Create app.py
Browse files
    	
        app.py
    ADDED
    
    | @@ -0,0 +1,274 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import gradio as gr
         | 
| 2 | 
            +
            import os
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            from langchain_community.document_loaders import PyPDFLoader
         | 
| 5 | 
            +
            from langchain.text_splitter import RecursiveCharacterTextSplitter
         | 
| 6 | 
            +
            from langchain_community.vectorstores import Chroma
         | 
| 7 | 
            +
            from langchain.chains import ConversationalRetrievalChain
         | 
| 8 | 
            +
            from langchain_community.embeddings import HuggingFaceEmbeddings
         | 
| 9 | 
            +
            from langchain_community.llms import HuggingFacePipeline
         | 
| 10 | 
            +
            from langchain.chains import ConversationChain
         | 
| 11 | 
            +
            from langchain.memory import ConversationBufferMemory
         | 
| 12 | 
            +
            from langchain_community.llms import HuggingFaceEndpoint
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            from pathlib import Path
         | 
| 15 | 
            +
            import chromadb
         | 
| 16 | 
            +
            from unidecode import unidecode
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            from transformers import AutoTokenizer
         | 
| 19 | 
            +
            import transformers
         | 
| 20 | 
            +
            import torch
         | 
| 21 | 
            +
            import tqdm
         | 
| 22 | 
            +
            import accelerate
         | 
| 23 | 
            +
            import re
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            # Static PDF file link
         | 
| 26 | 
            +
            static_pdf_link = "https://huggingface.co/spaces/CCCDev/PDFChat/resolve/main/Data-privacy-policy.pdf"
         | 
| 27 | 
            +
             | 
| 28 | 
            +
            list_llm = ["mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1",
         | 
| 29 | 
            +
                        "mistralai/Mistral-7B-Instruct-v0.1", "google/gemma-7b-it", "google/gemma-2b-it",
         | 
| 30 | 
            +
                        "HuggingFaceH4/zephyr-7b-beta", "HuggingFaceH4/zephyr-7b-gemma-v0.1",
         | 
| 31 | 
            +
                        "meta-llama/Llama-2-7b-chat-hf", "microsoft/phi-2",
         | 
| 32 | 
            +
                        "TinyLlama/TinyLlama-1.1B-Chat-v1.0", "mosaicml/mpt-7b-instruct", "tiiuae/falcon-7b-instruct",
         | 
| 33 | 
            +
                        "google/flan-t5-xxl"]
         | 
| 34 | 
            +
            list_llm_simple = [os.path.basename(llm) for llm in list_llm]
         | 
| 35 | 
            +
             | 
| 36 | 
            +
             | 
| 37 | 
            +
            # Load PDF document and create doc splits
         | 
| 38 | 
            +
            def load_doc(file_path, chunk_size, chunk_overlap):
         | 
| 39 | 
            +
                loader = PyPDFLoader(file_path)
         | 
| 40 | 
            +
                pages = loader.load()
         | 
| 41 | 
            +
                text_splitter = RecursiveCharacterTextSplitter(
         | 
| 42 | 
            +
                    chunk_size=chunk_size,
         | 
| 43 | 
            +
                    chunk_overlap=chunk_overlap)
         | 
| 44 | 
            +
                doc_splits = text_splitter.split_documents(pages)
         | 
| 45 | 
            +
                return doc_splits
         | 
| 46 | 
            +
             | 
| 47 | 
            +
             | 
| 48 | 
            +
            # Create vector database
         | 
| 49 | 
            +
            def create_db(splits, collection_name):
         | 
| 50 | 
            +
                embedding = HuggingFaceEmbeddings()
         | 
| 51 | 
            +
                new_client = chromadb.EphemeralClient()
         | 
| 52 | 
            +
                vectordb = Chroma.from_documents(
         | 
| 53 | 
            +
                    documents=splits,
         | 
| 54 | 
            +
                    embedding=embedding,
         | 
| 55 | 
            +
                    client=new_client,
         | 
| 56 | 
            +
                    collection_name=collection_name,
         | 
| 57 | 
            +
                )
         | 
| 58 | 
            +
                return vectordb
         | 
| 59 | 
            +
             | 
| 60 | 
            +
             | 
| 61 | 
            +
            # Initialize langchain LLM chain
         | 
| 62 | 
            +
            def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
         | 
| 63 | 
            +
                progress(0.1, desc="Initializing HF tokenizer...")
