File size: 8,654 Bytes
ccd76a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
# interface.py
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from PIL import Image
import io
from bioprocess_model import BioprocessModel
from decorators import gpu_decorator # Asegúrate de que la ruta es correcta
def parse_bounds(bounds_str, num_params):
try:
# Reemplazar 'inf' por 'np.inf' si el usuario lo escribió así
bounds_str = bounds_str.replace('inf', 'np.inf')
# Evaluar la cadena de límites
bounds = eval(f"[{bounds_str}]")
if len(bounds) != num_params:
raise ValueError("Número de límites no coincide con el número de parámetros.")
lower_bounds = [b[0] for b in bounds]
upper_bounds = [b[1] for b in bounds]
return lower_bounds, upper_bounds
except Exception as e:
print(f"Error al parsear los límites: {e}. Usando límites por defecto.")
lower_bounds = [-np.inf] * num_params
upper_bounds = [np.inf] * num_params
return lower_bounds, upper_bounds
@gpu_decorator(duration=300)
def generate_analysis(prompt, max_length=1024, device=None):
# Implementación existente para generar análisis usando Hugging Face o similar
# Por ejemplo, podrías usar un modelo de lenguaje para generar texto
# Aquí se deja como placeholder
analysis = "Análisis generado por el modelo de lenguaje."
return analysis
@gpu_decorator(duration=600) # Ajusta la duración según tus necesidades
def process_and_plot(
file,
biomass_eq1, biomass_eq2, biomass_eq3,
biomass_param1, biomass_param2, biomass_param3,
biomass_bound1, biomass_bound2, biomass_bound3,
substrate_eq1, substrate_eq2, substrate_eq3,
substrate_param1, substrate_param2, substrate_param3,
substrate_bound1, substrate_bound2, substrate_bound3,
product_eq1, product_eq2, product_eq3,
product_param1, product_param2, product_param3,
product_bound1, product_bound2, product_bound3,
legend_position,
show_legend,
show_params,
biomass_eq_count,
substrate_eq_count,
product_eq_count,
device=None
):
# Leer el archivo Excel
df = pd.read_excel(file.name)
# Verificar que las columnas necesarias estén presentes
expected_columns = ['Tiempo', 'Biomasa', 'Sustrato', 'Producto']
for col in expected_columns:
if col not in df.columns:
raise KeyError(f"La columna esperada '{col}' no se encuentra en el archivo Excel.")
# Asignar los datos desde las columnas
time = df['Tiempo'].values
biomass_data = df['Biomasa'].values
substrate_data = df['Sustrato'].values
product_data = df['Producto'].values
# Convierte los contadores a enteros
biomass_eq_count = int(biomass_eq_count)
substrate_eq_count = int(substrate_eq_count)
product_eq_count = int(product_eq_count)
# Recolecta las ecuaciones, parámetros y límites según los contadores
biomass_eqs = [biomass_eq1, biomass_eq2, biomass_eq3][:biomass_eq_count]
biomass_params = [biomass_param1, biomass_param2, biomass_param3][:biomass_eq_count]
biomass_bounds = [biomass_bound1, biomass_bound2, biomass_bound3][:biomass_eq_count]
substrate_eqs = [substrate_eq1, substrate_eq2, substrate_eq3][:substrate_eq_count]
substrate_params = [substrate_param1, substrate_param2, substrate_param3][:substrate_eq_count]
substrate_bounds = [substrate_bound1, substrate_bound2, substrate_bound3][:substrate_eq_count]
product_eqs = [product_eq1, product_eq2, product_eq3][:product_eq_count]
product_params = [product_param1, product_param2, product_param3][:product_eq_count]
product_bounds = [product_bound1, product_bound2, product_bound3][:product_eq_count]
biomass_results = []
substrate_results = []
product_results = []
# Inicializar el modelo principal
main_model = BioprocessModel()
# Ajusta los modelos de Biomasa
for i in range(len(biomass_eqs)):
equation = biomass_eqs[i]
params_str = biomass_params[i]
