File size: 16,712 Bytes
eac6bfb 612f2cd eac6bfb 612f2cd eac6bfb 612f2cd 15a2bb8 612f2cd eac6bfb 15a2bb8 0788e60 09d69dc fb1081e 09d69dc fb1081e 09d69dc 612f2cd 0788e60 eac6bfb 612f2cd f5a37da 0788e60 612f2cd f5a37da 0788e60 eac6bfb 15a2bb8 0788e60 eac6bfb 15a2bb8 0788e60 eac6bfb 15a2bb8 612f2cd eac6bfb 0788e60 eac6bfb 15a2bb8 eac6bfb 612f2cd eac6bfb 881af71 612f2cd eac6bfb 612f2cd f5a37da 612f2cd f5a37da 612f2cd f5a37da 881af71 612f2cd 881af71 fb1081e 881af71 fb1081e 881af71 612f2cd 881af71 fb1081e 881af71 612f2cd 881af71 612f2cd 881af71 612f2cd 881af71 612f2cd 881af71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 |
# interface.py
# Importar 'spaces' y decoradores antes que cualquier biblioteca que pueda inicializar CUDA
from decorators import gpu_decorator
# Luego importar cualquier cosa relacionada con PyTorch o el modelo que va a usar la GPU
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import io
from sympy import symbols, lambdify, sympify
# Importar otras partes necesarias del c贸digo (config, etc.)
from config import DEVICE, MODEL_PATH, MAX_LENGTH, TEMPERATURE
# Cargar el modelo fuera de la funci贸n para evitar la inicializaci贸n innecesaria cada vez que se llame a la funci贸n
model_path = MODEL_PATH
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path)
###############################
# bioprocess_model.py
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.integrate import odeint
from scipy.optimize import curve_fit
from sklearn.metrics import mean_squared_error
import seaborn as sns
class BioprocessModel:
def __init__(self):
self.params = {}
self.r2 = {}
self.rmse = {}
self.datax = []
self.datas = []
self.datap = []
self.dataxp = []
self.datasp = []
self.datapp = []
self.datax_std = []
self.datas_std = []
self.datap_std = []
self.models = {} # Initialize the models dictionary
@staticmethod
def logistic(time, xo, xm, um):
return (xo * np.exp(um * time)) / (1 - (xo / xm) * (1 - np.exp(um * time)))
@staticmethod
def substrate(time, so, p, q, xo, xm, um):
return so - (p * xo * ((np.exp(um * time)) / (1 - (xo / xm) * (1 - np.exp(um * time))) - 1)) - \
(q * (xm / um) * np.log(1 - (xo / xm) * (1 - np.exp(um * time))))
@staticmethod
def product(time, po, alpha, beta, xo, xm, um):
return po + (alpha * xo * ((np.exp(um * time) / (1 - (xo / xm) * (1 - np.exp(um * time)))) - 1)) + \
(beta * (xm / um) * np.log(1 - (xo / xm) * (1 - np.exp(um * time))))
@staticmethod
def logistic_diff(X, t, params):
xo, xm, um = params
dXdt = um * X * (1 - X / xm)
return dXdt
def substrate_diff(self, S, t, params, biomass_params, X_func):
so, p, q = params
xo, xm, um = biomass_params
X_t = X_func(t)
dSdt = -p * (um * X_t * (1 - X_t / xm)) - q * X_t
return dSdt
def product_diff(self, P, t, params, biomass_params, X_func):
po, alpha, beta = params
xo, xm, um = biomass_params
X_t = X_func(t)
dPdt = alpha * (um * X_t * (1 - X_t / xm)) + beta * X_t
return dPdt
def process_data(self, df):
biomass_cols = [col for col in df.columns if 'Biomasa' in col]
substrate_cols = [col for col in df.columns if 'Sustrato' in col]
product_cols = [col for col in df.columns if 'Producto' in col]
time_col = [col for col in df.columns if 'Tiempo' in col][0]
time = df[time_col].values
data_biomass = np.array([df[col].values for col in biomass_cols])
self.datax.append(data_biomass)
self.dataxp.append(np.mean(data_biomass, axis=0))
self.datax_std.append(np.std(data_biomass, axis=0, ddof=1))
data_substrate = np.array([df[col].values for col in substrate_cols])
self.datas.append(data_substrate)
self.datasp.append(np.mean(data_substrate, axis=0))
self.datas_std.append(np.std(data_substrate, axis=0, ddof=1))
data_product = np.array([df[col].values for col in product_cols])
self.datap.append(data_product)
self.datapp.append(np.mean(data_product, axis=0))
self.datap_std.append(np.std(data_product, axis=0, ddof=1))
self.time = time
def set_model(self, model_type, equation, params_str):
"""
Sets up the model based on the type, equation, and parameters.