         | 
| 64 | 
            +
             | 
| 65 | 
            +
                progress(0.5, desc="Initializing HF Hub...")
         | 
| 66 | 
            +
                if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
         | 
| 67 | 
            +
                    llm = HuggingFaceEndpoint(
         | 
| 68 | 
            +
                        repo_id=llm_model,
         | 
| 69 | 
            +
                        temperature=temperature,
         | 
| 70 | 
            +
                        max_new_tokens=max_tokens,
         | 
| 71 | 
            +
                        top_k=top_k,
         | 
| 72 | 
            +
                        load_in_8bit=True,
         | 
| 73 | 
            +
                    )
         | 
| 74 | 
            +
                elif llm_model in ["HuggingFaceH4/zephyr-7b-gemma-v0.1", "mosaicml/mpt-7b-instruct"]:
         | 
| 75 | 
            +
                    raise gr.Error("LLM model is too large to be loaded automatically on free inference endpoint")
         | 
| 76 | 
            +
                elif llm_model == "microsoft/phi-2":
         | 
| 77 | 
            +
                    llm = HuggingFaceEndpoint(
         | 
| 78 | 
            +
                        repo_id=llm_model,
         | 
| 79 | 
            +
                        temperature=temperature,
         | 
| 80 | 
            +
                        max_new_tokens=max_tokens,
         | 
| 81 | 
            +
                        top_k=top_k,
         | 
| 82 | 
            +
                        trust_remote_code=True,
         | 
| 83 | 
            +
                        torch_dtype="auto",
         | 
| 84 | 
            +
                    )
         | 
| 85 | 
            +
                elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
         | 
| 86 | 
            +
                    llm = HuggingFaceEndpoint(
         | 
| 87 | 
            +
                        repo_id=llm_model,
         | 
| 88 | 
            +
                        temperature=temperature,
         | 
| 89 | 
            +
                        max_new_tokens=250,
         | 
| 90 | 
            +
                        top_k=top_k,
         | 
| 91 | 
            +
                    )
         | 
| 92 | 
            +
                elif llm_model == "meta-llama/Llama-2-7b-chat-hf":
         | 
| 93 | 
            +
                    raise gr.Error("Llama-2-7b-chat-hf model requires a Pro subscription...")
         | 
| 94 | 
            +
                else:
         | 
| 95 | 
            +
                    llm = HuggingFaceEndpoint(
         | 
| 96 | 
            +
                        repo_id=llm_model,
         | 
| 97 | 
            +
                        temperature=temperature,
         | 
| 98 | 
            +
                        max_new_tokens=max_tokens,
         | 
| 99 | 
            +
                        top_k=top_k,
         | 
| 100 | 
            +
                    )
         | 
| 101 | 
            +
             | 
| 102 | 
            +
                progress(0.75, desc="Defining buffer memory...")
         | 
| 103 | 
            +
                memory = ConversationBufferMemory(
         | 
| 104 | 
            +
                    memory_key="chat_history",
         | 
| 105 | 
            +
                    output_key='answer',
         | 
| 106 | 
            +
                    return_messages=True
         | 
| 107 | 
            +
                )
         | 
| 108 | 
            +
                retriever = vector_db.as_retriever()
         | 
| 109 | 
            +
                progress(0.8, desc="Defining retrieval chain...")
         | 
| 110 | 
            +
                qa_chain = ConversationalRetrievalChain.from_llm(
         | 
| 111 | 
            +
                    llm,
         | 
| 112 | 
            +
                    retriever=retriever,
         | 
| 113 | 
            +
                    chain_type="stuff",
         | 
| 114 | 
            +
                    memory=memory,
         | 
| 115 | 
            +
                    return_source_documents=True,
         | 
| 116 | 
            +
                    verbose=False,
         | 
| 117 | 
            +
                )
         | 
| 118 | 
            +
                progress(0.9, desc="Done!")