bounds_str = biomass_bounds[i]
try:
main_model.set_model_biomass(equation, params_str)
except ValueError as ve:
raise ValueError(f"Error en la configuración del modelo de biomasa {i+1}: {ve}")
params = [param.strip() for param in params_str.split(',')]
lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))
try:
y_pred = main_model.fit_model(
'biomass', time, biomass_data,
bounds=(lower_bounds, upper_bounds)
)
biomass_results.append({
'model': main_model,
'y_pred': y_pred,
'equation': equation,
'params': main_model.params['biomass']
})
except Exception as e:
raise RuntimeError(f"Error al ajustar el modelo de biomasa {i+1}: {e}")
# Ajusta los modelos de Sustrato
for i in range(len(substrate_eqs)):
equation = substrate_eqs[i]
params_str = substrate_params[i]
bounds_str = substrate_bounds[i]
try:
main_model.set_model_substrate(equation, params_str)
except ValueError as ve:
raise ValueError(f"Error en la configuración del modelo de sustrato {i+1}: {ve}")
params = [param.strip() for param in params_str.split(',')]
lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))
try:
y_pred = main_model.fit_model(
'substrate', time, substrate_data,
bounds=(lower_bounds, upper_bounds)
)
substrate_results.append({
'model': main_model,
'y_pred': y_pred,
'equation': equation,
'params': main_model.params['substrate']
})
except Exception as e:
raise RuntimeError(f"Error al ajustar el modelo de sustrato {i+1}: {e}")
# Ajusta los modelos de Producto
for i in range(len(product_eqs)):
equation = product_eqs[i]
params_str = product_params[i]
bounds_str = product_bounds[i]
try:
main_model.set_model_product(equation, params_str)
except ValueError as ve:
raise ValueError(f"Error en la configuración del modelo de producto {i+1}: {ve}")
params = [param.strip() for param in params_str.split(',')]
lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))
try:
y_pred = main_model.fit_model(
'product', time, product_data,
bounds=(lower_bounds, upper_bounds)
)
product_results.append({
'model': main_model,
'y_pred': y_pred,
'equation': equation,
'params': main_model.params['product']
})
except Exception as e:
raise RuntimeError(f"Error al ajustar el modelo de producto {i+1}: {e}")
# Genera las gráficas
fig, axs = plt.subplots(3, 1, figsize=(10, 15))
# Gráfica de Biomasa
axs[0].plot(time, biomass_data, 'o', label='Datos de Biomasa')
for i, result in enumerate(biomass_results):
axs[0].plot(time, result['y_pred'], '-', label=f'Modelo de Biomasa {i+1}')
axs[0].set_xlabel('Tiempo')
axs[0].set_ylabel('Biomasa')
if show_legend:
axs[0].legend(loc=legend_position)
# Gráfica de Sustrato
axs[1].plot(time, substrate_data, 'o', label='Datos de Sustrato')
for i, result in enumerate(substrate_results):
axs[1].plot(time, result['y_pred'], '-', label=f'Modelo de Sustrato {i+1}')
axs[1].set_xlabel('Tiempo')
axs[1].set_ylabel('Sustrato')
if show_legend:
axs[1].legend(loc=legend_position)
# Gráfica de Producto
axs[2].plot(time, product_data, 'o', label='Datos de Producto')
for i, result in enumerate(product_results):
axs[2].plot(time, result['y_pred'], '-', label=f'Modelo de Producto {i+1}')
axs[2].set_xlabel('Tiempo')
axs[2].set_ylabel('Producto')
if show_legend:
axs[2].legend(loc=legend_position)
plt.tight_layout()
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
image = Image.open(buf)
prompt = f"""
Eres un experto en modelado de bioprocesos.
Analiza los siguientes resultados experimentales y proporciona un veredicto sobre la calidad de los modelos, sugiriendo mejoras si es necesario.
Biomasa:
{biomass_results}
Sustrato:
{substrate_results}
Producto:
{product_results}
"""
analysis = generate_analysis(prompt, device=device)
return image, analysis
|