Spaces:
Running
Running
File size: 14,875 Bytes
a7fd2fe 39440ed 47fbf7b e2cb6ae d7ac35b e2cb6ae 008dd16 e2cb6ae 0921718 e2cb6ae c49aa0f e2cb6ae c49aa0f e2cb6ae c49aa0f e2cb6ae c49aa0f e2cb6ae c49aa0f e2cb6ae 3e41dea e2cb6ae 804d8f9 0aa2056 b470a83 804d8f9 a6370b3 804d8f9 e2cb6ae c49aa0f d7ac35b e2cb6ae c49aa0f e2cb6ae 47fbf7b e2cb6ae c49aa0f e2cb6ae c49aa0f e2cb6ae 4de408f e2cb6ae 4de408f e2cb6ae b54ea30 102b083 6812a18 102b083 6812a18 102b083 6812a18 b54ea30 6812a18 329b9f4 102b083 2af4464 21a5308 102b083 1d218d2 102b083 b54ea30 9441b2b 33ff941 4d681bd 33ff941 4d681bd 0662fc3 33ff941 4d681bd 0662fc3 33ff941 4d681bd 0662fc3 128493f 4d681bd 0662fc3 9441b2b e2cb6ae db843a0 c49aa0f bae9232 923595a e2cb6ae bae9232 e2cb6ae a7fd2fe be97a09 e2cb6ae 4de408f 8b45a7a 4de408f ffeca50 596c828 ffeca50 39440ed b54ea30 905a52b b54ea30 39440ed af7be88 18b17ea b54ea30 0ffc81e b54ea30 e2cb6ae 39440ed e2cb6ae cc724c9 8b45a7a 804d8f9 d7ac35b 1898dec e2cb6ae a6370b3 8b45a7a 804d8f9 1898dec 0aa2056 1898dec 6812a18 d7ac35b 255721c 1898dec 9010788 1898dec a6370b3 1898dec 0aa2056 e40f126 0aa2056 1898dec 0aa2056 1898dec 0aa2056 6812a18 6607488 0662fc3 707f8be caf3172 707f8be 2b2d52f 255721c 2b2d52f 102b083 0662fc3 102b083 2b2d52f 102b083 2b2d52f a0a099c 2b2d52f a0a099c d5e0d06 a0a099c d5e0d06 3b07e33 d5e0d06 2b2d52f a0a099c 255721c d5e0d06 255721c 37b261d 707f8be 57d4b86 707f8be 57d4b86 8b45a7a 5c50e05 905a52b 51520f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
import streamlit as st
import pandas as pd
import time
from datetime import datetime
import numpy as np
import pmdarima as pm
import matplotlib.pyplot as plt
from pmdarima import auto_arima
import plotly.graph_objects as go
import torch
from transformers import pipeline, TapasTokenizer, TapasForQuestionAnswering
st.set_page_config(
page_title="Sales Forecasting System",
page_icon="π",
layout="wide",
initial_sidebar_state="expanded",
)
# Preprocessing
@st.cache_data
def merge(B, C, A):
i = j = k = 0
# Convert 'Date' columns to datetime.date objects
B['Date'] = pd.to_datetime(B['Date']).dt.date
C['Date'] = pd.to_datetime(C['Date']).dt.date
A['Date'] = pd.to_datetime(A['Date']).dt.date
while i < len(B) and j < len(C):
if B['Date'].iloc[i] <= C['Date'].iloc[j]:
A['Date'].iloc[k] = B['Date'].iloc[i]
A['Sales'].iloc[k] = B['Sales'].iloc[i]
i += 1
else:
A['Date'].iloc[k] = C['Date'].iloc[j]
A['Sales'].iloc[k] = C['Sales'].iloc[j]
j += 1
k += 1
while i < len(B):
A['Date'].iloc[k] = B['Date'].iloc[i]
A['Sales'].iloc[k] = B['Sales'].iloc[i]
i += 1
k += 1
while j < len(C):
A['Date'].iloc[k] = C['Date'].iloc[j]
A['Sales'].iloc[k] = C['Sales'].iloc[j]
j += 1
k += 1
return A
@st.cache_data
def merge_sort(dataframe):
if len(dataframe) > 1:
center = len(dataframe) // 2
left = dataframe.iloc[:center]
right = dataframe.iloc[center:]
merge_sort(left)
merge_sort(right)
return merge(left, right, dataframe)
else:
return dataframe
@st.cache_data
def drop (dataframe):
def get_columns_containing(dataframe, substrings):
return [col for col in dataframe.columns if any(substring.lower() in col.lower() for substring in substrings)]
columns_to_keep = get_columns_containing(dataframe, ["date", "sale"])
dataframe = dataframe.drop(columns=dataframe.columns.difference(columns_to_keep))
dataframe = dataframe.dropna()
return dataframe
@st.cache_data
def date_format(dataframe):
