Spaces:
Sleeping
Sleeping
File size: 6,337 Bytes
efab8b2 b00ce35 f5358a9 ba03438 f5358a9 ba03438 6014d33 ba03438 f5358a9 ba03438 f5358a9 61a75a7 ba03438 6014d33 ba03438 f5358a9 ba03438 f5358a9 ba03438 f5358a9 ba03438 6014d33 f5358a9 6014d33 ba03438 6014d33 f5358a9 ba03438 f5358a9 ba03438 f5358a9 ba03438 efab8b2 ba03438 6014d33 efab8b2 6014d33 b00ce35 efab8b2 6014d33 efab8b2 6014d33 efab8b2 6014d33 efab8b2 6014d33 ba03438 6014d33 ba03438 b00ce35 ba03438 b00ce35 ba03438 f5358a9 ba03438 f5358a9 28da902 ba03438 efab8b2 ba03438 efab8b2 ba03438 efab8b2 959ba22 efab8b2 b00ce35 efab8b2 b00ce35 08ef3c9 efab8b2 08ef3c9 efab8b2 08ef3c9 efab8b2 61a75a7 efab8b2 61a75a7 efab8b2 08ef3c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import os
import shutil
import zipfile
import streamlit as st
from typing import Literal
from pydantic import BaseModel, Field
from langchain_core.output_parsers import PydanticOutputParser
from langchain.prompts import PromptTemplate
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
from langchain_community.document_loaders import UnstructuredPDFLoader
# --- CSS ---
st.markdown(
"""
<style>
.stApp {
background-color: midnightblue;
color: white;
}
</style>
""",
unsafe_allow_html=True
)
newhf = st.secrets["HF_TOKEN"]
#BASE_DIR = os.path.dirname(os.path.abspath(__file__))
EXTRACTED_FOLDER = os.path.join("extracted")
SELECTED_FOLDER = os.path.join("selected")
os.makedirs(EXTRACTED_FOLDER, exist_ok=True)
os.makedirs(SELECTED_FOLDER, exist_ok=True)
# --- Set up selected LLM using HuggingFaceEndpoint ---
llm_model = HuggingFaceEndpoint(
repo_id="meta-llama/Llama-3.1-8B-Instruct",
provider="nebius",
api_key=newhf,
temperature=0.7,
max_new_tokens=100,
task="conversational"
)
llm = ChatHuggingFace(
llm=llm_model,
repo_id="meta-llama/Llama-3.1-8B-Instruct",
provider="nebius",
api_key=newhf,
temperature=0.7,
max_new_tokens=100,
task="conversational"
)
# --- Pydantic model for LLM output ---
class JobDesc(BaseModel):
Objective: str = Field(description="from the given job descriptrion extract the Objective")
Name: str = Field(description="from the given job descriptrion extract the Name")
Age: int = Field(description="from the given job descriptrion extract the Age")
Qualification: str = Field(description="from the given job description extract the Qualification")
Skills: list[str] = Field(description="from the given job description extract the Skills")
Experience: list[str] = Field(description="from the given job descriptrion extract the work Experience")
parser = PydanticOutputParser(pydantic_object=JobDesc)
prompt = PromptTemplate(template="""
Extract the following fields from the resume text and return them as a JSON object.
Resume:
{input}
Return JSON matching this format:
{instruction}
""")
st.title("π Resume Screening Application")
uploaded_file = st.file_uploader("Upload ZIP file of resumes", type=["zip"])
parsed_resumes = []
unique_skills = set()
if uploaded_file:
# --- Clean extracted folder ---
if os.path.exists(EXTRACTED_FOLDER):
shutil.rmtree(EXTRACTED_FOLDER)
os.makedirs(EXTRACTED_FOLDER, exist_ok=True)
# --- Save uploaded ZIP ---
zip_path = os.path.join(BASE_DIR, "temp.zip")
with open(zip_path, "wb") as f:
f.write(uploaded_file.read())
# --- Extract ZIP ---
try:
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
zip_ref.extractall(EXTRACTED_FOLDER)
st.success(f"β
Extracted ZIP to: {EXTRACTED_FOLDER}")
except Exception as e:
st.error(f"β Failed to extract ZIP: {e}")
# --- Clean up zip ---
os.remove(zip_path)
# --- List extracted files ---
extracted_files = os.listdir(EXTRACTED_FOLDER)
st.write(f"ποΈ Files extracted:")
st.write(extracted_files)
# --- Process PDFs ---
for filename in extracted_files:
if filename.lower().endswith(".pdf"):
file_path = os.path.join(EXTRACTED_FOLDER, filename)
st.write(f"Processing file: {file_path} | Exists? {os.path.exists(file_path)}")
try:
loader = UnstructuredPDFLoader(file_path, mode="paged")
data = loader.load()
if len(data) > 2:
st.warning(f"β Rejected {filename}: More than 2 pages")
continue
full_text = "\n".join([page.page_content for page in data])
formatted_prompt = prompt.format(
input=full_text,
instruction=parser.get_format_instructions()
)
result = llm.invoke(formatted_prompt)
parsed = parser.parse(result.content)
resume_data = parsed.dict()
resume_data["file_path"] = file_path # save path to extracted PDF
parsed_resumes.append(resume_data)
for skill in parsed.Skills:
unique_skills.add(skill.strip())
st.success(f"β
Parsed: {parsed.Name}")
st.write(f"ποΈ Resume path saved: {file_path}")
except Exception as e:
st.error(f"β Failed to parse {filename}: {e}")
# --- Skill categories ---
skill_categories = {
"Programming Languages": ["Python"],
"Data Analysis & Visualisation": ["Pandas", "Numpy", "Excel", "Matplotlib", "Seaborn"],
"Database Management": ["SQL", "Power BI"],
"Deep Learning": ["ANN", "CNN", "RNN"],
"Machine Learning": ["Scikit-learn", "OpenCV", "NLP", "Supervised learning", "Optuna", "Descriptive Statistics"],
"Generative AI": ["Langchain", "LLMs"]
}
# --- Skill Selection ---
if parsed_resumes:
selected_categories = st.multiselect("Select required skill categories", list(skill_categories.keys()))
if st.button("Evaluate Resumes"):
required_keywords = set()
for category in selected_categories:
required_keywords.update(skill_categories[category])
for resume in parsed_resumes:
if any(req_skill.lower() in (skill.lower() for skill in resume["Skills"]) for req_skill in required_keywords):
st.success(f"β
Selected: {resume['Name']}")
source_path = resume["file_path"]
#dest_path = os.path.join(SELECTED_FOLDER, os.path.basename(source_path))
dest_path = os.path.join(SELECTED_FOLDER)
if os.path.exists(source_path):
shutil.copy(source_path, dest_path)
#st.info(f"π File copied to selected: {os.path.basename(source_path)}")
st.info(f"π File copied to selected")
else:
st.error(f"β Could not find file to copy: {source_path}")
else:
st.warning(f"β Rejected: {resume['Name']}")
|