Spaces:
Sleeping
Sleeping
File size: 67,972 Bytes
60cca7c a1d7129 60cca7c a1d7129 60cca7c a1d7129 60cca7c a1d7129 60cca7c a1d7129 60cca7c a1d7129 60cca7c a1d7129 60cca7c a1d7129 60cca7c a1d7129 60cca7c a1d7129 60cca7c a1d7129 60cca7c a1d7129 60cca7c a1d7129 60cca7c a1d7129 60cca7c a1d7129 60cca7c a1d7129 60cca7c a1d7129 60cca7c a1d7129 60cca7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 |
"""
Cooling Load Calculator Page
This module implements the cooling load calculator interface for the HVAC Load Calculator web application.
It provides a step-by-step form for inputting building information and calculates cooling loads
using the ASHRAE method.
"""
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
import json
import os
import sys
from pathlib import Path
from datetime import datetime
# Add the parent directory to sys.path to import modules
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
# Import custom modules
from cooling_load import CoolingLoadCalculator
from reference_data import ReferenceData
from utils.validation import validate_input, ValidationWarning
from utils.export import export_data
def load_session_state():
"""Initialize or load session state variables."""
# Initialize session state for form data
if 'cooling_form_data' not in st.session_state:
st.session_state.cooling_form_data = {
'building_info': {},
'building_envelope': {},
'windows': {},
'internal_loads': {},
'ventilation': {},
'results': {}
}
# Initialize session state for validation warnings
if 'cooling_warnings' not in st.session_state:
st.session_state.cooling_warnings = {
'building_info': [],
'building_envelope': [],
'windows': [],
'internal_loads': [],
'ventilation': []
}
# Initialize session state for form completion status
if 'cooling_completed' not in st.session_state:
st.session_state.cooling_completed = {
'building_info': False,
'building_envelope': False,
'windows': False,
'internal_loads': False,
'ventilation': False
}
# Initialize session state for calculation results
if 'cooling_results' not in st.session_state:
st.session_state.cooling_results = None
def building_info_form(ref_data):
"""
Form for building information.
Args:
ref_data: Reference data object
"""
st.subheader("Building Information")
st.write("Enter general building information, location, and design temperatures.")
# Get location options from reference data
location_options = {loc_id: loc_data['name'] for loc_id, loc_data in ref_data.locations.items()}
col1, col2 = st.columns(2)
with col1:
# Building name
building_name = st.text_input(
"Building Name",
value=st.session_state.cooling_form_data['building_info'].get('building_name', ''),
help="Enter a name for this building or project"
)
# Location selection
location = st.selectbox(
"Location",
options=list(location_options.keys()),
format_func=lambda x: location_options[x],
index=list(location_options.keys()).index(st.session_state.cooling_form_data['building_info'].get('location', 'sydney')) if st.session_state.cooling_form_data['building_info'].get('location') in location_options else 0,
help="Select the location of the building"
)
# Get climate data for selected location
location_data = ref_data.get_location_data(location)
# Indoor design temperature
indoor_temp = st.number_input(
"Indoor Design Temperature (°C)",
value=float(st.session_state.cooling_form_data['building_info'].get('indoor_temp', 24.0)),
min_value=18.0,
max_value=30.0,
step=0.5,
help="Recommended indoor design temperature for cooling is 24°C"
)
with col2:
# Building type
building_type = st.selectbox(
"Building Type",
options=["Residential", "Small Office", "Educational", "Other"],
index=["Residential", "Small Office", "Educational", "Other"].index(st.session_state.cooling_form_data['building_info'].get('building_type', 'Residential')),
help="Select the type of building"
)
# Outdoor design temperature (with default from location data)
outdoor_temp = st.number_input(
"Outdoor Design Temperature (°C)",
