Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
|
4 |
+
from langchain_community.document_loaders import PyPDFLoader
|
5 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
+
from langchain_community.vectorstores import Chroma
|
7 |
+
from langchain.chains import ConversationalRetrievalChain
|
8 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
9 |
+
from langchain_community.llms import HuggingFacePipeline
|
10 |
+
from langchain.chains import ConversationChain
|
11 |
+
from langchain.memory import ConversationBufferMemory
|
12 |
+
from langchain_community.llms import HuggingFaceEndpoint
|
13 |
+
|
14 |
+
from pathlib import Path
|
15 |
+
import chromadb
|
16 |
+
from unidecode import unidecode
|
17 |
+
|
18 |
+
from transformers import AutoTokenizer
|
19 |
+
import transformers
|
20 |
+
import torch
|
21 |
+
import tqdm
|
22 |
+
import accelerate
|
23 |
+
import re
|
24 |
+
|
25 |
+
# Static PDF file link
|
26 |
+
static_pdf_link = "https://huggingface.co/spaces/CCCDev/PDFChat/resolve/main/Data-privacy-policy.pdf"
|
27 |
+
|
28 |
+
list_llm = ["mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
29 |
+
"mistralai/Mistral-7B-Instruct-v0.1", "google/gemma-7b-it", "google/gemma-2b-it",
|
30 |
+
"HuggingFaceH4/zephyr-7b-beta", "HuggingFaceH4/zephyr-7b-gemma-v0.1",
|
31 |
+
"meta-llama/Llama-2-7b-chat-hf", "microsoft/phi-2",
|
32 |
+
"TinyLlama/TinyLlama-1.1B-Chat-v1.0", "mosaicml/mpt-7b-instruct", "tiiuae/falcon-7b-instruct",
|
33 |
+
"google/flan-t5-xxl"]
|
34 |
+
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
35 |
+
|
36 |
+
|
37 |
+
# Load PDF document and create doc splits
|
38 |
+
def load_doc(file_path, chunk_size, chunk_overlap):
|
39 |
+
loader = PyPDFLoader(file_path)
|
40 |
+
pages = loader.load()
|
41 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
42 |
+
chunk_size=chunk_size,
|
43 |
+
chunk_overlap=chunk_overlap)
|
44 |
+
doc_splits = text_splitter.split_documents(pages)
|
45 |
+
return doc_splits
|
46 |
+
|
47 |
+
|
48 |
+
# Create vector database
|
49 |
+
def create_db(splits, collection_name):
|
50 |
+
embedding = HuggingFaceEmbeddings()
|
51 |
+
new_client = chromadb.EphemeralClient()
|
52 |
+
vectordb = Chroma.from_documents(
|
53 |
+
documents=splits,
|
54 |
+
embedding=embedding,
|
55 |
+
client=new_client,
|
56 |
+
collection_name=collection_name,
|
57 |
+
)
|
58 |
+
return vectordb
|
59 |
+
|
60 |
+
|
61 |
+
# Initialize langchain LLM chain
|
62 |
+
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
63 |
+
progress(0.1, desc="Initializing HF tokenizer...")
|
64 |
+
|
65 |
+
progress(0.5, desc="Initializing HF Hub...")
