File size: 9,988 Bytes
7f0e5b8 be4582c 7f0e5b8 54bc1ed 706f2be 54bc1ed 23380e9 54bc1ed 706f2be 54bc1ed 7f0e5b8 d492f8f 54bc1ed 706f2be 54bc1ed 706f2be 54bc1ed d492f8f 54bc1ed 706f2be 54bc1ed 7f0e5b8 d492f8f eac6bfb 881af71 706f2be eac6bfb 612f2cd f5a37da 612f2cd f5a37da 612f2cd f5a37da 881af71 e91dc2c 881af71 e91dc2c be4582c e91dc2c 881af71 e91dc2c 706f2be e91dc2c 881af71 e91dc2c be4582c e91dc2c 881af71 e91dc2c 881af71 e91dc2c 706f2be e91dc2c 881af71 e91dc2c be4582c e91dc2c 881af71 e91dc2c 881af71 e91dc2c 706f2be e91dc2c 881af71 54bc1ed 881af71 a125a00 54bc1ed a125a00 706f2be 4e2d127 a125a00 706f2be 4e2d127 a125a00 706f2be f7e4b7b a125a00 a360292 54bc1ed 99d8601 881af71 e91dc2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
# interface.py
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from PIL import Image
import io
from bioprocess_model import BioprocessModel
from decorators import gpu_decorator # Asegúrate de que la ruta es correcta
# Nuevas importaciones para Yi-Coder
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import json
# Inicialización del dispositivo
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_path = "Qwen/Qwen2.5-7B"#"Qwen/QwQ-32B-Preview"#"Qwen/Qwen2.5-7B-Instruct" #"01-ai/Yi-Coder-9B-Chat"
# Carga del tokenizer y modelo
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path).to(device).eval()
def parse_bounds(bounds_str, num_params):
try:
# Reemplazar 'inf' por 'np.inf' si el usuario lo escribió así
bounds_str = bounds_str.replace('inf', 'np.inf')
# Evaluar la cadena de límites
bounds = eval(f"[{bounds_str}]")
if len(bounds) != num_params:
raise ValueError("Número de límites no coincide con el número de parámetros.")
lower_bounds = [b[0] for b in bounds]
upper_bounds = [b[1] for b in bounds]
return lower_bounds, upper_bounds
except Exception as e:
print(f"Error al parsear los límites: {e}. Usando límites por defecto.")
lower_bounds = [-np.inf] * num_params
upper_bounds = [np.inf] * num_params
return lower_bounds, upper_bounds
def generate_analysis(prompt, max_length=100): # Reducido a 100
"""
Genera un análisis utilizando el modelo Yi-Coder-9B-Chat.
"""
try:
# Tokenizar el prompt y mover los tensores al dispositivo correcto
inputs = tokenizer(prompt, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=max_length, # Limitar la generación a 100 tokens
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.eos_token_id
)
analysis = tokenizer.decode(outputs[0], skip_special_tokens=True)
return analysis
except Exception as e:
print(f"Error al generar el análisis con Yi-Coder: {e}. Usando análisis por defecto.")
return "Análisis generado por el modelo de lenguaje."
@gpu_decorator(duration=100) # Reducido de 600 a 100 segundos
def process_and_plot(
file,
biomass_eq1, biomass_eq2, biomass_eq3,
biomass_param1, biomass_param2, biomass_param3,
biomass_bound1, biomass_bound2, biomass_bound3,
substrate_eq1, substrate_eq2, substrate_eq3,
substrate_param1, substrate_param2, substrate_param3,
substrate_bound1, substrate_bound2, substrate_bound3,
product_eq1, product_eq2, product_eq3,
product_param1, product_param2, product_param3,
product_bound1, product_bound2, product_bound3,
legend_position,
show_legend,
show_params,
biomass_eq_count,
substrate_eq_count,
product_eq_count
):
# Leer el archivo Excel
df = pd.read_excel(file.name)
# Verificar que las columnas necesarias estén presentes
expected_columns = ['Tiempo', 'Biomasa', 'Sustrato', 'Producto']
for col in expected_columns:
if col not in df.columns:
raise KeyError(f"La columna esperada '{col}' no se encuentra en el archivo Excel.")
