RohitGuptaAI commited on
Commit
14b8594
·
1 Parent(s): 310f1bb

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +131 -0
  2. requirements.txt +7 -0
app.py ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.pipelines.image_segmentation import Predictions
2
+ from transformers import DistilBertForSequenceClassification, DistilBertTokenizer
3
+ import unidecode, re, unicodedata
4
+ from bs4 import BeautifulSoup
5
+ from urllib.request import urlopen
6
+ from urllib.parse import urlparse
7
+ from sklearn.metrics import confusion_matrix, accuracy_score
8
+ import torch.nn.functional as F
9
+ import gradio as gr
10
+ import torch
11
+
12
+ def check_by_url(txt_url):
13
+ #txt_url = "https://www.c-sharpcorner.com/article/how-to-add-multimedia-content-with-html/default.txt"
14
+ parsed_url = urlparse(txt_url)
15
+ url = f"{parsed_url.scheme}://{parsed_url.netloc}{parsed_url.path.rsplit('/', 1)[0]}/"
16
+ print(url)
17
+
18
+ new_data =[]
19
+ page = urlopen(url=url).read().decode("utf-8")
20
+ soup = BeautifulSoup(page, 'html.parser')
21
+ title = soup.find('title').get_text()
22
+
23
+ css_class_to_remove = "dp-highlighter" # Replace with the CSS class you want to remove
24
+ #Find <div> tags with the specified CSS class and remove their content
25
+ div_tags = soup.find_all(['code', 'pre'])
26
+ for div_tag in div_tags:
27
+ div_tag.clear()
28
+
29
+ div_tags = soup.find_all('div', class_=css_class_to_remove)
30
+ for div_tag in div_tags:
31
+ div_tag.clear()
32
+
33
+ # Fetch content of remaining tags
34
+ content_with_style = ""
35
+ p_tags_with_style = soup.find_all('p', style=True)
36
+ for p_tag in p_tags_with_style:
37
+ p_content = re.sub(r'\n', '', p_tag.get_text())
38
+ content_with_style += p_content
39
+
40
+ # Fetch content of <p> tags without style
41
+ content_without_style = ""
42
+ p_tags_without_style = soup.find_all('p', style=False)
43
+ for p_tag in p_tags_without_style:
44
+ p_content = re.sub(r'\n', '', p_tag.get_text())
45
+ content_without_style += p_content
46
+
47
+ # Replace Unicode characters in the content and remove duplicates
48
+ normalized_content_with_style = re.sub(r'\s+', ' ', content_with_style) # Remove extra spaces
49
+ normalized_content_with_style = normalized_content_with_style.replace('\r', '') # Replace '\r' characters
50
+ normalized_content_with_style = unicodedata.normalize('NFKD', normalized_content_with_style)
51
+ normalized_content_with_style = unidecode.unidecode(normalized_content_with_style)
52
+
53
+ normalized_content_without_style = re.sub(r'\s+', ' ', content_without_style) # Remove extra spaces
54
+ normalized_content_without_style = normalized_content_without_style.replace('\r', '') # Replace '\r' characters
55
+ normalized_content_without_style = unicodedata.normalize('NFKD', normalized_content_without_style)
56
+ normalized_content_without_style = unidecode.unidecode(normalized_content_without_style)
57
+
58
+ normalized_content_with_style += normalized_content_without_style
59
+ new_data = {"title": title, "content": normalized_content_with_style}
60
+
61
+ model = DistilBertForSequenceClassification.from_pretrained(".")
62
+ tokenizer = DistilBertTokenizer.from_pretrained(".")
63
+
64
+ test_encodings = tokenizer.encode_plus(
65
+ title,
66
+ truncation=True,
67
+ padding=True,
68
+ max_length=512,
69
+ return_tensors="pt"
70
+ )
71
+ model1=[]
72
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
73
+ test_input_ids = test_encodings["input_ids"].to(device)
74
+ test_attention_mask = test_encodings["attention_mask"].to(device)
75
+ with torch.no_grad():
76
+ model1= model.to(device)
77
+ model1.eval()
78
+ outputs= model1( test_input_ids, attention_mask=test_attention_mask)
79
+ logits = outputs.logits
80
+ predicted_labels = torch.argmax(logits, dim=1)
81
+ probabilities = F.softmax(logits, dim=1)
82
+ confidence_score_title = torch.max(probabilities, dim=1).values.tolist()
83
+ predicted_labels = torch.argmax(outputs.logits, dim=1)
84
+ label_mapping = {1: "SFW", 0: "NSFW"} # 1:True 0:false
85
+ predicted_label_title = label_mapping[predicted_labels.item()]
86
+
87
+
88
+ test_encodings = tokenizer.encode_plus(
89
+ normalized_content_with_style,
90
+ truncation=True,
91
+ padding=True,
92
+ max_length=512,
93
+ return_tensors="pt"
94
+ )
95
+ model1=[]
96
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
97
+ test_input_ids = test_encodings["input_ids"].to(device)
98
+ test_attention_mask = test_encodings["attention_mask"].to(device)
99
+ with torch.no_grad():
100
+ model1= model.to(device)
101
+ model1.eval()
102
+ outputs= model1( test_input_ids, attention_mask=test_attention_mask)
103
+ logits = outputs.logits
104
+ predicted_labels = torch.argmax(logits, dim=1)
105
+ probabilities = F.softmax(logits, dim=1)
106
+ confidence_scores_content = torch.max(probabilities, dim=1).values.tolist()
107
+ label_mapping = {1: "SFW", 0: "NSFW"} # 1:True 0:false
108
+ predicted_label_content = label_mapping[predicted_labels.item()]
109
+
110
+ return predicted_label_title, confidence_score_title, predicted_label_content, confidence_scores_content, new_data
111
+
112
+ def predict_2( url):
113
+ predicted_label_title, confidence_score_title,predicted_label_content, confidence_scores_content, new_data = check_by_url(url)
114
+ return predicted_label_title, confidence_score_title, predicted_label_content, confidence_scores_content, new_data
115
+
116
+ demo = gr.Interface(
117
+ fn=predict_2,
118
+ inputs= [
119
+ gr.inputs.Textbox(label="Enter URL"),
120
+
121
+ ],
122
+ outputs= [
123
+
124
+ gr.outputs.Textbox(label="Title_prediction"),
125
+ gr.outputs.Textbox(label="Title_confidence_score"),
126
+ gr.outputs.Textbox(label="Content_prediction"),
127
+ gr.outputs.Textbox(label="content_confidence_score"),
128
+ gr.outputs.Textbox(label="new_data").style(show_copy_button=True)
129
+ ],
130
+ )
131
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ transformers
2
+ torch
3
+ numpy
4
+ unidecode
5
+ gradio
6
+ BeautifulSoup4
7
+ scikit-learn