:param model_type: Type of the model ('biomass', 'substrate', 'product')
:param equation: The equation as a string
:param params_str: Comma-separated string of parameter names
"""
t_symbol = symbols('t')
expr = sympify(equation)
params = [param.strip() for param in params_str.split(',')]
params_symbols = symbols(params)
if model_type == 'biomass':
# Assuming biomass is a function of time only for logistic
func_expr = expr
func = lambdify(t_symbol, func_expr, 'numpy')
self.models['biomass'] = {
'function': func,
'params': params
}
elif model_type in ['substrate', 'product']:
# These models depend on biomass, which should already be set
if 'biomass' not in self.models:
raise ValueError("Biomass model must be set before substrate or product models.")
biomass_func = self.models['biomass']['function']
func_expr = expr.subs('X(t)', biomass_func(t_symbol))
func = lambdify((t_symbol, *params_symbols), func_expr, 'numpy')
self.models[model_type] = {
'function': func,
'params': params
}
else:
raise ValueError(f"Unsupported model type: {model_type}")
def fit_model(self, model_type, time, data, bounds=([-np.inf], [np.inf])):
"""
Fits the model to the data.
:param model_type: Type of the model ('biomass', 'substrate', 'product')
:param time: Time data
:param data: Observed data to fit
:param bounds: Bounds for the parameters
:return: Predicted data from the model
"""
if model_type not in self.models:
raise ValueError(f"Model type '{model_type}' is not set. Please use set_model first.")
func = self.models[model_type]['function']
params = self.models[model_type]['params']
# Define the fitting function based on model type
if model_type == 'biomass':
def fit_func(t, *args):
return func(t, *args)
else:
def fit_func(t, *args):
return func(t, *args)
popt, _ = curve_fit(fit_func, time, data, bounds=bounds, maxfev=10000)
self.params[model_type] = {param: val for param, val in zip(params, popt)}
y_pred = fit_func(time, *popt)
self.r2[model_type] = 1 - (np.sum((data - y_pred) ** 2) / np.sum((data - np.mean(data)) ** 2))
self.rmse[model_type] = np.sqrt(mean_squared_error(data, y_pred))
return y_pred
def plot_combined_results(self, time, biomass, substrate, product,
y_pred_biomass, y_pred_substrate, y_pred_product,
biomass_std=None, substrate_std=None, product_std=None,
experiment_name='', legend_position='best', params_position='upper right',
show_legend=True, show_params=True,
style='whitegrid', line_color='#0000FF', point_color='#000000',
line_style='-', marker_style='o'):
sns.set_style(style)
fig, ax1 = plt.subplots(figsize=(10, 7))
ax1.set_xlabel('Tiempo')
ax1.set_ylabel('Biomasa', color=line_color)
ax1.plot(time, biomass, marker=marker_style, linestyle='', color=point_color, label='Biomasa (Datos)')
ax1.plot(time, y_pred_biomass, linestyle=line_style, color=line_color, label='Biomasa (Modelo)')
ax1.tick_params(axis='y', labelcolor=line_color)
ax2 = ax1.twinx()
ax2.set_ylabel('Sustrato', color='green')
