Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# interface.py
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
from PIL import Image
|
7 |
+
import io
|
8 |
+
|
9 |
+
from bioprocess_model import BioprocessModel
|
10 |
+
from decorators import gpu_decorator # Asegúrate de que la ruta es correcta
|
11 |
+
|
12 |
+
def parse_bounds(bounds_str, num_params):
|
13 |
+
try:
|
14 |
+
# Reemplazar 'inf' por 'np.inf' si el usuario lo escribió así
|
15 |
+
bounds_str = bounds_str.replace('inf', 'np.inf')
|
16 |
+
# Evaluar la cadena de límites
|
17 |
+
bounds = eval(f"[{bounds_str}]")
|
18 |
+
if len(bounds) != num_params:
|
19 |
+
raise ValueError("Número de límites no coincide con el número de parámetros.")
|
20 |
+
lower_bounds = [b[0] for b in bounds]
|
21 |
+
upper_bounds = [b[1] for b in bounds]
|
22 |
+
return lower_bounds, upper_bounds
|
23 |
+
except Exception as e:
|
24 |
+
print(f"Error al parsear los límites: {e}. Usando límites por defecto.")
|
25 |
+
lower_bounds = [-np.inf] * num_params
|
26 |
+
upper_bounds = [np.inf] * num_params
|
27 |
+
return lower_bounds, upper_bounds
|
28 |
+
|
29 |
+
@gpu_decorator(duration=300)
|
30 |
+
def generate_analysis(prompt, max_length=1024, device=None):
|
31 |
+
# Implementación existente para generar análisis usando Hugging Face o similar
|
32 |
+
# Por ejemplo, podrías usar un modelo de lenguaje para generar texto
|
33 |
+
# Aquí se deja como placeholder
|
34 |
+
analysis = "Análisis generado por el modelo de lenguaje."
|
35 |
+
return analysis
|
36 |
+
|
37 |
+
@gpu_decorator(duration=600) # Ajusta la duración según tus necesidades
|
38 |
+
def process_and_plot(
|
39 |
+
file,
|
40 |
+
biomass_eq1, biomass_eq2, biomass_eq3,
|
41 |
+
biomass_param1, biomass_param2, biomass_param3,
|
42 |
+
biomass_bound1, biomass_bound2, biomass_bound3,
|
43 |
+
substrate_eq1, substrate_eq2, substrate_eq3,
|
44 |
+
substrate_param1, substrate_param2, substrate_param3,
|
45 |
+
substrate_bound1, substrate_bound2, substrate_bound3,
|
46 |
+
product_eq1, product_eq2, product_eq3,
|
47 |
+
product_param1, product_param2, product_param3,
|
48 |
+
product_bound1, product_bound2, product_bound3,
|
49 |
+
legend_position,
|
50 |
+
show_legend,
|
51 |
+
show_params,
|
52 |
+
biomass_eq_count,
|
53 |
+
substrate_eq_count,
|
54 |
+
product_eq_count,
|
55 |
+
device=None
|
56 |
+
):
|
57 |
+
# Leer el archivo Excel
|
58 |
+
df = pd.read_excel(file.name)
|
59 |
+
|
60 |
+
# Verificar que las columnas necesarias estén presentes
|
61 |
+
expected_columns = ['Tiempo', 'Biomasa', 'Sustrato', 'Producto']
|
62 |
+
for col in expected_columns:
|
63 |
+
if col not in df.columns:
|
64 |
+
raise KeyError(f"La columna esperada '{col}' no se encuentra en el archivo Excel.")
