%s" % format)
|
349 |
+
)
|
350 |
+
|
351 |
+
|
352 |
+
if __name__ == "__main__":
|
353 |
+
device = "cuda"
|
354 |
+
is_half = True
|
355 |
+
# model_path = "uvr5_weights/2_HP-UVR.pth"
|
356 |
+
# model_path = "uvr5_weights/VR-DeEchoDeReverb.pth"
|
357 |
+
# model_path = "uvr5_weights/VR-DeEchoNormal.pth"
|
358 |
+
model_path = "uvr5_weights/DeEchoNormal.pth"
|
359 |
+
# pre_fun = _audio_pre_(model_path=model_path, device=device, is_half=True,agg=10)
|
360 |
+
pre_fun = _audio_pre_new(model_path=model_path, device=device, is_half=True, agg=10)
|
361 |
+
audio_path = "雪雪伴奏对消HP5.wav"
|
362 |
+
save_path = "opt"
|
363 |
+
pre_fun._path_audio_(audio_path, save_path, save_path)
|