ax2.plot(time, substrate, marker=marker_style, linestyle='', color='green', label='Sustrato (Datos)')
ax2.plot(time, y_pred_substrate, linestyle=line_style, color='green', label='Sustrato (Modelo)')
ax2.tick_params(axis='y', labelcolor='green')
ax3 = ax1.twinx()
ax3.spines["right"].set_position(("axes", 1.1))
ax3.set_ylabel('Producto', color='red')
ax3.plot(time, product, marker=marker_style, linestyle='', color='red', label='Producto (Datos)')
ax3.plot(time, y_pred_product, linestyle=line_style, color='red', label='Producto (Modelo)')
ax3.tick_params(axis='y', labelcolor='red')
fig.tight_layout()
return fig
###############################
# Decorador GPU aplicado para manejar la ejecuci贸n en GPU si est谩 disponible
@gpu_decorator(duration=300)
def generate_analysis(prompt, max_length=1024, device=None):
try:
# Si el dispositivo no se especifica, usa CPU por defecto
if device is None:
device = torch.device('cpu')
# Mover el modelo al dispositivo adecuado (GPU o CPU) si es necesario
if next(model.parameters()).device != device:
model.to(device)
# Preparar los datos de entrada en el dispositivo correcto
input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device)
max_gen_length = min(max_length + input_ids.size(1), model.config.max_position_embeddings)
# Generar el texto
generated_ids = model.generate(
input_ids=input_ids,
max_length=max_gen_length,
temperature=0.7,
num_return_sequences=1,
no_repeat_ngram_size=2,
early_stopping=True
)
# Decodificar la respuesta generada
output_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
analysis = output_text[len(prompt):].strip()
return analysis
except RuntimeError as e:
return f"Error durante la ejecuci贸n: {str(e)}"
except Exception as e:
return f"Ocurri贸 un error durante el an谩lisis: {e}"
def parse_bounds(bounds_str, num_params):
try:
bounds = eval(f"[{bounds_str}]")
if len(bounds) != num_params:
raise ValueError
lower_bounds = [b[0] for b in bounds]
upper_bounds = [b[1] for b in bounds]
return lower_bounds, upper_bounds
except:
lower_bounds = [-np.inf] * num_params
upper_bounds = [np.inf] * num_params
return lower_bounds, upper_bounds
def process_and_plot(
file,
biomass_eq1, biomass_eq2, biomass_eq3,
biomass_param1, biomass_param2, biomass_param3,
biomass_bound1, biomass_bound2, biomass_bound3,
substrate_eq1, substrate_eq2, substrate_eq3,
substrate_param1, substrate_param2, substrate_param3,
substrate_bound1, substrate_bound2, substrate_bound3,
product_eq1, product_eq2, product_eq3,
product_param1, product_param2, product_param3,
product_bound1, product_bound2, product_bound3,
legend_position,
show_legend,
show_params,
biomass_eq_count,
substrate_eq_count,
product_eq_count,
device=None
):
# Leer el archivo Excel
df = pd.read_excel(file.name)
# Verificar que las columnas necesarias est茅n presentes
expected_columns = ['Tiempo', 'Biomasa', 'Sustrato', 'Producto']
for col in expected_columns:
if col not in df.columns:
raise KeyError(f"La columna esperada '{col}' no se encuentra en el archivo Excel.")
