File size: 12,655 Bytes
8ddfd2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
import gradio as gr
import os
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFacePipeline
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from langchain_community.llms import HuggingFaceEndpoint
from pathlib import Path
import chromadb
from unidecode import unidecode
from transformers import AutoTokenizer
import transformers
import torch
import tqdm
import accelerate
import re
# Static PDF file link
static_pdf_link = "https://huggingface.co/spaces/CCCDev/PDFChat/resolve/main/Data-privacy-policy.pdf"
list_llm = ["mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mistral-7B-Instruct-v0.1", "google/gemma-7b-it", "google/gemma-2b-it",
"HuggingFaceH4/zephyr-7b-beta", "HuggingFaceH4/zephyr-7b-gemma-v0.1",
"meta-llama/Llama-2-7b-chat-hf", "microsoft/phi-2",
"TinyLlama/TinyLlama-1.1B-Chat-v1.0", "mosaicml/mpt-7b-instruct", "tiiuae/falcon-7b-instruct",
"google/flan-t5-xxl"]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
# Load PDF document and create doc splits
def load_doc(file_path, chunk_size, chunk_overlap):
loader = PyPDFLoader(file_path)
pages = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap)
doc_splits = text_splitter.split_documents(pages)
return doc_splits
# Create vector database
def create_db(splits, collection_name):
embedding = HuggingFaceEmbeddings()
new_client = chromadb.EphemeralClient()
vectordb = Chroma.from_documents(
documents=splits,
embedding=embedding,
client=new_client,
collection_name=collection_name,
)
return vectordb
# Initialize langchain LLM chain
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
progress(0.1, desc="Initializing HF tokenizer...")
progress(0.5, desc="Initializing HF Hub...")
if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
llm = HuggingFaceEndpoint(
repo_id=llm_model,
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k,
load_in_8bit=True,
)
elif llm_model in ["HuggingFaceH4/zephyr-7b-gemma-v0.1", "mosaicml/mpt-7b-instruct"]:
raise gr.Error("LLM model is too large to be loaded automatically on free inference endpoint")
elif llm_model == "microsoft/phi-2":
llm = HuggingFaceEndpoint(
repo_id=llm_model,
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k,
trust_remote_code=True,
torch_dtype="auto",
)
elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
llm = HuggingFaceEndpoint(
repo_id=llm_model,
temperature=temperature,
max_new_tokens=250,
top_k=top_k,
)
elif llm_model == "meta-llama/Llama-2-7b-chat-hf":
raise gr.Error("Llama-2-7b-chat-hf model requires a Pro subscription...")
else:
llm = HuggingFaceEndpoint(
repo_id=llm_model,
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k,
)
progress(0.75, desc="Defining buffer memory...")
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key='answer',
return_messages=True
)
retriever = vector_db.as_retriever()
progress(0.8, desc="Defining retrieval chain...")
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
chain_type="stuff",
memory=memory,
return_source_documents=True,
verbose=False,
)
progress(0.9, desc="Done!")
return qa_chain
# Generate collection name for vector database
def create_collection_name(filepath):
collection_name = Path(filepath).stem
collection_name = collection_name.replace(" ", "-")
collection_name = unidecode(collection_name)
collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
collection_name = collection_name[:50]
if len(collection_name) < 3:
collection_name = collection_name + 'xyz'
if not collection_name[0].isalnum():
collection_name = 'A' + collection_name[1:]
if not collection_name[-1].isalnum():
collection_name = collection_name[:-1] + 'Z'
print('Filepath: ', filepath)
print('Collection name: ', collection_name)
return collection_name
# Initialize database
def initialize_database(chunk_size, chunk_overlap, progress=gr.Progress()):
file_path = static_pdf_link
progress(0.1, desc="Creating collection name...")
collection_name = create_collection_name(file_path)
progress(0.25, desc="Loading document...")
doc_splits = load_doc(file_path, chunk_size, chunk_overlap)
progress(0.5, desc="Generating vector database...")
vector_db = create_db(doc_splits, collection_name)
progress(0.9, desc="Done!")
return vector_db, collection_name, "Complete!"