|
66 |
+
if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
|
67 |
+
llm = HuggingFaceEndpoint(
|
68 |
+
repo_id=llm_model,
|
69 |
+
temperature=temperature,
|
70 |
+
max_new_tokens=max_tokens,
|
71 |
+
top_k=top_k,
|
72 |
+
load_in_8bit=True,
|
73 |
+
)
|
74 |
+
elif llm_model in ["HuggingFaceH4/zephyr-7b-gemma-v0.1", "mosaicml/mpt-7b-instruct"]:
|
75 |
+
raise gr.Error("LLM model is too large to be loaded automatically on free inference endpoint")
|
76 |
+
elif llm_model == "microsoft/phi-2":
|
77 |
+
llm = HuggingFaceEndpoint(
|
78 |
+
repo_id=llm_model,
|
79 |
+
temperature=temperature,
|
80 |
+
max_new_tokens=max_tokens,
|
81 |
+
top_k=top_k,
|
82 |
+
trust_remote_code=True,
|
83 |
+
torch_dtype="auto",
|
84 |
+
)
|
85 |
+
elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
|
86 |
+
llm = HuggingFaceEndpoint(
|
87 |
+
repo_id=llm_model,
|
88 |
+
temperature=temperature,
|
89 |
+
max_new_tokens=250,
|
90 |
+
top_k=top_k,
|
91 |
+
)
|
92 |
+
elif llm_model == "meta-llama/Llama-2-7b-chat-hf":
|
93 |
+
raise gr.Error("Llama-2-7b-chat-hf model requires a Pro subscription...")
|
94 |
+
else:
|
95 |
+
llm = HuggingFaceEndpoint(
|
96 |
+
repo_id=llm_model,
|
97 |
+
temperature=temperature,
|
98 |
+
max_new_tokens=max_tokens,
|
99 |
+
top_k=top_k,
|
100 |
+
)
|
101 |
+
|
102 |
+
progress(0.75, desc="Defining buffer memory...")
|
103 |
+
memory = ConversationBufferMemory(
|
104 |
+
memory_key="chat_history",
|
105 |
+
output_key='answer',
|
106 |
+
return_messages=True
|
107 |
+
)
|
108 |
+
retriever = vector_db.as_retriever()
|
109 |
+
progress(0.8, desc="Defining retrieval chain...")
|
110 |
+
qa_chain = ConversationalRetrievalChain.from_llm(
|
111 |
+
llm,
|
112 |
+
retriever=retriever,
|
113 |
+
chain_type="stuff",
|
114 |
+
memory=memory,
|
115 |
+
return_source_documents=True,
|
116 |
+
verbose=False,
|
117 |
+
)
|
118 |
+
progress(0.9, desc="Done!")
|
119 |
+
return qa_chain
|
120 |
+
|
121 |
+
|
122 |
+
# Generate collection name for vector database
|
123 |
+
def create_collection_name(filepath):
|
124 |
+
collection_name = Path(filepath).stem
|
125 |
+
collection_name = collection_name.replace(" ", "-")
|
126 |
+
collection_name = unidecode(collection_name)
|
127 |
+
collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
|
128 |
+
collection_name = collection_name[:50]
|
129 |
+
if len(collection_name) < 3:
|
130 |
+
collection_name = collection_name + 'xyz'
|
131 |
+
if not collection_name[0].isalnum():
|
132 |
+
collection_name = 'A' + collection_name[1:]
|
133 |
+
if not collection_name[-1].isalnum():
|
134 |
+
collection_name = collection_name[:-1] + 'Z'
|
135 |
+
print('Filepath: ', filepath)
|
136 |
+
print('Collection name: ', collection_name)
|
137 |
+
return collection_name
|
138 |
+
|
139 |
+
|
140 |
+
# Initialize database
|
141 |
+
def initialize_database(chunk_size, chunk_overlap, progress=gr.Progress()):
|
142 |
+
file_path = static_pdf_link
|
143 |
+
progress(0.1, desc="Creating collection name...")
|
144 |
+
collection_name = create_collection_name(file_path)
|
145 |
+
progress(0.25, desc="Loading document...")
|
146 |
+
doc_splits = load_doc(file_path, chunk_size, chunk_overlap)
|
147 |
+
progress(0.5, desc="Generating vector database...")
|
148 |
+
vector_db = create_db(doc_splits, collection_name)
|
149 |
+
progress(0.9, desc="Done!")
|
150 |
+
return vector_db, collection_name, "Complete!"
