Spaces:
Runtime error
Runtime error
File size: 1,545 Bytes
e6cdfd2 f331055 c89d0b4 f331055 14b8594 e6cdfd2 14b8594 e6cdfd2 14b8594 e6cdfd2 14b8594 e6cdfd2 14b8594 e6cdfd2 46704cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
import numpy as np
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
import json
import string
import string
import re
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
import gradio as gr
import joblib
import nltk
nltk.download('stopwords')
nltk.download('punkt')
model = joblib.load('model.bin')
def remove_punctuation(text):
punctuation_free = "".join([i for i in text if i not in string.punctuation])
return punctuation_free
def test_model(text):
# Convert text to lowercase
text = text.lower()
# Remove punctuation
text =remove_punctuation(text)
# Remove numbers
text = re.sub(r'\d+', '', text)
# Remove stopwords
stop_words = set(stopwords.words('english'))
tokens = word_tokenize(text)
filtered_text = [word for word in tokens if word not in stop_words]
# Join the filtered tokens back into a string
preprocessed_text = ' '.join(filtered_text)
# Vectorize the preprocessed text
text_vectorized = vectorizer.transform([preprocessed_text])
# Make prediction on the vectorized text
prediction = model.predict(text_vectorized)[0]
# Return the prediction
return prediction
# Create the Gradio interface
iface = gr.Interface(fn=test_model, inputs="text", outputs="text")
# Launch the interface
iface.launch()
|