Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
from langchain_community.document_loaders import PyPDFLoader
|
| 5 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 6 |
+
from langchain_community.vectorstores import Chroma
|
| 7 |
+
from langchain.chains import ConversationalRetrievalChain
|
| 8 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 9 |
+
from langchain_community.llms import HuggingFacePipeline
|
| 10 |
+
from langchain.chains import ConversationChain
|
| 11 |
+
from langchain.memory import ConversationBufferMemory
|
| 12 |
+
from langchain_community.llms import HuggingFaceEndpoint
|
| 13 |
+
|
| 14 |
+
from pathlib import Path
|
| 15 |
+
import chromadb
|
| 16 |
+
from unidecode import unidecode
|
| 17 |
+
|
| 18 |
+
from transformers import AutoTokenizer
|
| 19 |
+
import transformers
|
| 20 |
+
import torch
|
| 21 |
+
import tqdm
|
| 22 |
+
import accelerate
|
| 23 |
+
import re
|
| 24 |
+
|
| 25 |
+
# Static PDF file link
|
| 26 |
+
static_pdf_link = "https://huggingface.co/spaces/CCCDev/PDFChat/resolve/main/Data-privacy-policy.pdf"
|
| 27 |
+
|
| 28 |
+
list_llm = ["mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
| 29 |
+
"mistralai/Mistral-7B-Instruct-v0.1", "google/gemma-7b-it", "google/gemma-2b-it",
|
| 30 |
+
"HuggingFaceH4/zephyr-7b-beta", "HuggingFaceH4/zephyr-7b-gemma-v0.1",
|
| 31 |
+
"meta-llama/Llama-2-7b-chat-hf", "microsoft/phi-2",
|
| 32 |
+
"TinyLlama/TinyLlama-1.1B-Chat-v1.0", "mosaicml/mpt-7b-instruct", "tiiuae/falcon-7b-instruct",
|
| 33 |
+
"google/flan-t5-xxl"]
|
| 34 |
+
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
# Load PDF document and create doc splits
|
| 38 |
+
def load_doc(file_path, chunk_size, chunk_overlap):
|
| 39 |
+
loader = PyPDFLoader(file_path)
|
| 40 |
+
pages = loader.load()
|
| 41 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
| 42 |
+
chunk_size=chunk_size,
|
| 43 |
+
chunk_overlap=chunk_overlap)
|
| 44 |
+
doc_splits = text_splitter.split_documents(pages)
|
| 45 |
+
return doc_splits
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
# Create vector database
|
| 49 |
+
def create_db(splits, collection_name):
|
| 50 |
+
embedding = HuggingFaceEmbeddings()
|
| 51 |
+
new_client = chromadb.EphemeralClient()
|
| 52 |
+
vectordb = Chroma.from_documents(
|
| 53 |
+
documents=splits,
|
| 54 |
+
embedding=embedding,
|
| 55 |
+
client=new_client,
|
| 56 |
+
collection_name=collection_name,
|
| 57 |
+
)
|
| 58 |
+
return vectordb
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
# Initialize langchain LLM chain
|
| 62 |
+
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
| 63 |
+
progress(0.1, desc="Initializing HF tokenizer...")
|
| 64 |
+
|
| 65 |
+
progress(0.5, desc="Initializing HF Hub...")