value=float(st.session_state.cooling_form_data['building_info'].get('outdoor_temp', location_data['summer_design_temp'])),
min_value=25.0,
max_value=45.0,
step=0.5,
help=f"Default value is based on selected location ({location_data['name']})"
)
# Daily temperature range
daily_range_options = {
"low": "Low (< 8.5°C)",
"medium": "Medium (8.5-14°C)",
"high": "High (> 14°C)"
}
daily_range = st.selectbox(
"Daily Temperature Range",
options=list(daily_range_options.keys()),
format_func=lambda x: daily_range_options[x],
index=list(daily_range_options.keys()).index(st.session_state.cooling_form_data['building_info'].get('daily_range', location_data['daily_temp_range'])),
help="Daily temperature range affects solar heat gain calculations"
)
# Building dimensions
st.subheader("Building Dimensions")
col1, col2, col3 = st.columns(3)
with col1:
length = st.number_input(
"Length (m)",
value=float(st.session_state.cooling_form_data['building_info'].get('length', 10.0)),
min_value=1.0,
step=0.1,
help="Building length in meters"
)
with col2:
width = st.number_input(
"Width (m)",
value=float(st.session_state.cooling_form_data['building_info'].get('width', 8.0)),
min_value=1.0,
step=0.1,
help="Building width in meters"
)
with col3:
height = st.number_input(
"Height (m)",
value=float(st.session_state.cooling_form_data['building_info'].get('height', 2.7)),
min_value=1.0,
step=0.1,
help="Floor-to-ceiling height in meters"
)
# Calculate floor area and volume
floor_area = length * width
volume = floor_area * height
st.info(f"Floor Area: {floor_area:.2f} m² | Volume: {volume:.2f} m³")
# Save form data to session state
form_data = {
'building_name': building_name,
'building_type': building_type,
'location': location,
'location_name': location_data['name'],
'indoor_temp': indoor_temp,
'outdoor_temp': outdoor_temp,
'daily_range': daily_range,
'length': length,
'width': width,
'height': height,
'floor_area': floor_area,
'volume': volume,
'temp_diff': outdoor_temp - indoor_temp
}
# Validate inputs
warnings = []
# Check if building name is provided
if not building_name:
warnings.append(ValidationWarning("Building name is empty", "Consider adding a building name for reference"))
# Check if temperature difference is reasonable
if form_data['temp_diff'] <= 0:
warnings.append(ValidationWarning(
"Invalid temperature difference",
"Outdoor temperature should be higher than indoor temperature for cooling load calculation",
is_critical=False # Changed to non-critical to allow proceeding with warnings
))
# Check if dimensions are reasonable
if floor_area > 500:
warnings.append(ValidationWarning(
"Large floor area",
"Floor area exceeds 500 m², verify if this is correct for a residential building"
))
if height < 2.4 or height > 3.5:
warnings.append(ValidationWarning(
"Unusual ceiling height",
"Typical residential ceiling heights are between 2.4m and 3.5m"
))
# Save warnings to session state
st.session_state.cooling_warnings['building_info'] = warnings
# Display warnings if any
if warnings:
st.warning("Please review the following warnings:")
for warning in warnings:
st.write(f"- {warning.message}" + (" (Critical)" if warning.is_critical else ""))
st.write(f" Suggestion: {warning.suggestion}")
# Save form data regardless of warnings
st.session_state.cooling_form_data['building_info'] = form_data
# Mark this step as completed if there are no critical warnings
st.session_state.cooling_completed['building_info'] = not any(w.is_critical for w in warnings)
# Navigation buttons
col1, col2 = st.columns([1, 1])
with col2:
next_button = st.button("Next: Building Envelope →", key="building_info_next")
if next_button:
st.session_state.cooling_active_tab = "building_envelope"
st.experimental_rerun()
def building_envelope_form(ref_data):
"""
Form for building envelope information.
Args:
ref_data: Reference data object
"""
st.subheader("Building Envelope")
st.write("Enter information about walls, roof, and floor construction.")