# Asignar los datos desde las columnas
time = df['Tiempo'].values
biomass_data = df['Biomasa'].values
substrate_data = df['Sustrato'].values
product_data = df['Producto'].values
# Convierte los contadores a enteros
biomass_eq_count = int(biomass_eq_count)
substrate_eq_count = int(substrate_eq_count)
product_eq_count = int(product_eq_count)
# Recolecta las ecuaciones, par谩metros y l铆mites seg煤n los contadores
biomass_eqs = [biomass_eq1, biomass_eq2, biomass_eq3][:biomass_eq_count]
biomass_params = [biomass_param1, biomass_param2, biomass_param3][:biomass_eq_count]
biomass_bounds = [biomass_bound1, biomass_bound2, biomass_bound3][:biomass_eq_count]
substrate_eqs = [substrate_eq1, substrate_eq2, substrate_eq3][:substrate_eq_count]
substrate_params = [substrate_param1, substrate_param2, substrate_param3][:substrate_eq_count]
substrate_bounds = [substrate_bound1, substrate_bound2, substrate_bound3][:substrate_eq_count]
product_eqs = [product_eq1, product_eq2, product_eq3][:product_eq_count]
product_params = [product_param1, product_param2, product_param3][:product_eq_count]
product_bounds = [product_bound1, product_bound2, product_bound3][:product_eq_count]
biomass_results = []
substrate_results = []
product_results = []
# Ajusta los modelos de Biomasa
for i in range(len(biomass_eqs)):
equation = biomass_eqs[i]
params_str = biomass_params[i]
bounds_str = biomass_bounds[i]
model = BioprocessModel()
model.set_model('biomass', equation, params_str)
params = [param.strip() for param in params_str.split(',')]
lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))
y_pred = model.fit_model(
'biomass', time, biomass_data,
bounds=(lower_bounds, upper_bounds)
)
biomass_results.append({
'model': model,
'y_pred': y_pred,
'equation': equation
})
# Usa el primer modelo de biomasa para X(t)
biomass_model = biomass_results[0]['model']
biomass_params_values = list(biomass_model.params['biomass'].values())
biomass_func = biomass_model.models['biomass']['function']
# Ajusta los modelos de Sustrato
for i in range(len(substrate_eqs)):
equation = substrate_eqs[i]
params_str = substrate_params[i]
bounds_str = substrate_bounds[i]
model = BioprocessModel()
model.set_model('substrate', equation, params_str)
params = model.models['substrate']['params']
lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))
y_pred = model.fit_model(
'substrate', time, substrate_data,
bounds=(lower_bounds, upper_bounds)
)
substrate_results.append({
'model': model,
'y_pred': y_pred,
'equation': equation
})
# Ajusta los modelos de Producto
for i in range(len(product_eqs)):
equation = product_eqs[i]
params_str = product_params[i]
bounds_str = product_bounds[i]
model = BioprocessModel()
model.set_model('product', equation, params_str)
params = model.models['product']['params']
lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))
y_pred = model.fit_model(
'product', time, product_data,
bounds=(lower_bounds, upper_bounds)
)
product_results.append({
'model': model,
'y_pred': y_pred,
'equation': equation
})
# Genera las gr谩ficas
fig, axs = plt.subplots(3, 1, figsize=(10, 15))
# Gr谩fica de Biomasa
axs[0].plot(time, biomass_data, 'o', label='Datos de Biomasa')
for i, result in enumerate(biomass_results):
axs[0].plot(time, result['y_pred'], '-', label=f'Modelo de Biomasa {i+1}')
axs[0].set_xlabel('Tiempo')
axs[0].set_ylabel('Biomasa')
if show_legend:
axs[0].legend(loc=legend_position)
# Gr谩fica de Sustrato
axs[1].plot(time, substrate_data, 'o', label='Datos de Sustrato')
for i, result in enumerate(substrate_results):
axs[1].plot(time, result['y_pred'], '-', label=f'Modelo de Sustrato {i+1}')
axs[1].set_xlabel('Tiempo')
axs[1].set_ylabel('Sustrato')
if show_legend:
axs[1].legend(loc=legend_position)
# Gr谩fica de Producto
axs[2].plot(time, product_data, 'o', label='Datos de Producto')
for i, result in enumerate(product_results):
axs[2].plot(time, result['y_pred'], '-', label=f'Modelo de Producto {i+1}')
axs[2].set_xlabel('Tiempo')
axs[2].set_ylabel('Producto')
if show_legend:
axs[2].legend(loc=legend_position)
plt.tight_layout()
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
image = Image.open(buf)
prompt = f"""
Eres un experto en modelado de bioprocesos.
Analiza los siguientes resultados experimentales y proporciona un veredicto sobre la calidad de los modelos, sugiriendo mejoras si es necesario.
Biomasa:
{biomass_results}
Sustrato:
{substrate_results}
Producto:
{product_results}
"""
analysis = generate_analysis(prompt, device=device)
return [image], analysis
|