File size: 12,051 Bytes
eac6bfb
 
 
 
 
 
 
 
 
 
6660e8c
eac6bfb
 
f5a37da
eac6bfb
15a2bb8
eac6bfb
15a2bb8
 
 
eac6bfb
15a2bb8
f5a37da
eac6bfb
0788e60
 
e80a6ea
0788e60
eac6bfb
f5a37da
 
0788e60
 
f5a37da
 
0788e60
 
eac6bfb
15a2bb8
 
0788e60
eac6bfb
 
15a2bb8
0788e60
eac6bfb
 
 
 
15a2bb8
eac6bfb
 
 
0788e60
 
eac6bfb
15a2bb8
eac6bfb
778ff50
eac6bfb
 
 
 
 
 
 
 
 
 
 
 
 
e80a6ea
eac6bfb
881af71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eac6bfb
f5a37da
 
 
 
 
 
 
 
 
 
 
 
 
881af71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6660e8c
881af71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6660e8c
881af71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
# interface.py

from models import BioprocessModel
import io
from PIL import Image
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from sympy import symbols, sympify, lambdify
import copy
from config import DEVICE, MODEL_PATH, MAX_LENGTH, TEMPERATURE
from decorators import spaces

# Configuración del dispositivo
device = DEVICE

# Cargar el modelo
model_path = MODEL_PATH  # Reemplaza con la ruta real de tu modelo
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path)
# No movemos el modelo al dispositivo aquí

from decorators import spaces

@spaces.GPU(duration=100)
def generate_analysis(prompt, max_length=1024, device=None):
    try:
        if device is None:
            device = torch.device('cpu')
        
        # Mover el modelo al dispositivo adecuado (GPU o CPU)
        if next(model.parameters()).device != device:
            model.to(device)
        
        # Preparar los datos de entrada en el dispositivo correcto
        input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device)
        max_gen_length = min(max_length + input_ids.size(1), model.config.max_position_embeddings)

        # Generar el texto
        generated_ids = model.generate(
            input_ids=input_ids,
            max_length=max_gen_length,
            temperature=0.7,
            num_return_sequences=1,
            no_repeat_ngram_size=2,
            early_stopping=True
        )

        output_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
        analysis = output_text[len(prompt):].strip()
        return analysis
    except RuntimeError as e:
        return f"Error durante la ejecución: {str(e)}"
    except Exception as e:
        return f"Ocurrió un error durante el análisis: {e}"

@spaces.GPU(duration=100)
def parse_bounds(bounds_str, num_params):
    try:
        bounds = eval(f"[{bounds_str}]")
        if len(bounds) != num_params:
            raise ValueError
        lower_bounds = [b[0] for b in bounds]
        upper_bounds = [b[1] for b in bounds]
        return lower_bounds, upper_bounds
    except:
        lower_bounds = [-np.inf] * num_params
        upper_bounds = [np.inf] * num_params
        return lower_bounds, upper_bounds

@spaces.GPU(duration=100)
def process_and_plot(
    file,
    biomass_eq1, biomass_eq2, biomass_eq3,
    biomass_param1, biomass_param2, biomass_param3,
    biomass_bound1, biomass_bound2, biomass_bound3,
    substrate_eq1, substrate_eq2, substrate_eq3,
    substrate_param1, substrate_param2, substrate_param3,
    substrate_bound1, substrate_bound2, substrate_bound3,
    product_eq1, product_eq2, product_eq3,
    product_param1, product_param2, product_param3,
    product_bound1, product_bound2, product_bound3,
    legend_position,
    show_legend,
    show_params,
    biomass_eq_count,
    substrate_eq_count,
    product_eq_count
):
    # Verificar que las columnas requeridas estén presentes en el archivo Excel
    df = pd.read_excel(file.name)
    expected_columns = ['Tiempo', 'Biomasa', 'Sustrato', 'Producto']  # Nombres en español
    for col in expected_columns:
        if col not in df.columns:
            raise KeyError(f"La columna esperada '{col}' no se encuentra en el archivo Excel.")