# Asignar los datos desde las columnas
time = df['Tiempo'].values
biomass_data = df['Biomasa'].values
substrate_data = df['Sustrato'].values
product_data = df['Producto'].values
# Convierte los contadores a enteros
biomass_eq_count = int(biomass_eq_count)
substrate_eq_count = int(substrate_eq_count)
product_eq_count = int(product_eq_count)
# Recolecta las ecuaciones, parámetros y límites según los contadores
biomass_eqs = [biomass_eq1, biomass_eq2, biomass_eq3][:biomass_eq_count]
biomass_params = [biomass_param1, biomass_param2, biomass_param3][:biomass_eq_count]
biomass_bounds = [biomass_bound1, biomass_bound2, biomass_bound3][:biomass_eq_count]
substrate_eqs = [substrate_eq1, substrate_eq2, substrate_eq3][:substrate_eq_count]
substrate_params = [substrate_param1, substrate_param2, substrate_param3][:substrate_eq_count]
substrate_bounds = [substrate_bound1, substrate_bound2, substrate_bound3][:substrate_eq_count]
product_eqs = [product_eq1, product_eq2, product_eq3][:product_eq_count]
product_params = [product_param1, product_param2, product_param3][:product_eq_count]
product_bounds = [product_bound1, product_bound2, product_bound3][:product_eq_count]
biomass_results = []
substrate_results = []
product_results = []
# Inicializar el modelo principal
main_model = BioprocessModel()
# Ajusta los modelos de Biomasa
for i in range(len(biomass_eqs)):
equation = biomass_eqs[i]
params_str = biomass_params[i]
bounds_str = biomass_bounds[i]
try:
main_model.set_model_biomass(equation, params_str)
except ValueError as ve:
raise ValueError(f"Error en la configuración del modelo de biomasa {i+1}: {ve}")
params = [param.strip() for param in params_str.split(',')]
lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))
try:
y_pred = main_model.fit_model(
'biomass', time, biomass_data,
bounds=(lower_bounds, upper_bounds)
)
biomass_results.append({
'y_pred': y_pred.tolist(), # Convertir a lista para serialización
'equation': equation,
'params': main_model.params['biomass']
})
except Exception as e:
raise RuntimeError(f"Error al ajustar el modelo de biomasa {i+1}: {e}")
# Ajusta los modelos de Sustrato
for i in range(len(substrate_eqs)):
equation = substrate_eqs[i]
params_str = substrate_params[i]
bounds_str = substrate_bounds[i]
try:
main_model.set_model_substrate(equation, params_str)
except ValueError as ve:
raise ValueError(f"Error en la configuración del modelo de sustrato {i+1}: {ve}")
params = [param.strip() for param in params_str.split(',')]
lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))
try:
y_pred = main_model.fit_model(
'substrate', time, substrate_data,
bounds=(lower_bounds, upper_bounds)
)
substrate_results.append({
'y_pred': y_pred.tolist(), # Convertir a lista para serialización
'equation': equation,
'params': main_model.params['substrate']
})
except Exception as e:
raise RuntimeError(f"Error al ajustar el modelo de sustrato {i+1}: {e}")
# Ajusta los modelos de Producto
for i in range(len(product_eqs)):
equation = product_eqs[i]
params_str = product_params[i]
bounds_str = product_bounds[i]
try:
main_model.set_model_product(equation, params_str)
except ValueError as ve:
raise ValueError(f"Error en la configuración del modelo de producto {i+1}: {ve}")
params = [param.strip() for param in params_str.split(',')]
lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))
try:
y_pred = main_model.fit_model(
'product', time, product_data,
bounds=(lower_bounds, upper_bounds)
)
product_results.append({
'y_pred': y_pred.tolist(), # Convertir a lista para serialización
'equation': equation,
'params': main_model.params['product']
})
except Exception as e:
raise RuntimeError(f"Error al ajustar el modelo de producto {i+1}: {e}")
# Genera las gráficas
fig, axs = plt.subplots(3, 1, figsize=(10, 15))
# Gráfica de Biomasa
axs[0].plot(time, biomass_data, 'o', label='Datos de Biomasa')
for i, result in enumerate(biomass_results):
axs[0].plot(time, result['y_pred'], '-', label=f'Modelo de Biomasa {i+1}')
axs[0].set_xlabel('Tiempo')
axs[0].set_ylabel('Biomasa')
if show_legend:
axs[0].legend(loc=legend_position)
# Gráfica de Sustrato
axs[1].plot(time, substrate_data, 'o', label='Datos de Sustrato')
for i, result in enumerate(substrate_results):
axs[1].plot(time, result['y_pred'], '-', label=f'Modelo de Sustrato {i+1}')
axs[1].set_xlabel('Tiempo')
axs[1].set_ylabel('Sustrato')
if show_legend:
axs[1].legend(loc=legend_position)
# Gráfica de Producto
axs[2].plot(time, product_data, 'o', label='Datos de Producto')
for i, result in enumerate(product_results):
axs[2].plot(time, result['y_pred'], '-', label=f'Modelo de Producto {i+1}')
axs[2].set_xlabel('Tiempo')
axs[2].set_ylabel('Producto')
if show_legend:
axs[2].legend(loc=legend_position)
plt.tight_layout()
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
image = Image.open(buf)
# Construcción del prompt para Yi-Coder
prompt = f"""
Analiza estos resultados de cinética y parámetros de bioprocesos, como experto:
Biomasa:
{json.dumps(biomass_results, indent=2)}
Sustrato:
{json.dumps(substrate_results, indent=2)}
Producto:
{json.dumps(product_results, indent=2)}
Para cada cinética (Biomasa, Sustrato, Producto):
1. Evalúa el modelo (ajuste, parámetros)
2. Identifica problemas específicos
3. Sugiere mejoras concretas
Concluye con un veredicto general sobre la calidad del modelado.
"""
# Generar el análisis utilizando Yi-Coder
analysis = generate_analysis(prompt, max_length=1500) # Reducido a 100
return image, analysis
|