Spaces:
Sleeping
Sleeping
Create Home.py
Browse files
Home.py
ADDED
|
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import zipfile
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
import streamlit as st
|
| 5 |
+
from langchain_community.document_loaders import UnstructuredPDFLoader
|
| 6 |
+
from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace
|
| 7 |
+
from langchain.prompts import PromptTemplate
|
| 8 |
+
from langchain_core.output_parsers import PydanticOutputParser
|
| 9 |
+
from pydantic import BaseModel, Field
|
| 10 |
+
|
| 11 |
+
st.markdown(
|
| 12 |
+
"""
|
| 13 |
+
<style>
|
| 14 |
+
.stApp {
|
| 15 |
+
background-color: midnightblue;
|
| 16 |
+
color: white;
|
| 17 |
+
}
|
| 18 |
+
</style>
|
| 19 |
+
""",
|
| 20 |
+
unsafe_allow_html=True
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
# Setup your HF token and model (replace with your token handling)
|
| 24 |
+
newhf = st.secrets["HF_TOKEN"]
|
| 25 |
+
|
| 26 |
+
# Create folders if not present
|
| 27 |
+
Path("Extracted_Resumes").mkdir(exist_ok=True)
|
| 28 |
+
Path("Selected_Resumes").mkdir(exist_ok=True)
|
| 29 |
+
|
| 30 |
+
# Set up the LLaMA model
|
| 31 |
+
llama_model = HuggingFaceEndpoint(
|
| 32 |
+
repo_id="meta-llama/Llama-3.1-8B-Instruct",
|
| 33 |
+
provider="nebius",
|
| 34 |
+
temperature=0.7,
|
| 35 |
+
api_key=newhf,
|
| 36 |
+
max_new_tokens=512,
|
| 37 |
+
task="conversational"
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
model = ChatHuggingFace(
|
| 41 |
+
llm=llama_model,
|
| 42 |
+
repo_id="meta-llama/Llama-3.1-8B-Instruct",
|
| 43 |
+
provider="nebius",
|
| 44 |
+
temperature=0.7,
|
| 45 |
+
api_key=newhf,
|
| 46 |
+
max_new_tokens=512,
|
| 47 |
+
task="conversational"
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
# Pydantic schema for parsing resume content
|
| 51 |
+
class JobDesc(BaseModel):
|
| 52 |
+
Objective: str = Field(description="Objective")
|
| 53 |
+
Name: str = Field(description="Name")
|
| 54 |
+
Age: int = Field(description="Age")
|
| 55 |
+
Qualification: str = Field(description="Qualification")
|
| 56 |
+
Skills: list[str] = Field(description="Skills")
|
| 57 |
+
Experience: float = Field(description="Work Experience")
|
| 58 |
+
|
| 59 |
+
parser = PydanticOutputParser(pydantic_object=JobDesc)
|
| 60 |
+
|
| 61 |
+
# Prompt template for extracting fields from resume
|
| 62 |
+
pt = PromptTemplate(template="""
|
| 63 |
+
Extract the following fields from the resume description below and return them as a JSON object.
|
| 64 |
+
|
| 65 |
+
Resume Text:
|
| 66 |
+
{input}
|
| 67 |
+
|
| 68 |
+
Return JSON matching this format exactly:
|
| 69 |
+
{instruction}
|
| 70 |
+
""")
|
| 71 |
+
|
| 72 |
+
# Streamlit app UI
|
| 73 |
+
st.title("π Resume Screening Application")
|
| 74 |
+
|
| 75 |
+
uploaded_zip = st.file_uploader("Upload a ZIP file containing resumes", type="zip")
|
| 76 |
+
|
| 77 |
+
if uploaded_zip:
|
| 78 |
+
with zipfile.ZipFile(uploaded_zip, "r") as zip_ref:
|
| 79 |
+
zip_ref.extractall("Extracted_Resumes")
|
| 80 |
+
st.success("β
Resumes extracted successfully!")
|
| 81 |
+
|
| 82 |
+
resumes = list(Path("Extracted_Resumes").glob("*.pdf"))
|
| 83 |
+
valid_resumes = []
|
| 84 |
+
|
| 85 |
+
# Check for 2-page resumes
|
| 86 |
+
for pdf in resumes:
|
| 87 |
+
try:
|
| 88 |
+
loader = UnstructuredPDFLoader(str(pdf), mode="paged")
|
| 89 |
+
pages = loader.load()
|
| 90 |
+
if len(pages) == 2:
|
| 91 |
+
valid_resumes.append((pdf.name, pages))
|
| 92 |
+
except Exception as e:
|
| 93 |
+
st.warning(f"β Could not process {pdf.name}: {e}")
|
| 94 |
+
|
| 95 |
+
if valid_resumes:
|
| 96 |
+
st.subheader("π Select Required Skills")
|
| 97 |
+
|
| 98 |
+
# Extract skills from all resumes
|
| 99 |
+
all_resume_skills = set()
|
| 100 |
+
|
| 101 |
+
parsed_resumes = {}
|
| 102 |
+
|
| 103 |
+
for filename, pages in valid_resumes:
|
| 104 |
+
final_data = [page for page in pages]
|
| 105 |
+
fp = pt.format(input=final_data, instruction=parser.get_format_instructions())
|
| 106 |
+
result = model.invoke(fp)
|
| 107 |
+
parsed_resume = parser.parse(result.content)
|
| 108 |
+
parsed_resumes[filename] = parsed_resume
|
| 109 |
+
all_resume_skills.update(map(str.lower, parsed_resume.Skills))
|
| 110 |
+
|
| 111 |
+
selected_skills = st.multiselect("Choose required skills:", sorted(all_resume_skills))
|
| 112 |
+
|
| 113 |
+
# Match resumes based on selected skills
|
| 114 |
+
for filename, parsed_resume in parsed_resumes.items():
|
| 115 |
+
resume_skills = parsed_resume.Skills
|
| 116 |
+
found_skills = [
|
| 117 |
+
skill for skill in selected_skills
|
| 118 |
+
if any(skill.lower() in rs.lower() for rs in resume_skills)
|
| 119 |
+
]
|
| 120 |
+
|
| 121 |
+
if set(found_skills) == set(selected_skills):
|
| 122 |
+
src_path = Path("Extracted_Resumes") / filename
|
| 123 |
+
dest_path = Path("Selected_Resumes") / filename
|
| 124 |
+
with open(src_path, "rb") as src, open(dest_path, "wb") as dst:
|
| 125 |
+
dst.write(src.read())
|
| 126 |
+
st.success(f"β
{filename} matches and saved to 'Selected_Resumes'")
|
| 127 |
+
else:
|
| 128 |
+
st.info(f"βΉοΈ {filename} does not match all selected skills.")
|
| 129 |
+
else:
|
| 130 |
+
st.warning("β οΈ No 2-page resumes found.")
|