Circhastic commited on
Commit
4de408f
1 Parent(s): d7ac35b

Update app

Browse files
Files changed (1) hide show
  1. app.py +17 -4
app.py CHANGED
@@ -18,6 +18,7 @@ st.set_page_config(
18
  )
19
 
20
  # Preprocessing
 
21
  def merge(B, C, A):
22
  i = j = k = 0
23
 
@@ -93,6 +94,7 @@ def group_to_three(dataframe):
93
  return dataframe
94
 
95
  # SARIMAX Model
 
96
  def train_test(dataframe):
97
  n = round(len(dataframe) * 0.2)
98
  training_y = dataframe.iloc[:-n,0]
@@ -103,7 +105,7 @@ def train_test(dataframe):
103
  future_X = dataframe.iloc[0:,1:]
104
  return (training_y, test_y, test_y_series, training_X, test_X, future_X)
105
 
106
-
107
  def model_fitting(dataframe, Exo):
108
  futureModel = pm.auto_arima(dataframe['Sales'], X=Exo, start_p=1, start_q=1,
109
  test='adf',min_p=1,min_q=1,
@@ -117,6 +119,7 @@ def model_fitting(dataframe, Exo):
117
  model = futureModel
118
  return model
119
 
 
120
  def test_fitting(dataframe, Exo, trainY):
121
  trainTestModel = auto_arima(X = Exo, y = trainY, start_p=1, start_q=1,
122
  test='adf',min_p=1,min_q=1,
@@ -130,6 +133,7 @@ def test_fitting(dataframe, Exo, trainY):
130
  model = trainTestModel
131
  return model
132
 
 
133
  def forecast_accuracy(forecast, actual):
134
  mape = np.mean(np.abs(forecast - actual)/np.abs(actual)).round(4) # MAPE
135
  rmse = (np.mean((forecast - actual)**2)**.5).round(2) # RMSE
@@ -141,6 +145,7 @@ def forecast_accuracy(forecast, actual):
141
  minmax = 1 - np.mean(mins/maxs) # minmax
142
  return({'mape':mape, 'rmse':rmse, 'corr':corr, 'min-max':minmax})
143
 
 
144
  def sales_growth(dataframe, fittedValues):
145
  sales_growth = fittedValues.to_frame()
146
  sales_growth = sales_growth.reset_index()
@@ -149,11 +154,11 @@ def sales_growth(dataframe, fittedValues):
149
 
150
  sales_growth['Sales'] = (sales_growth['Sales']).round(2)
151
 
152
- #Calculate and create the column for sales difference and growth
153
  sales_growth['Forecasted Sales First Difference']=(sales_growth['Sales']-sales_growth['Sales'].shift(1)).round(2)
154
  sales_growth['Forecasted Sales Growth']=(((sales_growth['Sales']-sales_growth['Sales'].shift(1))/sales_growth['Sales'].shift(1))*100).round(2)
155
 
156
- #Calculate and create the first row for sales difference and growth
157
  sales_growth['Forecasted Sales First Difference'].iloc[0] = (dataframe['Sales'].iloc[-1]-dataframe['Sales'].iloc[-2]).round(2)
158
  sales_growth['Forecasted Sales Growth'].iloc[0]=(((dataframe['Sales'].iloc[-1]-dataframe['Sales'].iloc[-2])/dataframe['Sales'].iloc[-1])*100).round(2)
159
 
@@ -165,6 +170,7 @@ model_name = "google/tapas-large-finetuned-wtq"
165
  tokenizer = TapasTokenizer.from_pretrained(model_name)
166
  model = TapasForQuestionAnswering.from_pretrained(model_name, local_files_only=False)
167
 
 
168
  def load_tapas_model(model, tokenizer):
169
  pipe = pipeline("table-question-answering", model=model, tokenizer=tokenizer)
170
  return pipe
@@ -207,7 +213,13 @@ st.subheader("Welcome User, start using the application by uploading your file i
207
 
208
  # Session States
209
  if 'uploaded' not in st.session_state:
210
- st.session_state.uploaded = False
 
 
 
 
 
 
211
 
212
  # Sidebar Menu
213
  with st.sidebar:
@@ -236,6 +248,7 @@ with st.sidebar:
236
  if (st.session_state.uploaded):
237
  st.line_chart(df)
238
 