    # Asignación de datos desde las columnas en español
    time = df['Tiempo'].values  # Columna de tiempo
    biomass_data = df['Biomasa'].values  # Columna de biomasa
    substrate_data = df['Sustrato'].values  # Columna de sustrato
    product_data = df['Producto'].values  # Columna de producto

    # Convierte los contadores a enteros
    biomass_eq_count = int(biomass_eq_count)
    substrate_eq_count = int(substrate_eq_count)
    product_eq_count = int(product_eq_count)

    # Recolecta las ecuaciones, parámetros y límites según los contadores
    biomass_eqs = [biomass_eq1, biomass_eq2, biomass_eq3][:biomass_eq_count]
    biomass_params = [biomass_param1, biomass_param2, biomass_param3][:biomass_eq_count]
    biomass_bounds = [biomass_bound1, biomass_bound2, biomass_bound3][:biomass_eq_count]

    substrate_eqs = [substrate_eq1, substrate_eq2, substrate_eq3][:substrate_eq_count]
    substrate_params = [substrate_param1, substrate_param2, substrate_param3][:substrate_eq_count]
    substrate_bounds = [substrate_bound1, substrate_bound2, substrate_bound3][:substrate_eq_count]

    product_eqs = [product_eq1, product_eq2, product_eq3][:product_eq_count]
    product_params = [product_param1, product_param2, product_param3][:product_eq_count]
    product_bounds = [product_bound1, product_bound2, product_bound3][:product_eq_count]

    biomass_results = []
    substrate_results = []
    product_results = []

    # Ajusta los modelos de Biomasa
    for i in range(len(biomass_eqs)):
        equation = biomass_eqs[i]
        params_str = biomass_params[i]
        bounds_str = biomass_bounds[i]

        model = BioprocessModel()
        model.set_model('biomass', equation, params_str)

        params = [param.strip() for param in params_str.split(',')]
        lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))

        y_pred = model.fit_model(
            'biomass', time, biomass_data,
            bounds=(lower_bounds, upper_bounds)
        )
        biomass_results.append({
            'model': copy.deepcopy(model),
            'y_pred': y_pred,
            'equation': equation
        })

    # Usa el primer modelo de biomasa para X(t)
    biomass_model = biomass_results[0]['model']
    X_t_func = biomass_model.models['biomass']['function']
    biomass_params_values = list(biomass_model.params['biomass'].values())

    # Ajusta los modelos de Sustrato
    for i in range(len(substrate_eqs)):
        equation = substrate_eqs[i]
        params_str = substrate_params[i]
        bounds_str = substrate_bounds[i]

        model = BioprocessModel()

        t_symbol = symbols('t')
        expr_substrate = sympify(equation)
        substrate_params_symbols = symbols([param.strip() for param in params_str.split(',')])
        substrate_func_expr = expr_substrate.subs('X(t)', X_t_func(t_symbol, *biomass_params_values))
        substrate_func = lambdify(
            (t_symbol, *substrate_params_symbols),
            substrate_func_expr,
            'numpy'
        )
        model.models['substrate'] = {
            'function': substrate_func,
            'params': [param.strip() for param in params_str.split(',')]
        }

        params = model.models['substrate']['params']
        lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))

        y_pred = model.fit_model(
            'substrate', time, substrate_data,
            bounds=(lower_bounds, upper_bounds)
        )
        substrate_results.append({
            'model': copy.deepcopy(model),
            'y_pred': y_pred,
            'equation': equation
        })

    # Ajusta los modelos de Producto
    for i in range(len(product_eqs)):
        equation = product_eqs[i]
        params_str = product_params[i]
        bounds_str = product_bounds[i]

        model = BioprocessModel()

        t_symbol = symbols('t')
        expr_product = sympify(equation)
        product_params_symbols = symbols([param.strip() for param in params_str.split(',')])
        product_func_expr = expr_product.subs('X(t)', X_t_func(t_symbol, *biomass_params_values))
        product_func = lambdify(
            (t_symbol, *product_params_symbols),
            product_func_expr,
            'numpy'
        )
        model.models['product'] = {
            'function': product_func,
            'params': [param.strip() for param in params_str.split(',')]
        }

        params = model.models['product']['params']
        lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))

        y_pred = model.fit_model(
            'product', time, product_data,
            bounds=(lower_bounds, upper_bounds)
        )
        product_results.append({
            'model': copy.deepcopy(model),
            'y_pred': y_pred,
            'equation': equation
        })