         | 
| 119 | 
            +
                return qa_chain
         | 
| 120 | 
            +
             | 
| 121 | 
            +
             | 
| 122 | 
            +
            # Generate collection name for vector database
         | 
| 123 | 
            +
            def create_collection_name(filepath):
         | 
| 124 | 
            +
                collection_name = Path(filepath).stem
         | 
| 125 | 
            +
                collection_name = collection_name.replace(" ", "-")
         | 
| 126 | 
            +
                collection_name = unidecode(collection_name)
         | 
| 127 | 
            +
                collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
         | 
| 128 | 
            +
                collection_name = collection_name[:50]
         | 
| 129 | 
            +
                if len(collection_name) < 3:
         | 
| 130 | 
            +
                    collection_name = collection_name + 'xyz'
         | 
| 131 | 
            +
                if not collection_name[0].isalnum():
         | 
| 132 | 
            +
                    collection_name = 'A' + collection_name[1:]
         | 
| 133 | 
            +
                if not collection_name[-1].isalnum():
         | 
| 134 | 
            +
                    collection_name = collection_name[:-1] + 'Z'
         | 
| 135 | 
            +
                print('Filepath: ', filepath)
         | 
| 136 | 
            +
                print('Collection name: ', collection_name)
         | 
| 137 | 
            +
                return collection_name
         | 
| 138 | 
            +
             | 
| 139 | 
            +
             | 
| 140 | 
            +
            # Initialize database
         | 
| 141 | 
            +
            def initialize_database(chunk_size, chunk_overlap, progress=gr.Progress()):
         | 
| 142 | 
            +
                file_path = static_pdf_link
         | 
| 143 | 
            +
                progress(0.1, desc="Creating collection name...")
         | 
| 144 | 
            +
                collection_name = create_collection_name(file_path)
         | 
| 145 | 
            +
                progress(0.25, desc="Loading document...")
         | 
| 146 | 
            +
                doc_splits = load_doc(file_path, chunk_size, chunk_overlap)
         | 
| 147 | 
            +
                progress(0.5, desc="Generating vector database...")
         | 
| 148 | 
            +
                vector_db = create_db(doc_splits, collection_name)
         | 
| 149 | 
            +
                progress(0.9, desc="Done!")
         | 
| 150 | 
            +
                return vector_db, collection_name, "Complete!"
         | 
| 151 | 
            +
             | 
| 152 | 
            +
             | 
| 153 | 
            +
            def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
         | 
| 154 | 
            +
                llm_name = list_llm[llm_option]
         | 
| 155 | 
            +
                print("llm_name: ", llm_name)
         | 
| 156 | 
            +
                qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
         | 
| 157 | 
            +
                return qa_chain, "Complete!"
         | 
| 158 | 
            +
             | 
| 159 | 
            +
             | 
| 160 | 
            +
            def format_chat_history(message, chat_history):
         | 
| 161 | 
            +
                formatted_chat_history = []
         | 
| 162 | 
            +
                for user_message, bot_message in chat_history:
         | 
| 163 | 
            +
                    formatted_chat_history.append(f"User: {user_message}")
         | 
| 164 | 
            +
                    formatted_chat_history.append(f"Assistant: {bot_message}")
         | 
| 165 | 
            +
                return formatted_chat_history
         | 
| 166 | 
            +
             | 
| 167 | 
            +
             | 
| 168 | 
            +
            def conversation(qa_chain, message, history):
         | 
| 169 | 
            +
                formatted_chat_history = format_chat_history(message, history)
         | 
| 170 | 
            +
                response = qa_chain({"question": message, "chat_history": formatted_chat_history})
         | 
| 171 | 
            +
                response_answer = response["answer"]
         | 
| 172 | 
            +
                if response_answer.find("Helpful Answer:") != -1:
         | 
| 173 | 
            +
                    response_answer = response_answer.split("Helpful Answer:")[-1]
         | 
| 174 | 
            +
                response_sources = response["source_documents"]
         | 
| 175 | 
            +
                response_source1 = response_sources[0].page_content.strip()
         | 
| 176 | 
            +
                response_source2 = response_sources[1].page_content.strip()
         | 
| 177 | 
            +
                response_source3 = response_sources[2].page_content.strip()
         | 
| 178 | 
            +
                response_source1_page = response_sources[0].metadata["page"] + 1
         | 
| 179 | 
            +
                response_source2_page = response_sources[1].metadata["page"] + 1
         | 
| 180 | 
            +
                response_source3_page = response_sources[2].metadata["page"] + 1
         | 
| 181 | 
            +
             | 
| 182 | 
            +
                new_history = history + [(message, response_answer)]
         | 
| 183 | 
            +
