Update interface.py
Browse files- interface.py +21 -12
interface.py
CHANGED
@@ -11,7 +11,7 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
11 |
from sympy import symbols, sympify, lambdify
|
12 |
import copy
|
13 |
from config import DEVICE, MODEL_PATH, MAX_LENGTH, TEMPERATURE
|
14 |
-
from decorators import spaces
|
15 |
|
16 |
# Configuración del dispositivo
|
17 |
device = DEVICE
|
@@ -20,12 +20,15 @@ device = DEVICE
|
|
20 |
model_path = MODEL_PATH # Reemplaza con la ruta real de tu modelo
|
21 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
22 |
model = AutoModelForCausalLM.from_pretrained(model_path)
|
23 |
-
|
24 |
-
model.eval()
|
25 |
|
26 |
-
@spaces.GPU(duration=300)
|
27 |
-
def generate_analysis(prompt, max_length=MAX_LENGTH):
|
28 |
try:
|
|
|
|
|
|
|
|
|
29 |
input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device)
|
30 |
max_gen_length = min(max_length + input_ids.size(1), model.config.max_position_embeddings)
|
31 |
|
@@ -75,6 +78,19 @@ def process_and_plot(
|
|
75 |
substrate_eq_count,
|
76 |
product_eq_count
|
77 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
# Convierte los contadores a enteros
|
79 |
biomass_eq_count = int(biomass_eq_count)
|
80 |
substrate_eq_count = int(substrate_eq_count)
|
@@ -93,13 +109,6 @@ def process_and_plot(
|
|
93 |
product_params = [product_param1, product_param2, product_param3][:product_eq_count]
|
94 |
product_bounds = [product_bound1, product_bound2, product_bound3][:product_eq_count]
|
95 |
|
96 |
-
# Lee el archivo Excel subido
|
97 |
-
df = pd.read_excel(file.name)
|
98 |
-
time = df['Time'].values
|
99 |
-
biomass_data = df['Biomass'].values
|
100 |
-
substrate_data = df['Substrate'].values
|
101 |
-
product_data = df['Product'].values
|
102 |
-
|
103 |
biomass_results = []
|
104 |
substrate_results = []
|
105 |
product_results = []
|
|
|
11 |
from sympy import symbols, sympify, lambdify
|
12 |
import copy
|
13 |
from config import DEVICE, MODEL_PATH, MAX_LENGTH, TEMPERATURE
|
14 |
+
from decorators import spaces
|
15 |
|
16 |
# Configuración del dispositivo
|
17 |
device = DEVICE
|
|
|
20 |
model_path = MODEL_PATH # Reemplaza con la ruta real de tu modelo
|
21 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
22 |
model = AutoModelForCausalLM.from_pretrained(model_path)
|
23 |
+
# No movemos el modelo al dispositivo aquí
|
|
|
24 |
|
25 |
+
@spaces.GPU(duration=300)
|
26 |
+
def generate_analysis(prompt, max_length=MAX_LENGTH, device=None):
|
27 |
try:
|
28 |
+
if device is None:
|
29 |
+
device = torch.device('cpu')
|
30 |
+
if next(model.parameters()).device != device:
|
31 |
+
model.to(device)
|
32 |
input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device)
|
33 |
max_gen_length = min(max_length + input_ids.size(1), model.config.max_position_embeddings)
|
34 |
|
|
|
78 |
substrate_eq_count,
|
79 |
product_eq_count
|
80 |
):
|
81 |
+
# Verificar que las columnas requeridas estén presentes en el archivo Excel
|
82 |
+
df = pd.read_excel(file.name)
|
83 |
+
expected_columns = ['Tiempo', 'Biomasa', 'Sustrato', 'Producto'] # Nombres en español
|
84 |
+
for col in expected_columns:
|
85 |
+
if col not in df.columns:
|
86 |
+
raise KeyError(f"La columna esperada '{col}' no se encuentra en el archivo Excel.")
|
87 |
+
|
88 |
+
# Asignación de datos desde las columnas en español
|
89 |
+
time = df['Tiempo'].values # Columna de tiempo
|
90 |
+
biomass_data = df['Biomasa'].values # Columna de biomasa
|
91 |
+
substrate_data = df['Sustrato'].values # Columna de sustrato
|
92 |
+
product_data = df['Producto'].values # Columna de producto
|
93 |
+
|
94 |
# Convierte los contadores a enteros
|
95 |
biomass_eq_count = int(biomass_eq_count)
|
96 |
substrate_eq_count = int(substrate_eq_count)
|
|
|
109 |
product_params = [product_param1, product_param2, product_param3][:product_eq_count]
|
110 |
product_bounds = [product_bound1, product_bound2, product_bound3][:product_eq_count]
|
111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
biomass_results = []
|
113 |
substrate_results = []
|
114 |
product_results = []
|