# Get building dimensions from previous step
building_info = st.session_state.cooling_form_data['building_info']
length = building_info.get('length', 10.0)
width = building_info.get('width', 8.0)
height = building_info.get('height', 2.7)
temp_diff = building_info.get('temp_diff', 11.0)
# Calculate default areas
default_wall_area = 2 * (length + width) * height
default_roof_area = length * width
default_floor_area = length * width
# Initialize envelope data if not already in session state
if 'walls' not in st.session_state.cooling_form_data['building_envelope']:
st.session_state.cooling_form_data['building_envelope']['walls'] = []
if 'roof' not in st.session_state.cooling_form_data['building_envelope']:
st.session_state.cooling_form_data['building_envelope']['roof'] = {}
if 'floor' not in st.session_state.cooling_form_data['building_envelope']:
st.session_state.cooling_form_data['building_envelope']['floor'] = {}
# Walls section
st.write("### Walls")
# Get wall material options from reference data
wall_material_options = {mat_id: mat_data['name'] for mat_id, mat_data in ref_data.materials['walls'].items()}
# Add custom option
wall_material_options["custom_walls"] = "Custom Wall (User-defined)"
# Display existing wall entries
if st.session_state.cooling_form_data['building_envelope']['walls']:
st.write("Current walls:")
walls_df = pd.DataFrame(st.session_state.cooling_form_data['building_envelope']['walls'])
walls_df['Material'] = walls_df['material_id'].map(lambda x: wall_material_options.get(x, "Unknown"))
# Add orientation column with default value if not present
walls_df['orientation'] = walls_df['orientation'].fillna('not specified')
walls_df = walls_df[['name', 'Material', 'area', 'u_value', 'orientation']]
walls_df.columns = ['Name', 'Material', 'Area (m²)', 'U-Value (W/m²°C)', 'Orientation']
st.dataframe(walls_df)
# Add new wall form
st.write("Add a new wall:")
col1, col2 = st.columns(2)
with col1:
wall_name = st.text_input("Wall Name", value="", key="new_wall_name")
wall_material = st.selectbox(
"Wall Material",
options=list(wall_material_options.keys()),
format_func=lambda x: wall_material_options[x],
key="new_wall_material"
)
# Add wall orientation selection
wall_orientation = st.selectbox(
"Wall Orientation",
options=["north", "east", "south", "west"],
key="new_wall_orientation"
)
# Get material properties
material_data = ref_data.get_material_by_type("walls", wall_material)
u_value = material_data['u_value']
# Add custom U-value input if custom material is selected
if wall_material == "custom_walls":
u_value = st.number_input(
"Custom U-Value (W/m²°C)",
value=1.0,
min_value=0.1,
max_value=5.0,
step=0.1,
key="custom_wall_u_value"
)
# Store custom material in session state
if "custom_materials" not in st.session_state:
st.session_state.custom_materials = {}
st.session_state.custom_materials["walls"] = {
"name": "Custom Wall",
"u_value": u_value,
"r_value": 1.0 / u_value if u_value > 0 else 1.0,
"description": "Custom wall with user-defined properties"
}
with col2:
wall_area = st.number_input(
"Wall Area (m²)",
value=default_wall_area / 4, # Default to 1/4 of total wall area as a starting point
min_value=0.1,
step=0.1,
key="new_wall_area"
)
st.write(f"Material U-Value: {u_value} W/m²°C")
st.write(f"Heat Transfer: {u_value * wall_area * temp_diff:.2f} W")
# Add wall button
if st.button("Add Wall"):
new_wall = {
'name': wall_name if wall_name else f"Wall {len(st.session_state.cooling_form_data['building_envelope']['walls']) + 1}",
'material_id': wall_material,
'area': wall_area,
'u_value': u_value,
'temp_diff': temp_diff,
'orientation': wall_orientation # Add orientation to wall data
}
st.session_state.cooling_form_data['building_envelope']['walls'].append(new_wall)
st.experimental_rerun()
# Roof section
st.write("### Roof")
# Get roof material options from reference data
roof_material_options = {mat_id: mat_data['name'] for mat_id, mat_data in ref_data.materials['roofs'].items()}
# Add custom option
roof_material_options["custom_roofs"] = "Custom Roof (User-defined)"
col1, col2 = st.columns(2)
with col1:
roof_material = st.selectbox(
"Roof Material",
options=list(roof_material_options.keys()),
format_func=lambda x: roof_material_options[x],
index=list(roof_material_options.keys()).index(st.session_state.cooling_form_data['building_envelope'].get('roof', {}).get('material_id', 'metal_deck_insulated')) if st.session_state.cooling_form_data['building_envelope'].get('roof', {}).get('material_id') in roof_material_options else 0
)
# Get material properties
material_data = ref_data.get_material_by_type("roofs", roof_material)
roof_u_value = material_data['u_value']
# Add custom U-value input if custom material is selected
if roof_material == "custom_roofs":
roof_u_value = st.number_input(
"Custom Roof U-Value (W/m²°C)",
value=1.0,
min_value=0.1,
max_value=5.0,
step=0.1,
key="custom_roof_u_value"
)