for i, d, s in dataframe.itertuples():
dataframe['Date'][i] = dataframe['Date'][i].strip()
for i, d, s in dataframe.itertuples():
new_date = datetime.strptime(dataframe['Date'][i], "%m/%d/%Y").date()
dataframe['Date'][i] = new_date
return dataframe
@st.cache_data
def group_to_three(dataframe):
dataframe['Date'] = pd.to_datetime(dataframe['Date'])
dataframe = dataframe.groupby([pd.Grouper(key='Date', freq='3D')])['Sales'].mean().round(2)
dataframe = dataframe.replace(0, np.nan).dropna()
return dataframe
@st.cache_data
def series_to_df_exogenous(series):
dataframe = series.to_frame()
dataframe = dataframe.reset_index()
dataframe = dataframe.set_index('Date')
dataframe = dataframe.dropna()
# Create the eXogenous values
dataframe['Sales First Difference'] = dataframe['Sales'] - dataframe['Sales'].shift(1)
dataframe['Seasonal First Difference'] = dataframe['Sales'] - dataframe['Sales'].shift(12)
dataframe = dataframe.dropna()
return dataframe
@st.cache_data
def dates_df(dataframe):
dataframe = dataframe.reset_index()
dataframe['Date'] = dataframe['Date'].dt.strftime('%B %d, %Y')
dataframe[dataframe.columns] = dataframe[dataframe.columns].astype(str)
return dataframe
@st.cache_data
def get_forecast_period(period):
return round(period / 3)
# SARIMAX Model
@st.cache_data
def train_test(dataframe):
n = round(len(dataframe) * 0.2)
training_y = dataframe.iloc[:-n,0]
test_y = dataframe.iloc[-n:,0]
test_y_series = pd.Series(test_y, index=dataframe.iloc[-n:, 0].index)
training_X = dataframe.iloc[:-n,1:]
test_X = dataframe.iloc[-n:,1:]
future_X = dataframe.iloc[0:,1:]
return (training_y, test_y, test_y_series, training_X, test_X, future_X)
@st.cache_data
def test_fitting(dataframe, Exo, trainY):
trainTestModel = auto_arima(X = Exo, y = trainY, start_p=1, start_q=1,
test='adf',min_p=1,min_q=1,
max_p=3, max_q=3, m=12,
start_P=0, seasonal=True,
d=None, D=1, trace=True,
error_action='ignore',
suppress_warnings=True,
stepwise=True)
model = trainTestModel
return model
@st.cache_data
def forecast_accuracy(forecast, actual):
mape = np.mean(np.abs(forecast - actual)/np.abs(actual)).round(4) # MAPE
rmse = (np.mean((forecast - actual)**2)**.5).round(2) # RMSE
corr = np.corrcoef(forecast, actual)[0,1] # corr
mins = np.amin(np.hstack([forecast[:,None],
actual[:,None]]), axis=1)
maxs = np.amax(np.hstack([forecast[:,None],
actual[:,None]]), axis=1)
minmax = 1 - np.mean(mins/maxs) # minmax
return({'mape':mape, 'rmse':rmse, 'corr':corr, 'min-max':minmax})
@st.cache_data
def sales_growth(dataframe, fittedValues):
sales_growth = fittedValues.to_frame()
sales_growth = sales_growth.reset_index()
sales_growth.columns = ("Date", "Sales")
sales_growth = sales_growth.set_index('Date')
sales_growth['Sales'] = (sales_growth['Sales']).round(2)
# Calculate and create the column for sales difference and growth
sales_growth['Forecasted Sales First Difference']=(sales_growth['Sales']-sales_growth['Sales'].shift(1)).round(2)
sales_growth['Forecasted Sales Growth']=(((sales_growth['Sales']-sales_growth['Sales'].shift(1))/sales_growth['Sales'].shift(1))*100).round(2)
# Calculate and create the first row for sales difference and growth
sales_growth['Forecasted Sales First Difference'].iloc[0] = (dataframe['Sales'].iloc[-1]-dataframe['Sales'].iloc[-2]).round(2)
