File size: 2,422 Bytes
3edbfec 4abedda a677076 4abedda 2ba318d 4abedda a677076 4abedda e18fb9d 4abedda 847a572 4abedda 6b2a0ad 4abedda 4ee5676 4abedda 4ee5676 4abedda 13a15d8 4abedda 4ee5676 4abedda a677076 4abedda 95bbb32 4abedda 2ba318d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
import numpy as np
import speech_recognition as sr
# TASK = "transcribe"
# BATCH_SIZE = 8
# LIMIT = 60
# SAMPLING_RATE = 16000
# class A2T:
# def __init__(self, mic):
# self.mic = mic
# def __transcribe(self, inputs, task: str = None):
# if inputs is None:
# print("Inputs None")
# transcribed_text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
# return transcribed_text
# def __preprocces(self, raw: np.ndarray, sampling_rate: int):
# chunk = raw.astype(np.float32, order='C') / 32768.0
# print(f"Chunk : {chunk} max chunk : {np.max(chunk)}")
# if len(chunk.shape) > 1:
# chunk = librosa.to_mono(chunk.T)
# chunk = chunk[:SAMPLING_RATE*LIMIT]
# return chunk
# def predict(self):
# try:
# if self.mic is not None:
# raw = self.mic.get_array_of_samples()
# chunk = np.array(raw, dtype=np.int16)
# sampling_rate = self.mic.frame_rate
# audio = self.__preprocces(raw=chunk, sampling_rate=sampling_rate)
# print(f"audio : {audio} \n shape : {audio.shape} \n max : {np.max(audio)} \n shape of chunk : {chunk.shape} \n sampling rate : {sampling_rate} \n max chunk : {np.max(chunk)} \n chunk : {chunk}")
# else:
# raise Exception("please provide audio")
# if isinstance(audio , np.ndarray):
# inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
# return self.__transcribe(inputs=inputs, task=TASK)
# else:
# raise Exception("Audio is not np array")
# except Exception as e:
# return f"Oops some kinda error : {e}"
class A2T:
def get_text(self):
# obtain audio from the microphone
r = sr.Recognizer()
with sr.Microphone() as source:
print("Say something!")
audio = r.listen(source)
# recognize speech using Sphinx
try:
return r.recognize_sphinx(audio)
except sr.UnknownValueError:
raise Exception("Sphinx could not understand audio")
except sr.RequestError as e:
raise Exception("Sphinx error; {0}".format(e))
|