# Store custom material in session state
if "custom_materials" not in st.session_state:
st.session_state.custom_materials = {}
st.session_state.custom_materials["roofs"] = {
"name": "Custom Roof",
"u_value": roof_u_value,
"r_value": 1.0 / roof_u_value if roof_u_value > 0 else 1.0,
"description": "Custom roof with user-defined properties"
}
with col2:
roof_area = st.number_input(
"Roof Area (m²)",
value=float(st.session_state.cooling_form_data['building_envelope'].get('roof', {}).get('area', default_roof_area)),
min_value=0.1,
step=0.1
)
st.write(f"Material U-Value: {roof_u_value} W/m²°C")
st.write(f"Heat Transfer: {roof_u_value * roof_area * temp_diff:.2f} W")
# Save roof data
st.session_state.cooling_form_data['building_envelope']['roof'] = {
'material_id': roof_material,
'area': roof_area,
'u_value': roof_u_value,
'temp_diff': temp_diff
}
# Floor section
st.write("### Floor")
# Get floor material options from reference data
floor_material_options = {mat_id: mat_data['name'] for mat_id, mat_data in ref_data.materials['floors'].items()}
# Add custom option
floor_material_options["custom_floors"] = "Custom Floor (User-defined)"
col1, col2 = st.columns(2)
with col1:
floor_material = st.selectbox(
"Floor Material",
options=list(floor_material_options.keys()),
format_func=lambda x: floor_material_options[x],
index=list(floor_material_options.keys()).index(st.session_state.cooling_form_data['building_envelope'].get('floor', {}).get('material_id', 'concrete_slab_ground')) if st.session_state.cooling_form_data['building_envelope'].get('floor', {}).get('material_id') in floor_material_options else 0
)
# Get material properties
material_data = ref_data.get_material_by_type("floors", floor_material)
floor_u_value = material_data['u_value']
# Add custom U-value input if custom material is selected
if floor_material == "custom_floors":
floor_u_value = st.number_input(
"Custom Floor U-Value (W/m²°C)",
value=1.0,
min_value=0.1,
max_value=5.0,
step=0.1,
key="custom_floor_u_value"
)
# Store custom material in session state
if "custom_materials" not in st.session_state:
st.session_state.custom_materials = {}
st.session_state.custom_materials["floors"] = {
"name": "Custom Floor",
"u_value": floor_u_value,
"r_value": 1.0 / floor_u_value if floor_u_value > 0 else 1.0,
"description": "Custom floor with user-defined properties"
}
with col2:
floor_area = st.number_input(
"Floor Area (m²)",
value=float(st.session_state.cooling_form_data['building_envelope'].get('floor', {}).get('area', default_floor_area)),
min_value=0.1,
step=0.1
)
st.write(f"Material U-Value: {floor_u_value} W/m²°C")
st.write(f"Heat Transfer: {floor_u_value * floor_area * temp_diff:.2f} W")
# Save floor data
st.session_state.cooling_form_data['building_envelope']['floor'] = {
'material_id': floor_material,
'area': floor_area,
'u_value': floor_u_value,
'temp_diff': temp_diff
}
# Validate inputs
warnings = []
# Check if walls are defined
if not st.session_state.cooling_form_data['building_envelope']['walls']:
warnings.append(ValidationWarning(
"No walls defined",
"Add at least one wall to continue",
is_critical=False # Changed to non-critical to allow proceeding with warnings
))
# Check if total wall area is reasonable
total_wall_area = sum(wall['area'] for wall in st.session_state.cooling_form_data['building_envelope']['walls'])
expected_wall_area = 2 * (length + width) * height
if total_wall_area < expected_wall_area * 0.8 or total_wall_area > expected_wall_area * 1.2:
warnings.append(ValidationWarning(
"Unusual wall area",
f"Total wall area ({total_wall_area:.2f} m²) differs significantly from the expected area ({expected_wall_area:.2f} m²) based on building dimensions"
))
# Check if roof area matches floor area
if abs(roof_area - floor_area) > 1.0:
warnings.append(ValidationWarning(
"Roof area doesn't match floor area",
"For a simple building, roof area should approximately match floor area"
))
# Save warnings to session state
st.session_state.cooling_warnings['building_envelope'] = warnings
# Display warnings if any
if warnings:
st.warning("Please review the following warnings:")
for warning in warnings:
st.write(f"- {warning.message}" + (" (Critical)" if warning.is_critical else ""))
st.write(f" Suggestion: {warning.suggestion}")
# Mark this step as completed if there are no critical warnings
st.session_state.cooling_completed['building_envelope'] = not any(w.is_critical for w in warnings)
# Navigation buttons
col1, col2 = st.columns([1, 1])
with col1:
prev_button = st.button("← Back: Building Information", key="building_envelope_prev")
if prev_button:
st.session_state.cooling_active_tab = "building_info"
st.experimental_rerun()
with col2:
next_button = st.button("Next: Windows & Doors →", key="building_envelope_next")
if next_button:
st.session_state.cooling_active_tab = "windows"
st.experimental_rerun()
def windows_form(ref_data):
"""
Form for windows and doors information.