sales_growth['Forecasted Sales Growth'].iloc[0]=(((dataframe['Sales'].iloc[-1]-dataframe['Sales'].iloc[-2])/dataframe['Sales'].iloc[-1])*100).round(2)
return sales_growth
@st.cache_data
def merge_forecast_data(actual, predicted, future): # debug
actual = actual.to_frame()
actual.rename(columns={actual.columns[0]: "Actual Sales"}, inplace=True)
print("ACTUAL")
print(actual)
predicted = predicted.to_frame()
predicted.rename(columns={predicted.columns[0]: "Predicted Sales"}, inplace=True)
print("PREDICTED")
print(predicted)
future = future.to_frame()
future = future.rename_axis('Date')
future.rename(columns={future.columns[0]: "Forecasted Future Sales"}, inplace=True)
print("FUTURE")
print(future)
merged_dataframe = pd.concat([actual, predicted, future], axis=1)
print("MERGED DATAFRAME")
print(merged_dataframe)
merged_dataframe = merged_dataframe.reset_index()
print("MERGED DATAFRAME RESET INDEX")
print(merged_dataframe)
return merged_dataframe
@st.cache_data
def interpret_mape(mape_score):
score = (mape_score * 100).round(2)
if score < 10:
interpretation = "Great"
color = "green"
elif score < 20:
interpretation = "Good"
color = "seagreen"
elif score < 50:
interpretation = "Relatively good"
color = "orange"
else:
interpretation = "Poor"
color = "red"
return score, interpretation, color
# TAPAS Model
@st.cache_resource
def load_tapas_model():
model_name = "google/tapas-large-finetuned-wtq"
tokenizer = TapasTokenizer.from_pretrained(model_name)
model = TapasForQuestionAnswering.from_pretrained(model_name, local_files_only=False)
pipe = pipeline("table-question-answering", model=model, tokenizer=tokenizer)
return pipe
pipe = load_tapas_model()
def get_answer(table, query):
answers = pipe(table=table, query=query)
return answers
def convert_answer(answer):
if answer['aggregator'] == 'SUM':
cells = answer['cells']
converted = sum(float(value.replace(',', '')) for value in cells)
return converted
if answer['aggregator'] == 'AVERAGE':
cells = answer['cells']
values = [float(value.replace(',', '')) for value in cells]
converted = sum(values) / len(values)
return converted
if answer['aggregator'] == 'COUNT':
cells = answer['cells']
converted = sum(int(value.replace(',', '')) for value in cells)
return converted
else:
return answer
def get_converted_answer(table, query):
converted_answer = convert_answer(get_answer(table, query))
return converted_answer
# Session States
if 'uploaded' not in st.session_state:
st.session_state.uploaded = False
if 'forecasted' not in st.session_state:
st.session_state.forecasted = False
# Web Application
st.title("Forecasting Dashboard π")
if not st.session_state.uploaded:
st.subheader("Welcome User, get started forecasting by uploading your file in the sidebar!")
# Sidebar Menu
with st.sidebar:
# TODO Name for product
st.title("MLCast v1.0")
st.subheader("An intelligent sales forecasting system")
uploaded_file = st.file_uploader("Upload your store data here to proceed (must atleast contain Date and Sales)", type=["csv"])
if uploaded_file is not None:
date_found = False
sales_found = False
df = pd.read_csv(uploaded_file, parse_dates=True)
for column in df.columns:
if 'Date' in column:
date_found = True
if 'Sales' in column:
sales_found = True
if(date_found == False or sales_found == False):
st.error('Please upload a csv containing both Date and Sales...')
st.stop()
st.success("File uploaded successfully!")