|
65 |
+
|
66 |
+
# Asignar los datos desde las columnas
|
67 |
+
time = df['Tiempo'].values
|
68 |
+
biomass_data = df['Biomasa'].values
|
69 |
+
substrate_data = df['Sustrato'].values
|
70 |
+
product_data = df['Producto'].values
|
71 |
+
|
72 |
+
# Convierte los contadores a enteros
|
73 |
+
biomass_eq_count = int(biomass_eq_count)
|
74 |
+
substrate_eq_count = int(substrate_eq_count)
|
75 |
+
product_eq_count = int(product_eq_count)
|
76 |
+
|
77 |
+
# Recolecta las ecuaciones, parámetros y límites según los contadores
|
78 |
+
biomass_eqs = [biomass_eq1, biomass_eq2, biomass_eq3][:biomass_eq_count]
|
79 |
+
biomass_params = [biomass_param1, biomass_param2, biomass_param3][:biomass_eq_count]
|
80 |
+
biomass_bounds = [biomass_bound1, biomass_bound2, biomass_bound3][:biomass_eq_count]
|
81 |
+
|
82 |
+
substrate_eqs = [substrate_eq1, substrate_eq2, substrate_eq3][:substrate_eq_count]
|
83 |
+
substrate_params = [substrate_param1, substrate_param2, substrate_param3][:substrate_eq_count]
|
84 |
+
substrate_bounds = [substrate_bound1, substrate_bound2, substrate_bound3][:substrate_eq_count]
|
85 |
+
|
86 |
+
product_eqs = [product_eq1, product_eq2, product_eq3][:product_eq_count]
|
87 |
+
product_params = [product_param1, product_param2, product_param3][:product_eq_count]
|
88 |
+
product_bounds = [product_bound1, product_bound2, product_bound3][:product_eq_count]
|
89 |
+
|
90 |
+
biomass_results = []
|
91 |
+
substrate_results = []
|
92 |
+
product_results = []
|
93 |
+
|
94 |
+
# Inicializar el modelo principal
|
95 |
+
main_model = BioprocessModel()
|
96 |
+
|
97 |
+
# Ajusta los modelos de Biomasa
|
98 |
+
for i in range(len(biomass_eqs)):
|
99 |
+
equation = biomass_eqs[i]
|
100 |
+
params_str = biomass_params[i]
|
101 |
+
bounds_str = biomass_bounds[i]
|
102 |
+
|
103 |
+
try:
|
104 |
+
main_model.set_model_biomass(equation, params_str)
|
105 |
+
except ValueError as ve:
|
106 |
+
raise ValueError(f"Error en la configuración del modelo de biomasa {i+1}: {ve}")
|
107 |
+
|
108 |
+
params = [param.strip() for param in params_str.split(',')]
|
109 |
+
lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))
|
110 |
+
|
111 |
+
try:
|
112 |
+
y_pred = main_model.fit_model(
|
113 |
+
'biomass', time, biomass_data,
|
114 |
+
bounds=(lower_bounds, upper_bounds)
|
115 |
+
)
|
116 |
+
biomass_results.append({
|
117 |
+
'model': main_model,
|
118 |
+
'y_pred': y_pred,
|
119 |
+
'equation': equation,
|
120 |
+
'params': main_model.params['biomass']
|
121 |
+
})
|
122 |
+
except Exception as e:
|
123 |
+
raise RuntimeError(f"Error al ajustar el modelo de biomasa {i+1}: {e}")
|
124 |
+
|
125 |
+
# Ajusta los modelos de Sustrato
|
126 |
+
for i in range(len(substrate_eqs)):
|
127 |
+
equation = substrate_eqs[i]
|
128 |
+
params_str = substrate_params[i]
|
129 |
+
bounds_str = substrate_bounds[i]
|
130 |
+
|
131 |
+
try:
|
132 |
+
main_model.set_model_substrate(equation, params_str)
|
133 |
+
except ValueError as ve:
|
134 |
+
raise ValueError(f"Error en la configuración del modelo de sustrato {i+1}: {ve}")
|
135 |
+
|
136 |
+
params = [param.strip() for param in params_str.split(',')]
|
137 |
+
lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))
|
138 |
+
|
139 |
+
try:
|
140 |
+
y_pred = main_model.fit_model(
|
141 |
+
'substrate', time, substrate_data,
|
142 |
+
bounds=(lower_bounds, upper_bounds)