Args:
ref_data: Reference data object
"""
st.subheader("Windows & Doors")
st.write("Enter information about windows and doors.")
# Get temperature difference from building info
temp_diff = st.session_state.cooling_form_data['building_info'].get('temp_diff', 11.0)
daily_range = st.session_state.cooling_form_data['building_info'].get('daily_range', 'medium')
# Initialize windows data if not already in session state
if 'windows' not in st.session_state.cooling_form_data['windows']:
st.session_state.cooling_form_data['windows']['windows'] = []
if 'doors' not in st.session_state.cooling_form_data['windows']:
st.session_state.cooling_form_data['windows']['doors'] = []
# Windows section
st.write("### Windows")
# Get glass type options from reference data
glass_type_options = {glass_id: glass_data['name'] for glass_id, glass_data in ref_data.glass_types.items()}
# Get shading options from reference data
shading_options = {shade_id: shade_data['name'] for shade_id, shade_data in ref_data.shading_factors.items()}
# Display existing window entries
if st.session_state.cooling_form_data['windows']['windows']:
st.write("Current windows:")
windows_df = pd.DataFrame(st.session_state.cooling_form_data['windows']['windows'])
windows_df['Glass Type'] = windows_df['glass_type'].map(lambda x: glass_type_options.get(x, "Unknown"))
windows_df['Shading'] = windows_df['shading'].map(lambda x: shading_options.get(x, "Unknown"))
windows_df = windows_df[['name', 'orientation', 'Glass Type', 'Shading', 'area', 'u_value']]
windows_df.columns = ['Name', 'Orientation', 'Glass Type', 'Shading', 'Area (m²)', 'U-Value (W/m²°C)']
st.dataframe(windows_df)
# Add new window form
st.write("Add a new window:")
col1, col2 = st.columns(2)
with col1:
window_name = st.text_input("Window Name", value="", key="new_window_name")
orientation = st.selectbox(
"Orientation",
options=["north", "east", "south", "west", "horizontal"],
key="new_window_orientation"
)
glass_type = st.selectbox(
"Glass Type",
options=list(glass_type_options.keys()),
format_func=lambda x: glass_type_options[x],
key="new_window_glass_type"
)
# Get glass properties
glass_data = ref_data.get_glass_type(glass_type)
window_u_value = glass_data['u_value']
with col2:
window_area = st.number_input(
"Window Area (m²)",
value=2.0,
min_value=0.1,
step=0.1,
key="new_window_area"
)
shading = st.selectbox(
"Shading",
options=list(shading_options.keys()),
format_func=lambda x: shading_options[x],
key="new_window_shading"
)
# Get shading factor
shading_data = ref_data.get_shading_factor(shading)
shade_factor = shading_data['factor']
st.write(f"Glass U-Value: {window_u_value} W/m²°C")
st.write(f"Conduction Heat Transfer: {window_u_value * window_area * temp_diff:.2f} W")
# Add window button
if st.button("Add Window"):
# Calculate solar heat gain factor
calculator = CoolingLoadCalculator()
shgf = calculator.get_solar_heat_gain_factor(
orientation=orientation,
glass_type=glass_type,
daily_range=daily_range
)
new_window = {
'name': window_name if window_name else f"Window {len(st.session_state.cooling_form_data['windows']['windows']) + 1}",
'orientation': orientation,
'glass_type': glass_type,
'shading': shading,
'area': window_area,
'u_value': window_u_value,
'shgf': shgf,
'shade_factor': shade_factor,
'temp_diff': temp_diff
}
st.session_state.cooling_form_data['windows']['windows'].append(new_window)
st.experimental_rerun()
# Doors section
st.write("### Doors")
# Display existing door entries
if st.session_state.cooling_form_data['windows']['doors']:
st.write("Current doors:")
doors_df = pd.DataFrame(st.session_state.cooling_form_data['windows']['doors'])
