Spaces:
Running
on
Zero
Running
on
Zero
Add a Guidance Scale parameter
#2
by
Fabrice-TIERCELIN
- opened
app.py
CHANGED
@@ -50,26 +50,27 @@ with gr.Blocks() as demo:
|
|
50 |
# steps = gr.Slider(label="Inference Steps", minimum=1, maximum=8, step=1, value=1, interactive=True)
|
51 |
# eta = gr.Number(label="Eta (Corresponds to parameter eta (η) in the DDIM paper, i.e. 0.0 eqauls DDIM, 1.0 equals LCM)", value=1., interactive=True)
|
52 |
prompt = gr.Text(label="Prompt", value="a photo of a cat", interactive=True)
|
|
|
53 |
seed = gr.Number(label="Seed", value=3413, interactive=True)
|
54 |
btn = gr.Button(value="run")
|
55 |
with gr.Column():
|
56 |
output = gr.Gallery(height=1024)
|
57 |
|
58 |
@spaces.GPU
|
59 |
-
def process_image(num_images, height, width, prompt, seed):
|
60 |
global pipe
|
61 |
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
|
62 |
return pipe(
|
63 |
prompt=[prompt]*num_images,
|
64 |
generator=torch.Generator().manual_seed(int(seed)),
|
65 |
num_inference_steps=1,
|
66 |
-
guidance_scale=
|
67 |
height=int(height),
|
68 |
width=int(width),
|
69 |
timesteps=[800]
|
70 |
).images
|
71 |
|
72 |
-
reactive_controls = [num_images, height, width, prompt, seed]
|
73 |
|
74 |
# for control in reactive_controls:
|
75 |
# control.change(fn=process_image, inputs=reactive_controls, outputs=[output])
|
|
|
50 |
# steps = gr.Slider(label="Inference Steps", minimum=1, maximum=8, step=1, value=1, interactive=True)
|
51 |
# eta = gr.Number(label="Eta (Corresponds to parameter eta (η) in the DDIM paper, i.e. 0.0 eqauls DDIM, 1.0 equals LCM)", value=1., interactive=True)
|
52 |
prompt = gr.Text(label="Prompt", value="a photo of a cat", interactive=True)
|
53 |
+
guidance_scale = gr.Slider(minimum = 0, maximum = 13, value = 0, step = 0.1, label = "Classifier-Free Guidance Scale", info = "lower=image quality, higher=follow the prompt", interactive=True)
|
54 |
seed = gr.Number(label="Seed", value=3413, interactive=True)
|
55 |
btn = gr.Button(value="run")
|
56 |
with gr.Column():
|
57 |
output = gr.Gallery(height=1024)
|
58 |
|
59 |
@spaces.GPU
|
60 |
+
def process_image(num_images, height, width, prompt, guidance_scale, seed):
|
61 |
global pipe
|
62 |
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
|
63 |
return pipe(
|
64 |
prompt=[prompt]*num_images,
|
65 |
generator=torch.Generator().manual_seed(int(seed)),
|
66 |
num_inference_steps=1,
|
67 |
+
guidance_scale=guidance_scale,
|
68 |
height=int(height),
|
69 |
width=int(width),
|
70 |
timesteps=[800]
|
71 |
).images
|
72 |
|
73 |
+
reactive_controls = [num_images, height, width, prompt, guidance_scale, seed]
|
74 |
|
75 |
# for control in reactive_controls:
|
76 |
# control.change(fn=process_image, inputs=reactive_controls, outputs=[output])
|