                return qa_chain, gr.update(
         | 
| 184 | 
            +
                    value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
         | 
| 185 | 
            +
             | 
| 186 | 
            +
             | 
| 187 | 
            +
            def demo():
         | 
| 188 | 
            +
                with gr.Blocks(theme="base") as demo:
         | 
| 189 | 
            +
                    vector_db = gr.State()
         | 
| 190 | 
            +
                    qa_chain = gr.State()
         | 
| 191 | 
            +
                    collection_name = gr.State()
         | 
| 192 | 
            +
             | 
| 193 | 
            +
                    gr.Markdown(
         | 
| 194 | 
            +
                        """<center><h2>PDF-based chatbot</center></h2>
         | 
| 195 | 
            +
                        <h3>Ask any questions about your PDF documents</h3>""")
         | 
| 196 | 
            +
                    gr.Markdown(
         | 
| 197 | 
            +
                        """<b>Note:</b> This AI assistant, using Langchain and open-source LLMs, performs retrieval-augmented generation (RAG) from your PDF documents. \
         | 
| 198 | 
            +
                        The user interface explicitely shows multiple steps to help understand the RAG workflow. 
         | 
| 199 | 
            +
                        This chatbot takes past questions into account when generating answers (via conversational memory), and includes document references for clarity purposes.<br>
         | 
| 200 | 
            +
                        <br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate a reply.
         | 
| 201 | 
            +
                        """)
         | 
| 202 | 
            +
             | 
| 203 | 
            +
                    with gr.Tab("Step 2 - Process document"):
         | 
| 204 | 
            +
                        with gr.Row():
         | 
| 205 | 
            +
                            db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value="ChromaDB", type="index",
         | 
| 206 | 
            +
                                              info="Choose your vector database")
         | 
| 207 | 
            +
                        with gr.Accordion("Advanced options - Document text splitter", open=False):
         | 
| 208 | 
            +
                            with gr.Row():
         | 
| 209 | 
            +
                                chunk_size = gr.Slider(64, 4096, value=512, step=32, label="Text chunk size",
         | 
| 210 | 
            +
                                                       info="Text length of each document chunk being embedded into the vector database. Default is 512.")
         | 
| 211 | 
            +
                                chunk_overlap = gr.Slider(0, 1024, value=24, step=8, label="Text chunk overlap",
         | 
| 212 | 
            +
                                                          info="Text overlap between each document chunk being embedded into the vector database. Default is 24.")
         | 
| 213 | 
            +
             | 
| 214 | 
            +
                        initialize_db = gr.Button("Process document")
         | 
| 215 | 
            +
             | 
| 216 | 
            +
                        with gr.Row():
         | 
| 217 | 
            +
                            output_db = gr.Textbox(label="Database initialization steps", placeholder="", show_label=False)
         | 
| 218 | 
            +
                            with gr.Accordion("Vector database collection details", open=False):
         | 
| 219 | 
            +
                                collection = gr.Textbox(label="Collection name", placeholder="", show_label=False)
         | 
| 220 | 
            +
             | 
| 221 | 
            +
                    with gr.Tab("Step 3 - Initialize LLM"):
         | 
| 222 | 
            +
                        with gr.Row():
         | 
| 223 | 
            +
                            llm_options = gr.Dropdown(list_llm_simple, label="Choose open-source LLM",
         | 
| 224 | 
            +
                                                      value="Mistral-7B-Instruct-v0.2",
         | 
| 225 | 
            +
                                                      info="Choose among the proposed open-source LLMs")
         | 
| 226 | 
            +
                        with gr.Accordion("Advanced LLM options", open=False):
         | 
| 227 | 
            +
                            with gr.Row():
         | 
| 228 | 
            +
                                llm_temperature = gr.Slider(0.01, 1.0, value=0.1, step=0.01, label="LLM temperature",
         | 
| 229 | 
            +
                                                            info="LLM sampling temperature, in [0.01,1.0] range. Default is 0.1")
         | 
| 230 | 
            +
                                llm_max_tokens = gr.Slider(32, 1024, value=512, step=16, label="Max tokens",
         | 
| 231 | 
            +
                                                           info="Maximum number of new tokens to be generated, in [32,1024] range. Default is 512")
         | 
| 232 | 
            +
                                llm_top_k = gr.Slider(1, 40, value=20, step=1, label="Top K",
         | 
| 233 | 
            +
                                                      info="The number of highest probability vocabulary tokens to keep for top-k-filtering. Default is 20.")