|
| 66 |
+
if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
|
| 67 |
+
llm = HuggingFaceEndpoint(
|
| 68 |
+
repo_id=llm_model,
|
| 69 |
+
temperature=temperature,
|
| 70 |
+
max_new_tokens=max_tokens,
|
| 71 |
+
top_k=top_k,
|
| 72 |
+
load_in_8bit=True,
|
| 73 |
+
)
|
| 74 |
+
elif llm_model in ["HuggingFaceH4/zephyr-7b-gemma-v0.1", "mosaicml/mpt-7b-instruct"]:
|
| 75 |
+
raise gr.Error("LLM model is too large to be loaded automatically on free inference endpoint")
|
| 76 |
+
elif llm_model == "microsoft/phi-2":
|
| 77 |
+
llm = HuggingFaceEndpoint(
|
| 78 |
+
repo_id=llm_model,
|
| 79 |
+
temperature=temperature,
|
| 80 |
+
max_new_tokens=max_tokens,
|
| 81 |
+
top_k=top_k,
|
| 82 |
+
trust_remote_code=True,
|
| 83 |
+
torch_dtype="auto",
|
| 84 |
+
)
|
| 85 |
+
elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
|
| 86 |
+
llm = HuggingFaceEndpoint(
|
| 87 |
+
repo_id=llm_model,
|
| 88 |
+
temperature=temperature,
|
| 89 |
+
max_new_tokens=250,
|
| 90 |
+
top_k=top_k,
|
| 91 |
+
)
|
| 92 |
+
elif llm_model == "meta-llama/Llama-2-7b-chat-hf":
|
| 93 |
+
raise gr.Error("Llama-2-7b-chat-hf model requires a Pro subscription...")
|
| 94 |
+
else:
|
| 95 |
+
llm = HuggingFaceEndpoint(
|
| 96 |
+
repo_id=llm_model,
|
| 97 |
+
temperature=temperature,
|
| 98 |
+
max_new_tokens=max_tokens,
|
| 99 |
+
top_k=top_k,
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
progress(0.75, desc="Defining buffer memory...")
|
| 103 |
+
memory = ConversationBufferMemory(
|
| 104 |
+
memory_key="chat_history",
|
| 105 |
+
output_key='answer',
|
| 106 |
+
return_messages=True
|
| 107 |
+
)
|
| 108 |
+
retriever = vector_db.as_retriever()
|
| 109 |
+
progress(0.8, desc="Defining retrieval chain...")
|
| 110 |
+
qa_chain = ConversationalRetrievalChain.from_llm(
|
| 111 |
+
llm,
|
| 112 |
+
retriever=retriever,
|
| 113 |
+
chain_type="stuff",
|
| 114 |
+
memory=memory,
|
| 115 |
+
return_source_documents=True,
|
| 116 |
+
verbose=False,
|
| 117 |
+
)
|
| 118 |
+
progress(0.9, desc="Done!")
|
| 119 |
+
return qa_chain
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
# Generate collection name for vector database
|
| 123 |
+
def create_collection_name(filepath):
|
| 124 |
+
collection_name = Path(filepath).stem
|
| 125 |
+
collection_name = collection_name.replace(" ", "-")
|
| 126 |
+
collection_name = unidecode(collection_name)
|
| 127 |
+
collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
|
| 128 |
+
collection_name = collection_name[:50]
|
| 129 |
+
if len(collection_name) < 3:
|
| 130 |
+
collection_name = collection_name + 'xyz'
|
| 131 |
+
if not collection_name[0].isalnum():
|
| 132 |
+
collection_name = 'A' + collection_name[1:]
|
| 133 |
+
if not collection_name[-1].isalnum():
|
| 134 |
+
collection_name = collection_name[:-1] + 'Z'
|
| 135 |
+
print('Filepath: ', filepath)
|
| 136 |
+
print('Collection name: ', collection_name)
|
| 137 |
+
return collection_name
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
# Initialize database
|
| 141 |
+
def initialize_database(chunk_size, chunk_overlap, progress=gr.Progress()):
|
| 142 |
+
file_path = static_pdf_link
|
| 143 |
+
progress(0.1, desc="Creating collection name...")
|
| 144 |
+
collection_name = create_collection_name(file_path)
|
| 145 |
+
progress(0.25, desc="Loading document...")
|
| 146 |
+
doc_splits = load_doc(file_path, chunk_size, chunk_overlap)
|
| 147 |
+
progress(0.5, desc="Generating vector database...")
|
| 148 |
+
vector_db = create_db(doc_splits, collection_name)
|
| 149 |
+
progress(0.9, desc="Done!")
|
| 150 |
+
return vector_db, collection_name, "Complete!"