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
llm_name = list_llm[llm_option]
print("llm_name: ", llm_name)
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
return qa_chain, "Complete!"
def format_chat_history(message, chat_history):
formatted_chat_history = []
for user_message, bot_message in chat_history:
formatted_chat_history.append(f"User: {user_message}")
formatted_chat_history.append(f"Assistant: {bot_message}")
return formatted_chat_history
def conversation(qa_chain, message, history):
formatted_chat_history = format_chat_history(message, history)
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
response_answer = response["answer"]
if response_answer.find("Helpful Answer:") != -1:
response_answer = response_answer.split("Helpful Answer:")[-1]
response_sources = response["source_documents"]
response_source1 = response_sources[0].page_content.strip()
response_source2 = response_sources[1].page_content.strip()
response_source3 = response_sources[2].page_content.strip()
response_source1_page = response_sources[0].metadata["page"] + 1
response_source2_page = response_sources[1].metadata["page"] + 1
response_source3_page = response_sources[2].metadata["page"] + 1
new_history = history + [(message, response_answer)]
return qa_chain, gr.update(
value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
def demo():
with gr.Blocks(theme="base") as demo:
vector_db = gr.State()
qa_chain = gr.State()
collection_name = gr.State()
gr.Markdown(
"""<center><h2>PDF-based chatbot</center></h2>
<h3>Ask any questions about your PDF documents</h3>""")
gr.Markdown(
"""<b>Note:</b> This AI assistant, using Langchain and open-source LLMs, performs retrieval-augmented generation (RAG) from your PDF documents. \
The user interface explicitely shows multiple steps to help understand the RAG workflow.
This chatbot takes past questions into account when generating answers (via conversational memory), and includes document references for clarity purposes.<br>
<br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate a reply.
""")
with gr.Tab("Step 2 - Process document"):
with gr.Row():
db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value="ChromaDB", type="index",
info="Choose your vector database")
with gr.Accordion("Advanced options - Document text splitter", open=False):
with gr.Row():
chunk_size = gr.Slider(64, 4096, value=512, step=32, label="Text chunk size",
info="Text length of each document chunk being embedded into the vector database. Default is 512.")
chunk_overlap = gr.Slider(0, 1024, value=24, step=8, label="Text chunk overlap",
info="Text overlap between each document chunk being embedded into the vector database. Default is 24.")
initialize_db = gr.Button("Process document")
with gr.Row():
output_db = gr.Textbox(label="Database initialization steps", placeholder="", show_label=False)
with gr.Accordion("Vector database collection details", open=False):
collection = gr.Textbox(label="Collection name", placeholder="", show_label=False)
with gr.Tab("Step 3 - Initialize LLM"):
with gr.Row():
llm_options = gr.Dropdown(list_llm_simple, label="Choose open-source LLM",
value="Mistral-7B-Instruct-v0.2",
info="Choose among the proposed open-source LLMs")
with gr.Accordion("Advanced LLM options", open=False):
with gr.Row():
llm_temperature = gr.Slider(0.01, 1.0, value=0.1, step=0.01, label="LLM temperature",
info="LLM sampling temperature, in [0.01,1.0] range. Default is 0.1")
llm_max_tokens = gr.Slider(32, 1024, value=512, step=16, label="Max tokens",
info="Maximum number of new tokens to be generated, in [32,1024] range. Default is 512")
llm_top_k = gr.Slider(1, 40, value=20, step=1, label="Top K",
info="The number of highest probability vocabulary tokens to keep for top-k-filtering. Default is 20.")
initialize_llm = gr.Button("Initialize LLM")
with gr.Row():
output_llm = gr.Textbox(label="LLM initialization steps", placeholder="", show_label=False)
with gr.Tab("Step 4 - Start chatting"):
chatbot = gr.Chatbot(label="PDF chatbot", height=500)
msg = gr.Textbox(label="Your question", placeholder="Type your question here...", show_label=False)
clear = gr.Button("Clear chat")
with gr.Accordion("Document sources (3)", open=False):
gr.Markdown("Source 1")
response_src1 = gr.Textbox(label="Source 1", placeholder="", show_label=False)
response_src1_page = gr.Number(label="Page number", value=0, precision=0, interactive=False)
gr.Markdown("Source 2")
response_src2 = gr.Textbox(label="Source 2", placeholder="", show_label=False)
response_src2_page = gr.Number(label="Page number", value=0, precision=0, interactive=False)
gr.Markdown("Source 3")
response_src3 = gr.Textbox(label="Source 3", placeholder="", show_label=False)
response_src3_page = gr.Number(label="Page number", value=0, precision=0, interactive=False)
initialize_db.click(initialize_database,
inputs=[chunk_size, chunk_overlap],
outputs=[vector_db, collection_name, output_db])
initialize_llm.click(initialize_LLM,
inputs=[llm_options, llm_temperature, llm_max_tokens, llm_top_k, vector_db],
outputs=[qa_chain, output_llm])
msg.submit(conversation,
inputs=[qa_chain, msg, chatbot],
outputs=[chatbot, msg, chatbot, response_src1, response_src1_page, response_src2, response_src2_page,
response_src3, response_src3_page])
clear.click(lambda: None, None, chatbot, queue=False)
clear.click(lambda: None, None, msg, queue=False)
return demo.queue().launch(debug=True)
# demo().launch(server_name="0.0.0.0")
if __name__ == "__main__":
demo()
|