File size: 10,000 Bytes
eac6bfb 612f2cd eac6bfb 612f2cd eac6bfb 612f2cd 15a2bb8 612f2cd eac6bfb 15a2bb8 0788e60 612f2cd 0788e60 eac6bfb 612f2cd f5a37da 0788e60 612f2cd f5a37da 0788e60 eac6bfb 15a2bb8 0788e60 eac6bfb 15a2bb8 0788e60 eac6bfb 15a2bb8 612f2cd eac6bfb 0788e60 eac6bfb 15a2bb8 eac6bfb 612f2cd eac6bfb 881af71 612f2cd eac6bfb 612f2cd f5a37da 612f2cd f5a37da 612f2cd f5a37da 881af71 612f2cd 881af71 612f2cd 881af71 6660e8c 881af71 612f2cd 881af71 612f2cd 881af71 612f2cd 881af71 612f2cd 881af71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
# interface.py
# Importar 'spaces' y decoradores antes que cualquier biblioteca que pueda inicializar CUDA
from decorators import gpu_decorator
# Luego importar cualquier cosa relacionada con PyTorch o el modelo que va a usar la GPU
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import io
from sympy import symbols, lambdify, sympify
# Importar otras partes necesarias del c贸digo (config, etc.)
from config import DEVICE, MODEL_PATH, MAX_LENGTH, TEMPERATURE
# Cargar el modelo fuera de la funci贸n para evitar la inicializaci贸n innecesaria cada vez que se llame a la funci贸n
model_path = MODEL_PATH
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path)
# Decorador GPU aplicado para manejar la ejecuci贸n en GPU si est谩 disponible
@gpu_decorator(duration=300)
def generate_analysis(prompt, max_length=1024, device=None):
try:
# Si el dispositivo no se especifica, usa CPU por defecto
if device is None:
device = torch.device('cpu')
# Mover el modelo al dispositivo adecuado (GPU o CPU) si es necesario
if next(model.parameters()).device != device:
model.to(device)
# Preparar los datos de entrada en el dispositivo correcto
input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device)
max_gen_length = min(max_length + input_ids.size(1), model.config.max_position_embeddings)
# Generar el texto
generated_ids = model.generate(
input_ids=input_ids,
max_length=max_gen_length,
temperature=0.7,
num_return_sequences=1,
no_repeat_ngram_size=2,
early_stopping=True
)
# Decodificar la respuesta generada
output_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
analysis = output_text[len(prompt):].strip()
return analysis
except RuntimeError as e:
return f"Error durante la ejecuci贸n: {str(e)}"
except Exception as e:
return f"Ocurri贸 un error durante el an谩lisis: {e}"
def parse_bounds(bounds_str, num_params):
try:
bounds = eval(f"[{bounds_str}]")
if len(bounds) != num_params:
raise ValueError
lower_bounds = [b[0] for b in bounds]
upper_bounds = [b[1] for b in bounds]
return lower_bounds, upper_bounds
except:
lower_bounds = [-np.inf] * num_params
upper_bounds = [np.inf] * num_params
return lower_bounds, upper_bounds
def process_and_plot(
file,
biomass_eq1, biomass_eq2, biomass_eq3,
biomass_param1, biomass_param2, biomass_param3,
biomass_bound1, biomass_bound2, biomass_bound3,
substrate_eq1, substrate_eq2, substrate_eq3,
substrate_param1, substrate_param2, substrate_param3,
substrate_bound1, substrate_bound2, substrate_bound3,
product_eq1, product_eq2, product_eq3,
product_param1, product_param2, product_param3,
product_bound1, product_bound2, product_bound3,
legend_position,
show_legend,
show_params,
biomass_eq_count,
substrate_eq_count,
product_eq_count,
device=None
):
# Leer el archivo Excel
df = pd.read_excel(file.name)
# Verificar que las columnas necesarias est茅n presentes
expected_columns = ['Tiempo', 'Biomasa', 'Sustrato', 'Producto']
for col in expected_columns:
if col not in df.columns:
raise KeyError(f"La columna esperada '{col}' no se encuentra en el archivo Excel.")
