41727469634d6f6e6b65793a31392e30332e32343a31373230
Browse files- audio2text/a2t.py +41 -3
audio2text/a2t.py
CHANGED
@@ -1,8 +1,46 @@
|
|
1 |
import librosa
|
2 |
import torch
|
3 |
-
from
|
|
|
|
|
4 |
|
5 |
class A2T:
|
6 |
-
def __init__(self, ):
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
1 |
import librosa
|
2 |
import torch
|
3 |
+
from __init__ import processor, model
|
4 |
+
|
5 |
+
LIMIT = 90 # limit 90 seconds
|
6 |
|
7 |
class A2T:
|
8 |
+
def __init__(self, mic):
|
9 |
+
self.mic = mic
|
10 |
+
|
11 |
+
def __preproccess(self, audio, frame_rate):
|
12 |
+
try:
|
13 |
+
audio = audio / 32678.0
|
14 |
+
|
15 |
+
if len(audio.shape) > 1:
|
16 |
+
audio = librosa.to_mono(audio.T)
|
17 |
+
|
18 |
+
if frame_rate != 16_000:
|
19 |
+
audio = librosa.resample(audio, orig_sr=frame_rate, target_sr=16000)
|
20 |
+
|
21 |
+
audio = audio[:16_000*LIMIT]
|
22 |
+
|
23 |
+
audio = torch.tensor(audio)
|
24 |
+
return audio
|
25 |
+
except Exception as e:
|
26 |
+
print("Error", e)
|
27 |
+
return None
|
28 |
+
|
29 |
+
def predict(self):
|
30 |
+
if this.mic is not None:
|
31 |
+
audio = self.mic
|
32 |
+
frame_rate = audio.frame_rate
|
33 |
+
else:
|
34 |
+
return "please provide audio"
|
35 |
+
|
36 |
+
try:
|
37 |
+
forced_decoder_ids = processor.get_decoder_prompt_ids(language="english", task="transcribe")
|
38 |
+
audio = self.__preproccess(audio=audio, frame_rate=frame_rate)
|
39 |
+
inputs = processor(audio=audio, sampling_rate=16000, return_tensors="pt")
|
40 |
+
predicted_ids = model.generate(**inputs, max_length=400, forced_decoder_ids=forced_decoder_ids)
|
41 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
42 |
+
return transcription[0]
|
43 |
+
except Exception as e:
|
44 |
+
print("Error", e)
|
45 |
+
return "Oops some kinda error"
|
46 |
|