 
239
  period = st.slider('How many days would you like to forecast?', min_value=30, max_value=90)
240
  forecast_period = round(period / 3)
241
 
 
18
  )
19
 
20
  # Preprocessing
21
+ @st.cache(show_spinner=False)
22
  def merge(B, C, A):
23
  i = j = k = 0
24
 
 
94
  return dataframe
95
 
96
  # SARIMAX Model
97
+ @st.cache(show_spinner=False)
98
  def train_test(dataframe):
99
  n = round(len(dataframe) * 0.2)
100
  training_y = dataframe.iloc[:-n,0]
 
105
  future_X = dataframe.iloc[0:,1:]
106
  return (training_y, test_y, test_y_series, training_X, test_X, future_X)
107
 
108
+ @st.cache(show_spinner=False)
109
  def model_fitting(dataframe, Exo):
110
  futureModel = pm.auto_arima(dataframe['Sales'], X=Exo, start_p=1, start_q=1,
111
  test='adf',min_p=1,min_q=1,
 
119
  model = futureModel
120
  return model
121
 
122
+ @st.cache(show_spinner=False)
123
  def test_fitting(dataframe, Exo, trainY):
124
  trainTestModel = auto_arima(X = Exo, y = trainY, start_p=1, start_q=1,
125
  test='adf',min_p=1,min_q=1,
 
133
  model = trainTestModel
134
  return model
135
 
136
+ @st.cache(show_spinner=False)
137
  def forecast_accuracy(forecast, actual):
138
  mape = np.mean(np.abs(forecast - actual)/np.abs(actual)).round(4) # MAPE
139
  rmse = (np.mean((forecast - actual)**2)**.5).round(2) # RMSE
 
145
  minmax = 1 - np.mean(mins/maxs) # minmax
146
  return({'mape':mape, 'rmse':rmse, 'corr':corr, 'min-max':minmax})
147
 
148
+ @st.cache(show_spinner=False)
149
  def sales_growth(dataframe, fittedValues):
150
  sales_growth = fittedValues.to_frame()
151
  sales_growth = sales_growth.reset_index()
 
154
 
155
  sales_growth['Sales'] = (sales_growth['Sales']).round(2)
156
 
157
+ # Calculate and create the column for sales difference and growth
158
  sales_growth['Forecasted Sales First Difference']=(sales_growth['Sales']-sales_growth['Sales'].shift(1)).round(2)
159
  sales_growth['Forecasted Sales Growth']=(((sales_growth['Sales']-sales_growth['Sales'].shift(1))/sales_growth['Sales'].shift(1))*100).round(2)
160
 
161
+ # Calculate and create the first row for sales difference and growth
162
  sales_growth['Forecasted Sales First Difference'].iloc[0] = (dataframe['Sales'].iloc[-1]-dataframe['Sales'].iloc[-2]).round(2)
163
  sales_growth['Forecasted Sales Growth'].iloc[0]=(((dataframe['Sales'].iloc[-1]-dataframe['Sales'].iloc[-2])/dataframe['Sales'].iloc[-1])*100).round(2)
164
 
 
170
  tokenizer = TapasTokenizer.from_pretrained(model_name)
171
  model = TapasForQuestionAnswering.from_pretrained(model_name, local_files_only=False)
172
 
173
+ @st.cache(show_spinner=False)
174
  def load_tapas_model(model, tokenizer):
175
  pipe = pipeline("table-question-answering", model=model, tokenizer=tokenizer)
176
  return pipe
 
213
 
214
  # Session States
215
  if 'uploaded' not in st.session_state:
216
+ st.session_state.uploaded = False
217
+
218
+ if 'preprocessed_data' not in st.session_state:
219
+ st.session_state.preprocessed_data = None
220
+
221
+ if 'fitted_models' not in st.session_state:
222
+ st.session_state.fitted_models = {}
223
 
224
  # Sidebar Menu
225
  with st.sidebar:
 
248
  if (st.session_state.uploaded):
249
  st.line_chart(df)
250
 
251
+
252
  period = st.slider('How many days would you like to forecast?', min_value=30, max_value=90)
253
  forecast_period = round(period / 3)
254