anhquancao commited on
Commit
97b5aba
β€’
1 Parent(s): c1c8251
Files changed (2) hide show
  1. app.py +5 -5
  2. helpers.py +2 -2
app.py CHANGED
@@ -7,7 +7,7 @@ import sys
7
  import csv
8
  from monoscene.monoscene import MonoScene
9
 
10
- csv.field_size_limit(sys.maxsize)
11
  torch.set_grad_enabled(False)
12
 
13
  # pipeline = pipeline(model="anhquancao/monoscene_kitti")
@@ -28,7 +28,6 @@ img_W, img_H = 1220, 370
28
 
29
  def predict(img):
30
  img = np.array(img, dtype=np.float32, copy=False) / 255.0
31
-
32
 
33
  normalize_rgb = transforms.Compose(
34
  [
@@ -47,16 +46,17 @@ def predict(img):
47
 
48
  pred = model(batch).squeeze()
49
  # print(pred.shape)
50
- pred = majority_pooling(pred, k_size=2)
51
- fig = draw(pred, batch['fov_mask_2'])
52
 
53
 
54
  return fig
55
 
 
 
56
  description = """
57
  MonoScene Demo on SemanticKITTI Validation Set (Sequence 08), which uses the <b>camera parameters of Sequence 08</b>.
58
  Due to the <b>CPU-only</b> inference, it might take up to 20s to predict a scene. \n
59
- The output is <b>downsampled by 2</b> to be able to be rendered in browsers.
60
  <b>Darker</b> colors represent the <b>scenery outside the Field of View</b>, i.e. not visible on the image.
61
  <center>
62
  <a href="https://cv-rits.github.io/MonoScene/">
 
7
  import csv
8
  from monoscene.monoscene import MonoScene
9
 
10
+ # csv.field_size_limit(sys.maxsize)
11
  torch.set_grad_enabled(False)
12
 
13
  # pipeline = pipeline(model="anhquancao/monoscene_kitti")
 
28
 
29
  def predict(img):
30
  img = np.array(img, dtype=np.float32, copy=False) / 255.0
 
31
 
32
  normalize_rgb = transforms.Compose(
33
  [
 
46
 
47
  pred = model(batch).squeeze()
48
  # print(pred.shape)
49
+ # pred = majority_pooling(pred, k_size=2)
50
+ fig = draw(pred, batch['fov_mask_1'])
51
 
52
 
53
  return fig
54
 
55
+ # The output is <b>downsampled by 2</b> to be able to be rendered in browsers.
56
+
57
  description = """
58
  MonoScene Demo on SemanticKITTI Validation Set (Sequence 08), which uses the <b>camera parameters of Sequence 08</b>.
59
  Due to the <b>CPU-only</b> inference, it might take up to 20s to predict a scene. \n
 
60
  <b>Darker</b> colors represent the <b>scenery outside the Field of View</b>, i.e. not visible on the image.
61
  <center>
62
  <a href="https://cv-rits.github.io/MonoScene/">
helpers.py CHANGED
@@ -188,7 +188,7 @@ def draw(
188
  fov_mask,
189
  # img_size,
190
  # f,
191
- voxel_size=0.4,
192
  # d=7, # 7m - determine the size of the mesh representing the camera
193
  ):
194
 
@@ -254,7 +254,7 @@ def draw(
254
  # label = fov_voxels[:, 3].flatten()
255
  fig = go.Figure(data=[go.Scatter3d(x=x, y=y, z=z,mode='markers',
256
  marker=dict(
257
- size=3,
258
  color=pts_colors, # set color to an array/list of desired values
259
  # colorscale='Viridis', # choose a colorscale
260
  opacity=1.0,
 
188
  fov_mask,
189
  # img_size,
190
  # f,
191
+ voxel_size=0.2,
192
  # d=7, # 7m - determine the size of the mesh representing the camera
193
  ):
194
 
 
254
  # label = fov_voxels[:, 3].flatten()
255
  fig = go.Figure(data=[go.Scatter3d(x=x, y=y, z=z,mode='markers',
256
  marker=dict(
257
+ size=2,
258
  color=pts_colors, # set color to an array/list of desired values
259
  # colorscale='Viridis', # choose a colorscale
260
  opacity=1.0,