# Asignar los datos desde las columnas
time = df['Tiempo'].values
biomass_data = df['Biomasa'].values
substrate_data = df['Sustrato'].values
product_data = df['Producto'].values
# Convierte los contadores a enteros
biomass_eq_count = int(biomass_eq_count)
substrate_eq_count = int(substrate_eq_count)
product_eq_count = int(product_eq_count)
# Recolecta las ecuaciones, par谩metros y l铆mites seg煤n los contadores
biomass_eqs = [biomass_eq1, biomass_eq2, biomass_eq3][:biomass_eq_count]
biomass_params = [biomass_param1, biomass_param2, biomass_param3][:biomass_eq_count]
biomass_bounds = [biomass_bound1, biomass_bound2, biomass_bound3][:biomass_eq_count]
substrate_eqs = [substrate_eq1, substrate_eq2, substrate_eq3][:substrate_eq_count]
substrate_params = [substrate_param1, substrate_param2, substrate_param3][:substrate_eq_count]
substrate_bounds = [substrate_bound1, substrate_bound2, substrate_bound3][:substrate_eq_count]
product_eqs = [product_eq1, product_eq2, product_eq3][:product_eq_count]
product_params = [product_param1, product_param2, product_param3][:product_eq_count]
product_bounds = [product_bound1, product_bound2, product_bound3][:product_eq_count]
biomass_results = []
substrate_results = []
product_results = []
# Ajusta los modelos de Biomasa
for i in range(len(biomass_eqs)):
equation = biomass_eqs[i]
params_str = biomass_params[i]
bounds_str = biomass_bounds[i]
model = BioprocessModel()
model.set_model('biomass', equation, params_str)
params = [param.strip() for param in params_str.split(',')]
lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))
y_pred = model.fit_model(
'biomass', time, biomass_data,
bounds=(lower_bounds, upper_bounds)
)
biomass_results.append({
'model': model,
'y_pred': y_pred,
'equation': equation
})
# Usa el primer modelo de biomasa para X(t)
biomass_model = biomass_results[0]['model']
X_t_func = biomass_model.models['biomass']['function']
biomass_params_values = list(biomass_model.params['biomass'].values())
# Ajusta los modelos de Sustrato
for i in range(len(substrate_eqs)):
equation = substrate_eqs[i]
params_str = substrate_params[i]
bounds_str = substrate_bounds[i]
model = BioprocessModel()
t_symbol = symbols('t')
expr_substrate = sympify(equation)
substrate_params_symbols = symbols([param.strip() for param in params_str.split(',')])
substrate_func_expr = expr_substrate.subs('X(t)', X_t_func(t_symbol, *biomass_params_values))
substrate_func = lambdify(
(t_symbol, *substrate_params_symbols),
substrate_func_expr,
'numpy'
)
model.models['substrate'] = {
'function': substrate_func,
'params': [param.strip() for param in params_str.split(',')]
}
params = model.models['substrate']['params']
lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))
y_pred = model.fit_model(
'substrate', time, substrate_data,
bounds=(lower_bounds, upper_bounds)
)
substrate_results.append({
'model': model,
'y_pred': y_pred,
'equation': equation
})
# Ajusta los modelos de Producto
for i in range(len(product_eqs)):
equation = product_eqs[i]
params_str = product_params[i]
bounds_str = product_bounds[i]
model = BioprocessModel()
t_symbol = symbols('t')
expr_product = sympify(equation)
product_params_symbols = symbols([param.strip() for param in params_str.split(',')])
product_func_expr = expr_product.subs('X(t)', X_t_func(t_symbol, *biomass_params_values))
product_func = lambdify(
(t_symbol, *product_params_symbols),
product_func_expr,
'numpy'
)
model.models['product'] = {
'function': product_func,
'params': [param.strip() for param in params_str.split(',')]
}
params = model.models['product']['params']
lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))
y_pred = model.fit_model(
'product', time, product_data,
bounds=(lower_bounds, upper_bounds)
)
product_results.append({
'model': model,
'y_pred': y_pred,
'equation': equation
})
# Genera las gr谩ficas
fig, axs = plt.subplots(3, 1, figsize=(10, 15))
# Gr谩fica de Biomasa
axs[0].plot(time, biomass_data, 'o', label='Datos de Biomasa')
for i, result in enumerate(biomass_results):
axs[0].plot(time, result['y_pred'], '-', label=f'Modelo de Biomasa {i+1}')
axs[0].set_xlabel('Tiempo')
axs[0].set_ylabel('Biomasa')
if show_legend:
axs[0].legend(loc=legend_position)
# Gr谩fica de Sustrato
axs[1].plot(time, substrate_data, 'o', label='Datos de Sustrato')
for i, result in enumerate(substrate_results):
axs[1].plot(time, result['y_pred'], '-', label=f'Modelo de Sustrato {i+1}')
axs[1].set_xlabel('Tiempo')
axs[1].set_ylabel('Sustrato')
if show_legend:
axs[1].legend(loc=legend_position)
# Gr谩fica de Producto
axs[2].plot(time, product_data, 'o', label='Datos de Producto')
for i, result in enumerate(product_results):
axs[2].plot(time, result['y_pred'], '-', label=f'Modelo de Producto {i+1}')
axs[2].set_xlabel('Tiempo')
axs[2].set_ylabel('Producto')
if show_legend:
axs[2].legend(loc=legend_position)
plt.tight_layout()
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
image = Image.open(buf)
prompt = f"""
Eres un experto en modelado de bioprocesos.
Analiza los siguientes resultados experimentales y proporciona un veredicto sobre la calidad de los modelos, sugiriendo mejoras si es necesario.
Biomasa:
{biomass_results}
Sustrato:
{substrate_results}
Producto:
{product_results}
"""
analysis = generate_analysis(prompt, device=device)
return [image], analysis
|