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
| 154 |
+
llm_name = list_llm[llm_option]
|
| 155 |
+
print("llm_name: ", llm_name)
|
| 156 |
+
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
|
| 157 |
+
return qa_chain, "Complete!"
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
def format_chat_history(message, chat_history):
|
| 161 |
+
formatted_chat_history = []
|
| 162 |
+
for user_message, bot_message in chat_history:
|
| 163 |
+
formatted_chat_history.append(f"User: {user_message}")
|
| 164 |
+
formatted_chat_history.append(f"Assistant: {bot_message}")
|
| 165 |
+
return formatted_chat_history
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
def conversation(qa_chain, message, history):
|
| 169 |
+
formatted_chat_history = format_chat_history(message, history)
|
| 170 |
+
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
|
| 171 |
+
response_answer = response["answer"]
|
| 172 |
+
if response_answer.find("Helpful Answer:") != -1:
|
| 173 |
+
response_answer = response_answer.split("Helpful Answer:")[-1]
|
| 174 |
+
response_sources = response["source_documents"]
|
| 175 |
+
response_source1 = response_sources[0].page_content.strip()
|
| 176 |
+
response_source2 = response_sources[1].page_content.strip()
|
| 177 |
+
response_source3 = response_sources[2].page_content.strip()
|
| 178 |
+
response_source1_page = response_sources[0].metadata["page"] + 1
|
| 179 |
+
response_source2_page = response_sources[1].metadata["page"] + 1
|
| 180 |
+
response_source3_page = response_sources[2].metadata["page"] + 1
|
| 181 |
+
|
| 182 |
+
new_history = history + [(message, response_answer)]
|
| 183 |
+
return qa_chain, gr.update(
|
| 184 |
+
value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
def demo():
|
| 188 |
+
with gr.Blocks(theme="base") as demo:
|
| 189 |
+
vector_db = gr.State()
|
| 190 |
+
qa_chain = gr.State()
|
| 191 |
+
collection_name = gr.State()
|
| 192 |
+
|
| 193 |
+
gr.Markdown(
|
| 194 |
+
"""<center><h2>PDF-based chatbot</center></h2>
|
| 195 |
+
<h3>Ask any questions about your PDF documents</h3>""")
|
| 196 |
+
gr.Markdown(
|
| 197 |
+
"""<b>Note:</b> This AI assistant, using Langchain and open-source LLMs, performs retrieval-augmented generation (RAG) from your PDF documents. \
|
| 198 |
+
The user interface explicitely shows multiple steps to help understand the RAG workflow.
|
| 199 |
+
This chatbot takes past questions into account when generating answers (via conversational memory), and includes document references for clarity purposes.<br>
|
| 200 |
+
<br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate a reply.
|
| 201 |
+
""")
|
| 202 |
+
|
| 203 |
+
with gr.Tab("Step 2 - Process document"):
|
| 204 |
+
with gr.Row():
|
| 205 |
+
db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value="ChromaDB", type="index",
|
| 206 |
+
info="Choose your vector database")
|
| 207 |
+
with gr.Accordion("Advanced options - Document text splitter", open=False):
|
| 208 |
+
with gr.Row():
|
| 209 |
+
chunk_size = gr.Slider(64, 4096, value=512, step=32, label="Text chunk size",
|
| 210 |
+
info="Text length of each document chunk being embedded into the vector database. Default is 512.")
|
| 211 |
+
chunk_overlap = gr.Slider(0, 1024, value=24, step=8, label="Text chunk overlap",
|
| 212 |
+
info="Text overlap between each document chunk being embedded into the vector database. Default is 24.")