|
151 |
+
|
152 |
+
|
153 |
+
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
154 |
+
llm_name = list_llm[llm_option]
|
155 |
+
print("llm_name: ", llm_name)
|
156 |
+
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
|
157 |
+
return qa_chain, "Complete!"
|
158 |
+
|
159 |
+
|
160 |
+
def format_chat_history(message, chat_history):
|
161 |
+
formatted_chat_history = []
|
162 |
+
for user_message, bot_message in chat_history:
|
163 |
+
formatted_chat_history.append(f"User: {user_message}")
|
164 |
+
formatted_chat_history.append(f"Assistant: {bot_message}")
|
165 |
+
return formatted_chat_history
|
166 |
+
|
167 |
+
|
168 |
+
def conversation(qa_chain, message, history):
|
169 |
+
formatted_chat_history = format_chat_history(message, history)
|
170 |
+
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
|
171 |
+
response_answer = response["answer"]
|
172 |
+
if response_answer.find("Helpful Answer:") != -1:
|
173 |
+
response_answer = response_answer.split("Helpful Answer:")[-1]
|
174 |
+
response_sources = response["source_documents"]
|
175 |
+
response_source1 = response_sources[0].page_content.strip()
|
176 |
+
response_source2 = response_sources[1].page_content.strip()
|
177 |
+
response_source3 = response_sources[2].page_content.strip()
|
178 |
+
response_source1_page = response_sources[0].metadata["page"] + 1
|
179 |
+
response_source2_page = response_sources[1].metadata["page"] + 1
|
180 |
+
response_source3_page = response_sources[2].metadata["page"] + 1
|
181 |
+
|
182 |
+
new_history = history + [(message, response_answer)]
|
183 |
+
return qa_chain, gr.update(
|
184 |
+
value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
185 |
+
|
186 |
+
|
187 |
+
def demo():
|
188 |
+
with gr.Blocks(theme="base") as demo:
|
189 |
+
vector_db = gr.State()
|
190 |
+
qa_chain = gr.State()
|
191 |
+
collection_name = gr.State()
|
192 |
+
|
193 |
+
gr.Markdown(
|
194 |
+
"""<center><h2>PDF-based chatbot</center></h2>
|
195 |
+
<h3>Ask any questions about your PDF documents</h3>""")
|
196 |
+
gr.Markdown(
|
197 |
+
"""<b>Note:</b> This AI assistant, using Langchain and open-source LLMs, performs retrieval-augmented generation (RAG) from your PDF documents. \
|
198 |
+
The user interface explicitely shows multiple steps to help understand the RAG workflow.
|
199 |
+
This chatbot takes past questions into account when generating answers (via conversational memory), and includes document references for clarity purposes.<br>
|
200 |
+
<br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate a reply.
|
201 |
+
""")
|
202 |
+
|
203 |
+
with gr.Tab("Step 2 - Process document"):
|
204 |
+
with gr.Row():
|
205 |
+
db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value="ChromaDB", type="index",
|
206 |
+
info="Choose your vector database")
|
207 |
+
with gr.Accordion("Advanced options - Document text splitter", open=False):
|
208 |
+
with gr.Row():
|
209 |
+
chunk_size = gr.Slider(64, 4096, value=512, step=32, label="Text chunk size",
|
210 |
+
info="Text length of each document chunk being embedded into the vector database. Default is 512.")
|
211 |
+
chunk_overlap = gr.Slider(0, 1024, value=24, step=8, label="Text chunk overlap",
|
212 |
+
info="Text overlap between each document chunk being embedded into the vector database. Default is 24.")