|
143 |
+
)
|
144 |
+
substrate_results.append({
|
145 |
+
'model': main_model,
|
146 |
+
'y_pred': y_pred,
|
147 |
+
'equation': equation,
|
148 |
+
'params': main_model.params['substrate']
|
149 |
+
})
|
150 |
+
except Exception as e:
|
151 |
+
raise RuntimeError(f"Error al ajustar el modelo de sustrato {i+1}: {e}")
|
152 |
+
|
153 |
+
# Ajusta los modelos de Producto
|
154 |
+
for i in range(len(product_eqs)):
|
155 |
+
equation = product_eqs[i]
|
156 |
+
params_str = product_params[i]
|
157 |
+
bounds_str = product_bounds[i]
|
158 |
+
|
159 |
+
try:
|
160 |
+
main_model.set_model_product(equation, params_str)
|
161 |
+
except ValueError as ve:
|
162 |
+
raise ValueError(f"Error en la configuración del modelo de producto {i+1}: {ve}")
|
163 |
+
|
164 |
+
params = [param.strip() for param in params_str.split(',')]
|
165 |
+
lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))
|
166 |
+
|
167 |
+
try:
|
168 |
+
y_pred = main_model.fit_model(
|
169 |
+
'product', time, product_data,
|
170 |
+
bounds=(lower_bounds, upper_bounds)
|
171 |
+
)
|
172 |
+
product_results.append({
|
173 |
+
'model': main_model,
|
174 |
+
'y_pred': y_pred,
|
175 |
+
'equation': equation,
|
176 |
+
'params': main_model.params['product']
|
177 |
+
})
|
178 |
+
except Exception as e:
|
179 |
+
raise RuntimeError(f"Error al ajustar el modelo de producto {i+1}: {e}")
|
180 |
+
|
181 |
+
# Genera las gráficas
|
182 |
+
fig, axs = plt.subplots(3, 1, figsize=(10, 15))
|
183 |
+
|
184 |
+
# Gráfica de Biomasa
|
185 |
+
axs[0].plot(time, biomass_data, 'o', label='Datos de Biomasa')
|
186 |
+
for i, result in enumerate(biomass_results):
|
187 |
+
axs[0].plot(time, result['y_pred'], '-', label=f'Modelo de Biomasa {i+1}')
|
188 |
+
axs[0].set_xlabel('Tiempo')
|
189 |
+
axs[0].set_ylabel('Biomasa')
|
190 |
+
if show_legend:
|
191 |
+
axs[0].legend(loc=legend_position)
|
192 |
+
|
193 |
+
# Gráfica de Sustrato
|
194 |
+
axs[1].plot(time, substrate_data, 'o', label='Datos de Sustrato')
|
195 |
+
for i, result in enumerate(substrate_results):
|
196 |
+
axs[1].plot(time, result['y_pred'], '-', label=f'Modelo de Sustrato {i+1}')
|
197 |
+
axs[1].set_xlabel('Tiempo')
|
198 |
+
axs[1].set_ylabel('Sustrato')
|
199 |
+
if show_legend:
|
200 |
+
axs[1].legend(loc=legend_position)
|
201 |
+
|
202 |
+
# Gráfica de Producto
|
203 |
+
axs[2].plot(time, product_data, 'o', label='Datos de Producto')
|
204 |
+
for i, result in enumerate(product_results):
|
205 |
+
axs[2].plot(time, result['y_pred'], '-', label=f'Modelo de Producto {i+1}')
|
206 |
+
axs[2].set_xlabel('Tiempo')
|
207 |
+
axs[2].set_ylabel('Producto')
|
208 |
+
if show_legend:
|
209 |
+
axs[2].legend(loc=legend_position)
|
210 |
+
|
211 |
+
plt.tight_layout()
|
212 |
+
buf = io.BytesIO()
|
213 |
+
plt.savefig(buf, format='png')
|
214 |
+
buf.seek(0)
|
215 |
+
image = Image.open(buf)
|
216 |
+
|
217 |
+
prompt = f"""
|
218 |
+
Eres un experto en modelado de bioprocesos.
|
219 |
+
Analiza los siguientes resultados experimentales y proporciona un veredicto sobre la calidad de los modelos, sugiriendo mejoras si es necesario.
|
220 |
+
Biomasa:
|
221 |
+
{biomass_results}
|
222 |
+
Sustrato:
|
223 |
+
{substrate_results}
|
224 |
+
Producto:
|
225 |
+
{product_results}
|
226 |
+
"""
|
227 |
+
analysis = generate_analysis(prompt, device=device)
|
228 |
+
|
229 |
+
return image, analysis
|