File size: 3,912 Bytes
4d85df4
 
 
 
 
 
 
 
 
9ddd3f1
4d85df4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5be88d
 
4d85df4
 
 
 
97b5aba
4d85df4
c1c8251
4d85df4
b5be88d
c1c8251
27c712a
c1c8251
 
 
 
 
4d85df4
 
 
 
c8105ff
4d85df4
 
 
 
 
b5be88d
 
 
4d85df4
 
 
 
 
 
 
 
 
 
 
b5be88d
4d85df4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4a653e
 
 
4d85df4
 
 
 
e4a653e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import gradio as gr
import numpy as np
from torchvision import transforms
import torch
from helpers import *
import sys
import csv
from monoscene.monoscene import MonoScene

csv.field_size_limit(sys.maxsize)
torch.set_grad_enabled(False)

# pipeline = pipeline(model="anhquancao/monoscene_kitti")
# model = AutoModel.from_pretrained(
#     "anhquancao/monoscene_kitti", trust_remote_code=True, revision='bf033f87c2a86b60903ab811b790a1532c1ae313'
# )#.cuda()
model = MonoScene.load_from_checkpoint(
        "monoscene_kitti.ckpt",
        dataset="kitti",
        n_classes=20,
        feature = 64,
        project_scale = 2,
        full_scene_size = (256, 256, 32),
    )

img_W, img_H = 1220, 370


def predict(img):
    img = np.array(img, dtype=np.float32, copy=False) / 255.0

    normalize_rgb = transforms.Compose(
            [
                transforms.ToTensor(),
                transforms.Normalize(
                    mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
                ),
            ]
        )
    img = normalize_rgb(img)
   
    batch = get_projections(img_W, img_H)
    batch["img"] = img
    for k in batch:
        batch[k] = batch[k].unsqueeze(0)#.cuda()

    pred = model(batch).squeeze()
    # print(pred.shape)
    pred = majority_pooling(pred, k_size=2)
    fig = draw(pred, batch['fov_mask_2'])


    return fig
   

description = """
MonoScene Demo on SemanticKITTI Validation Set (Sequence 08), which uses the <b>camera parameters of Sequence 08</b>.
Due to the <b>CPU-only</b> inference, it might take up to 20s to predict a scene. \n
The output is <b>downsampled by 2</b> for faster rendering. <b>Darker</b> colors represent the <b>scenery outside the Field of View</b>, i.e. not visible on the image.
<center>
    <a href="https://astra-vision.github.io/MonoScene/">
        <img style="display:inline" alt="Project page" src="https://img.shields.io/badge/Project%20Page-MonoScene-red">
    </a>
    <a href="https://arxiv.org/abs/2112.00726"><img style="display:inline" src="https://img.shields.io/badge/arXiv%20%2B%20supp-2112.00726-purple"></a>
    <a href="https://github.com/cv-rits/MonoScene"><img style="display:inline" src="https://img.shields.io/github/stars/cv-rits/MonoScene?style=social"></a>
</center>
"""
title = "MonoScene: Monocular 3D Semantic Scene Completion"
article="""
<center>
We also released a <b>smaller</b> MonoScene model (Half resolution - w/o 3D CRP) at: <a href="https://huggingface.co/spaces/CVPR/monoscene_lite">https://huggingface.co/spaces/CVPR/monoscene_lite</a>
    <img src='https://visitor-badge.glitch.me/badge?page_id=anhquancao.MonoScene&left_color=darkmagenta&right_color=purple' alt='visitor badge'>
</center>
"""

examples = [
    'images/08/001385.jpg',
    'images/08/000295.jpg',
    'images/08/002505.jpg',
    'images/08/000085.jpg',
    'images/08/000290.jpg',
    'images/08/000465.jpg',
    'images/08/000790.jpg',
    'images/08/001005.jpg',
    'images/08/001380.jpg',
    'images/08/001530.jpg',
    'images/08/002360.jpg',
    'images/08/004059.jpg',
    'images/08/003149.jpg',
    'images/08/001446.jpg',
    'images/08/000010.jpg',
    'images/08/001122.jpg',
    'images/08/003533.jpg',
    'images/08/003365.jpg',
    'images/08/002944.jpg',
    'images/08/000822.jpg',
    'images/08/000103.jpg',
    'images/08/002716.jpg',
    'images/08/000187.jpg',
    'images/08/002128.jpg',
    'images/08/000511.jpg',
    'images/08/000618.jpg',
    'images/08/002010.jpg',
    'images/08/000234.jpg',
    'images/08/001842.jpg',
    'images/08/001687.jpg',
    'images/08/003929.jpg',
    'images/08/002272.jpg',
]



demo = gr.Interface(
    predict, 
    gr.Image(shape=(1220, 370)), 
    gr.Plot(),  
    article=article,
    title=title,
    enable_queue=True,
    cache_examples=False,
    live=False,
    examples=examples,
    description=description)


demo.launch(enable_queue=True, debug=False)