st.write("Your uploaded data:")
st.write(df)
df = drop(df)
df = date_format(df)
merge_sort(df)
series = group_to_three(df)
st.session_state.uploaded = True
with open('sample.csv', 'rb') as f:
st.download_button("Download our sample CSV", f, file_name='sample.csv')
if (st.session_state.uploaded):
st.subheader("Sales History")
st.line_chart(series)
MIN_DAYS = 30
MAX_DAYS = 90
period = st.slider('How many days would you like to forecast?', min_value=MIN_DAYS, max_value=MAX_DAYS)
forecast_period = get_forecast_period(period)
forecast_button = st.button(
'Start Forecasting',
key='forecast_button',
type="primary",
)
if (forecast_button or st.session_state.forecasted):
df = series_to_df_exogenous(series)
train = train_test(df)
training_y, test_y, test_y_series, training_X, test_X, future_X = train
train_test_model = test_fitting(df, training_X, training_y)
n_periods = round(len(df) * 0.2)
future_n_periods = forecast_period
fitted, confint = train_test_model.predict(X=test_X, n_periods=n_periods, return_conf_int=True)
index_of_fc = test_y_series.index
# make series for plotting purpose
fitted_series = pd.Series(fitted)
fitted_series.index = index_of_fc
lower_series = pd.Series(confint[:, 0], index=index_of_fc)
upper_series = pd.Series(confint[:, 1], index=index_of_fc)
#Future predictions
frequency = '3D'
future_fitted, confint = train_test_model.predict(X=df.iloc[-future_n_periods:,1:], n_periods=future_n_periods, return_conf_int=True, freq=frequency)
future_index_of_fc = pd.date_range(df['Sales'].index[-1], periods = future_n_periods, freq=frequency)
# make series for future plotting purpose
future_fitted_series = pd.Series(future_fitted)
future_fitted_series.index = future_index_of_fc
future_lower_series = pd.Series(confint[:, 0], index=future_index_of_fc)
future_upper_series = pd.Series(confint[:, 1], index=future_index_of_fc)
future_sales_growth = sales_growth(df, future_fitted_series)
df = dates_df(future_sales_growth)
test_y, predictions = np.array(test_y), np.array(fitted)
score = forecast_accuracy(predictions, test_y)
mape, interpretation, mape_color = interpret_mape(score['mape'])
df = df.set_index('Date')
merged_data = merge_forecast_data(df['Sales'], fitted_series, future_fitted_series)
merged_data_dates = merged_data.copy()
merged_data_dates[merged_data_dates.columns[0]] = pd.to_datetime(merged_data_dates[merged_data_dates.columns[0]])
col_charts = st.columns(2)
print(merged_data)
print(merged_data.info)
print(merged_data.dtypes)
print(merged_data[merged_data.columns[0]]) # for debugging
print(merged_data[merged_data.columns[0]].info) # for debugging
print(merged_data_dates[merged_data.columns[0]]) # for debugging
print(merged_data_dates.info)
min_date = merged_data_dates[merged_data_dates.columns[0]].min()
max_date = merged_data_dates[merged_data_dates.columns[0]].max()
with col_charts[0]:
fig_compare = go.Figure()
fig_compare.add_trace(go.Scatter(x=merged_data[merged_data.columns[0]], y=merged_data['Actual Sales'], mode='lines', name='Actual Sales'))
fig_compare.add_trace(go.Scatter(x=merged_data[merged_data.columns[0]], y=merged_data['Predicted Sales'], mode='lines', name='Predicted Sales'))
fig_compare.update_layout(title='Historical Sales Data', xaxis_title='Date', yaxis_title='Sales')
# fig_compare.update_xaxes(range=[min_date, max_date])
st.plotly_chart(fig_compare, use_container_width=True)
with col_charts[1]:
fig_forecast = go.Figure()
fig_forecast.add_trace(go.Scatter(x=merged_data[merged_data.columns[0]], y=merged_data['Actual Sales'], mode='lines', name='Actual Sales'))
fig_forecast.add_trace(go.Scatter(x=merged_data[merged_data.columns[0]], y=merged_data['Forecasted Future Sales'], mode='lines', name='Forecasted Sales', line=dict(color=mape_color)))
fig_forecast.update_layout(title='Forecasted Sales Data', xaxis_title='Date', yaxis_title='Sales')
# fig_forecast.update_xaxes(range=[min_date, max_date])
st.plotly_chart(fig_forecast, use_container_width=True)
st.write(f"MAPE score: {mape}% - {interpretation}")
col_table = st.columns(2)
with col_table[0]:
col_table[0].subheader(f"Forecasted sales in the next {period} days")
col_table[0].write(df)
with col_table[1]:
col_table[1] = st.subheader("Question-Answering")
with st.form("question_form"):
question = st.text_input('Ask a Question about the Forecasted Data', placeholder="What is the total sales in the month of December?")
query_button = st.form_submit_button(label='Generate Answer')
if query_button or question:
answer = get_converted_answer(df, question)
if answer is not None:
st.write("The answer is:", answer)
else:
st.write("Answer is not found in table")
st.session_state.forecasted = True
# Hide Streamlit default style
hide_st_style = """
<style>
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_st_style, unsafe_allow_html=True) |