         | 
| 234 | 
            +
             | 
| 235 | 
            +
                        initialize_llm = gr.Button("Initialize LLM")
         | 
| 236 | 
            +
             | 
| 237 | 
            +
                        with gr.Row():
         | 
| 238 | 
            +
                            output_llm = gr.Textbox(label="LLM initialization steps", placeholder="", show_label=False)
         | 
| 239 | 
            +
             | 
| 240 | 
            +
                    with gr.Tab("Step 4 - Start chatting"):
         | 
| 241 | 
            +
                        chatbot = gr.Chatbot(label="PDF chatbot", height=500)
         | 
| 242 | 
            +
                        msg = gr.Textbox(label="Your question", placeholder="Type your question here...", show_label=False)
         | 
| 243 | 
            +
                        clear = gr.Button("Clear chat")
         | 
| 244 | 
            +
             | 
| 245 | 
            +
                        with gr.Accordion("Document sources (3)", open=False):
         | 
| 246 | 
            +
                            gr.Markdown("Source 1")
         | 
| 247 | 
            +
                            response_src1 = gr.Textbox(label="Source 1", placeholder="", show_label=False)
         | 
| 248 | 
            +
                            response_src1_page = gr.Number(label="Page number", value=0, precision=0, interactive=False)
         | 
| 249 | 
            +
                            gr.Markdown("Source 2")
         | 
| 250 | 
            +
                            response_src2 = gr.Textbox(label="Source 2", placeholder="", show_label=False)
         | 
| 251 | 
            +
                            response_src2_page = gr.Number(label="Page number", value=0, precision=0, interactive=False)
         | 
| 252 | 
            +
                            gr.Markdown("Source 3")
         | 
| 253 | 
            +
                            response_src3 = gr.Textbox(label="Source 3", placeholder="", show_label=False)
         | 
| 254 | 
            +
                            response_src3_page = gr.Number(label="Page number", value=0, precision=0, interactive=False)
         | 
| 255 | 
            +
             | 
| 256 | 
            +
                    initialize_db.click(initialize_database,
         | 
| 257 | 
            +
                                        inputs=[chunk_size, chunk_overlap],
         | 
| 258 | 
            +
                                        outputs=[vector_db, collection_name, output_db])
         | 
| 259 | 
            +
                    initialize_llm.click(initialize_LLM,
         | 
| 260 | 
            +
                                         inputs=[llm_options, llm_temperature, llm_max_tokens, llm_top_k, vector_db],
         | 
| 261 | 
            +
                                         outputs=[qa_chain, output_llm])
         | 
| 262 | 
            +
                    msg.submit(conversation,
         | 
| 263 | 
            +
                               inputs=[qa_chain, msg, chatbot],
         | 
| 264 | 
            +
                               outputs=[chatbot, msg, chatbot, response_src1, response_src1_page, response_src2, response_src2_page,
         | 
| 265 | 
            +
                                        response_src3, response_src3_page])
         | 
| 266 | 
            +
                    clear.click(lambda: None, None, chatbot, queue=False)
         | 
| 267 | 
            +
                    clear.click(lambda: None, None, msg, queue=False)
         | 
| 268 | 
            +
             | 
| 269 | 
            +
                return demo.queue().launch(debug=True)
         | 
| 270 | 
            +
             | 
| 271 | 
            +
             | 
| 272 | 
            +
            # demo().launch(server_name="0.0.0.0")
         | 
| 273 | 
            +
            if __name__ == "__main__":
         | 
| 274 | 
            +
                demo()
         |