    # Genera las gráficas
    fig, axs = plt.subplots(3, 1, figsize=(10, 15))

    # Gráfica de Biomasa
    axs[0].plot(time, biomass_data, 'o', label='Datos de Biomasa')
    for i, result in enumerate(biomass_results):
        axs[0].plot(time, result['y_pred'], '-', label=f'Modelo de Biomasa {i+1}')
    axs[0].set_xlabel('Tiempo')
    axs[0].set_ylabel('Biomasa')
    if show_legend:
        axs[0].legend(loc=legend_position)

    # Gráfica de Sustrato
    axs[1].plot(time, substrate_data, 'o', label='Datos de Sustrato')
    for i, result in enumerate(substrate_results):
        axs[1].plot(time, result['y_pred'], '-', label=f'Modelo de Sustrato {i+1}')
    axs[1].set_xlabel('Tiempo')
    axs[1].set_ylabel('Sustrato')
    if show_legend:
        axs[1].legend(loc=legend_position)

    # Gráfica de Producto
    axs[2].plot(time, product_data, 'o', label='Datos de Producto')
    for i, result in enumerate(product_results):
        axs[2].plot(time, result['y_pred'], '-', label=f'Modelo de Producto {i+1}')
    axs[2].set_xlabel('Tiempo')
    axs[2].set_ylabel('Producto')
    if show_legend:
        axs[2].legend(loc=legend_position)

    plt.tight_layout()
    buf = io.BytesIO()
    plt.savefig(buf, format='png')
    buf.seek(0)
    image = Image.open(buf)

    all_results = {
        'biomass_models': [],
        'substrate_models': [],
        'product_models': []
    }

    for i, result in enumerate(biomass_results):
        model_info = {
            'model_number': i + 1,
            'equation': result['equation'],
            'parameters': result['model'].params['biomass'],
            'R2': result['model'].r2['biomass'],
            'RMSE': result['model'].rmse['biomass']
        }
        all_results['biomass_models'].append(model_info)

    for i, result in enumerate(substrate_results):
        model_info = {
            'model_number': i + 1,
            'equation': result['equation'],
            'parameters': result['model'].params['substrate'],
            'R2': result['model'].r2['substrate'],
            'RMSE': result['model'].rmse['substrate']
        }
        all_results['substrate_models'].append(model_info)

    for i, result in enumerate(product_results):
        model_info = {
            'model_number': i + 1,
            'equation': result['equation'],
            'parameters': result['model'].params['product'],
            'R2': result['model'].r2['product'],
            'RMSE': result['model'].rmse['product']
        }
        all_results['product_models'].append(model_info)

    results_text = "Resultados Experimentales:\n\n"

    results_text += "Modelos de Biomasa:\n"
    for model_info in all_results['biomass_models']:
        results_text += f"""
Modelo {model_info['model_number']}:
Ecuación: {model_info['equation']}
Parámetros: {model_info['parameters']}
R²: {model_info['R2']:.4f}
RMSE: {model_info['RMSE']:.4f}
"""

    results_text += "\nModelos de Sustrato:\n"
    for model_info in all_results['substrate_models']:
        results_text += f"""
Modelo {model_info['model_number']}:
Ecuación: {model_info['equation']}
Parámetros: {model_info['parameters']}
R²: {model_info['R2']:.4f}
RMSE: {model_info['RMSE']:.4f}
"""

    results_text += "\nModelos de Producto:\n"
    for model_info in all_results['product_models']:
        results_text += f"""
Modelo {model_info['model_number']}:
Ecuación: {model_info['equation']}
Parámetros: {model_info['parameters']}
R²: {model_info['R2']:.4f}
RMSE: {model_info['RMSE']:.4f}
"""

    prompt = f"""
Eres un experto en modelado de bioprocesos.

Analiza los siguientes resultados experimentales y proporciona un veredicto sobre la calidad de los modelos, sugiriendo mejoras si es necesario.

{results_text}

Tu análisis debe ser detallado y profesional.
"""
    analysis = generate_analysis(prompt)

    return [image], analysis