|
213 |
+
|
214 |
+
initialize_db = gr.Button("Process document")
|
215 |
+
|
216 |
+
with gr.Row():
|
217 |
+
output_db = gr.Textbox(label="Database initialization steps", placeholder="", show_label=False)
|
218 |
+
with gr.Accordion("Vector database collection details", open=False):
|
219 |
+
collection = gr.Textbox(label="Collection name", placeholder="", show_label=False)
|
220 |
+
|
221 |
+
with gr.Tab("Step 3 - Initialize LLM"):
|
222 |
+
with gr.Row():
|
223 |
+
llm_options = gr.Dropdown(list_llm_simple, label="Choose open-source LLM",
|
224 |
+
value="Mistral-7B-Instruct-v0.2",
|
225 |
+
info="Choose among the proposed open-source LLMs")
|
226 |
+
with gr.Accordion("Advanced LLM options", open=False):
|
227 |
+
with gr.Row():
|
228 |
+
llm_temperature = gr.Slider(0.01, 1.0, value=0.1, step=0.01, label="LLM temperature",
|
229 |
+
info="LLM sampling temperature, in [0.01,1.0] range. Default is 0.1")
|
230 |
+
llm_max_tokens = gr.Slider(32, 1024, value=512, step=16, label="Max tokens",
|
231 |
+
info="Maximum number of new tokens to be generated, in [32,1024] range. Default is 512")
|
232 |
+
llm_top_k = gr.Slider(1, 40, value=20, step=1, label="Top K",
|
233 |
+
info="The number of highest probability vocabulary tokens to keep for top-k-filtering. Default is 20.")
|
234 |
+
|
235 |
+
initialize_llm = gr.Button("Initialize LLM")
|
236 |
+
|
237 |
+
with gr.Row():
|
238 |
+
output_llm = gr.Textbox(label="LLM initialization steps", placeholder="", show_label=False)
|
239 |
+
|
240 |
+
with gr.Tab("Step 4 - Start chatting"):
|
241 |
+
chatbot = gr.Chatbot(label="PDF chatbot", height=500)
|
242 |
+
msg = gr.Textbox(label="Your question", placeholder="Type your question here...", show_label=False)
|
243 |
+
clear = gr.Button("Clear chat")
|
244 |
+
|
245 |
+
with gr.Accordion("Document sources (3)", open=False):
|
246 |
+
gr.Markdown("Source 1")
|
247 |
+
response_src1 = gr.Textbox(label="Source 1", placeholder="", show_label=False)
|
248 |
+
response_src1_page = gr.Number(label="Page number", value=0, precision=0, interactive=False)
|
249 |
+
gr.Markdown("Source 2")
|
250 |
+
response_src2 = gr.Textbox(label="Source 2", placeholder="", show_label=False)
|
251 |
+
response_src2_page = gr.Number(label="Page number", value=0, precision=0, interactive=False)
|
252 |
+
gr.Markdown("Source 3")
|
253 |
+
response_src3 = gr.Textbox(label="Source 3", placeholder="", show_label=False)
|
254 |
+
response_src3_page = gr.Number(label="Page number", value=0, precision=0, interactive=False)
|
255 |
+
|
256 |
+
initialize_db.click(initialize_database,
|
257 |
+
inputs=[chunk_size, chunk_overlap],
|
258 |
+
outputs=[vector_db, collection_name, output_db])
|
259 |
+
initialize_llm.click(initialize_LLM,
|
260 |
+
inputs=[llm_options, llm_temperature, llm_max_tokens, llm_top_k, vector_db],
|
261 |
+
outputs=[qa_chain, output_llm])
|
262 |
+
msg.submit(conversation,
|
263 |
+
inputs=[qa_chain, msg, chatbot],
|
264 |
+
outputs=[chatbot, msg, chatbot, response_src1, response_src1_page, response_src2, response_src2_page,
|
265 |
+
response_src3, response_src3_page])
|
266 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
267 |
+
clear.click(lambda: None, None, msg, queue=False)
|
268 |
+
|
269 |
+
return demo.queue().launch(debug=True)
|
270 |
+
|
271 |
+
|
272 |
+
# demo().launch(server_name="0.0.0.0")
|
273 |
+
if __name__ == "__main__":
|
274 |
+
demo()
|