|
| 213 |
+
|
| 214 |
+
initialize_db = gr.Button("Process document")
|
| 215 |
+
|
| 216 |
+
with gr.Row():
|
| 217 |
+
output_db = gr.Textbox(label="Database initialization steps", placeholder="", show_label=False)
|
| 218 |
+
with gr.Accordion("Vector database collection details", open=False):
|
| 219 |
+
collection = gr.Textbox(label="Collection name", placeholder="", show_label=False)
|
| 220 |
+
|
| 221 |
+
with gr.Tab("Step 3 - Initialize LLM"):
|
| 222 |
+
with gr.Row():
|
| 223 |
+
llm_options = gr.Dropdown(list_llm_simple, label="Choose open-source LLM",
|
| 224 |
+
value="Mistral-7B-Instruct-v0.2",
|
| 225 |
+
info="Choose among the proposed open-source LLMs")
|
| 226 |
+
with gr.Accordion("Advanced LLM options", open=False):
|
| 227 |
+
with gr.Row():
|
| 228 |
+
llm_temperature = gr.Slider(0.01, 1.0, value=0.1, step=0.01, label="LLM temperature",
|
| 229 |
+
info="LLM sampling temperature, in [0.01,1.0] range. Default is 0.1")
|
| 230 |
+
llm_max_tokens = gr.Slider(32, 1024, value=512, step=16, label="Max tokens",
|
| 231 |
+
info="Maximum number of new tokens to be generated, in [32,1024] range. Default is 512")
|
| 232 |
+
llm_top_k = gr.Slider(1, 40, value=20, step=1, label="Top K",
|
| 233 |
+
info="The number of highest probability vocabulary tokens to keep for top-k-filtering. Default is 20.")
|
| 234 |
+
|
| 235 |
+
initialize_llm = gr.Button("Initialize LLM")
|
| 236 |
+
|
| 237 |
+
with gr.Row():
|
| 238 |
+
output_llm = gr.Textbox(label="LLM initialization steps", placeholder="", show_label=False)
|
| 239 |
+
|
| 240 |
+
with gr.Tab("Step 4 - Start chatting"):
|
| 241 |
+
chatbot = gr.Chatbot(label="PDF chatbot", height=500)
|
| 242 |
+
msg = gr.Textbox(label="Your question", placeholder="Type your question here...", show_label=False)
|
| 243 |
+
clear = gr.Button("Clear chat")
|
| 244 |
+
|
| 245 |
+
with gr.Accordion("Document sources (3)", open=False):
|
| 246 |
+
gr.Markdown("Source 1")
|
| 247 |
+
response_src1 = gr.Textbox(label="Source 1", placeholder="", show_label=False)
|
| 248 |
+
response_src1_page = gr.Number(label="Page number", value=0, precision=0, interactive=False)
|
| 249 |
+
gr.Markdown("Source 2")
|
| 250 |
+
response_src2 = gr.Textbox(label="Source 2", placeholder="", show_label=False)
|
| 251 |
+
response_src2_page = gr.Number(label="Page number", value=0, precision=0, interactive=False)
|
| 252 |
+
gr.Markdown("Source 3")
|
| 253 |
+
response_src3 = gr.Textbox(label="Source 3", placeholder="", show_label=False)
|
| 254 |
+
response_src3_page = gr.Number(label="Page number", value=0, precision=0, interactive=False)
|
| 255 |
+
|
| 256 |
+
initialize_db.click(initialize_database,
|
| 257 |
+
inputs=[chunk_size, chunk_overlap],
|
| 258 |
+
outputs=[vector_db, collection_name, output_db])
|
| 259 |
+
initialize_llm.click(initialize_LLM,
|
| 260 |
+
inputs=[llm_options, llm_temperature, llm_max_tokens, llm_top_k, vector_db],
|
| 261 |
+
outputs=[qa_chain, output_llm])
|
| 262 |
+
msg.submit(conversation,
|
| 263 |
+
inputs=[qa_chain, msg, chatbot],
|
| 264 |
+
outputs=[chatbot, msg, chatbot, response_src1, response_src1_page, response_src2, response_src2_page,
|
| 265 |
+
response_src3, response_src3_page])
|
| 266 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
| 267 |
+
clear.click(lambda: None, None, msg, queue=False)
|
| 268 |
+
|
| 269 |
+
return demo.queue().launch(debug=True)
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
# demo().launch(server_name="0.0.0.0")
|
| 273 |
+
if __name__ == "__main__":
|
| 274 |
+
demo()
|