doors_df = doors_df[['name', 'type', 'area', 'u_value']]
doors_df.columns = ['Name', 'Type', 'Area (m²)', 'U-Value (W/m²°C)']
st.dataframe(doors_df)
# Add new door form
st.write("Add a new door:")
col1, col2 = st.columns(2)
with col1:
door_name = st.text_input("Door Name", value="", key="new_door_name")
door_type = st.selectbox(
"Door Type",
options=["Solid wood", "Hollow core", "Glass", "Insulated"],
key="new_door_type"
)
# Set U-value based on door type
door_u_values = {
"Solid wood": 2.0,
"Hollow core": 2.5,
"Glass": 5.0,
"Insulated": 1.2
}
door_u_value = door_u_values[door_type]
with col2:
door_area = st.number_input(
"Door Area (m²)",
value=2.0,
min_value=0.1,
step=0.1,
key="new_door_area"
)
st.write(f"Door U-Value: {door_u_value} W/m²°C")
st.write(f"Heat Transfer: {door_u_value * door_area * temp_diff:.2f} W")
# Add door button
if st.button("Add Door"):
new_door = {
'name': door_name if door_name else f"Door {len(st.session_state.cooling_form_data['windows']['doors']) + 1}",
'type': door_type,
'area': door_area,
'u_value': door_u_value,
'temp_diff': temp_diff
}
st.session_state.cooling_form_data['windows']['doors'].append(new_door)
st.experimental_rerun()
# Validate inputs
warnings = []
# Check if windows are defined
if not st.session_state.cooling_form_data['windows']['windows']:
warnings.append(ValidationWarning(
"No windows defined",
"Add at least one window to continue"
))
# Check window-to-wall ratio
if st.session_state.cooling_form_data['windows']['windows']:
total_window_area = sum(window['area'] for window in st.session_state.cooling_form_data['windows']['windows'])
total_wall_area = sum(wall['area'] for wall in st.session_state.cooling_form_data['building_envelope']['walls'])
window_wall_ratio = total_window_area / total_wall_area if total_wall_area > 0 else 0
if window_wall_ratio > 0.6:
warnings.append(ValidationWarning(
"High window-to-wall ratio",
f"Window-to-wall ratio is {window_wall_ratio:.2f}, which is unusually high. Typical ratios are 0.2-0.4."
))
# Save warnings to session state
st.session_state.cooling_warnings['windows'] = warnings
# Display warnings if any
if warnings:
st.warning("Please review the following warnings:")
for warning in warnings:
st.write(f"- {warning.message}" + (" (Critical)" if warning.is_critical else ""))
st.write(f" Suggestion: {warning.suggestion}")
# Mark this step as completed if there are no critical warnings
st.session_state.cooling_completed['windows'] = not any(w.is_critical for w in warnings)
# Navigation buttons
col1, col2 = st.columns([1, 1])
with col1:
prev_button = st.button("← Back: Building Envelope", key="windows_prev")
if prev_button:
st.session_state.cooling_active_tab = "building_envelope"
st.experimental_rerun()
with col2:
next_button = st.button("Next: Internal Loads →", key="windows_next")
if next_button:
st.session_state.cooling_active_tab = "internal_loads"
st.experimental_rerun()
def internal_loads_form(ref_data):
"""
Form for internal loads information.
Args:
ref_data: Reference data object
"""
st.subheader("Internal Loads")
st.write("Enter information about occupants, lighting, and equipment.")
# Initialize internal loads data if not already in session state
if 'occupants' not in st.session_state.cooling_form_data['internal_loads']:
st.session_state.cooling_form_data['internal_loads']['occupants'] = {
'count': 4,
'activity_level': 'seated_resting'
}
if 'lighting' not in st.session_state.cooling_form_data['internal_loads']:
st.session_state.cooling_form_data['internal_loads']['lighting'] = {
'type': 'led',
'power_density': 5.0 # W/m²
}
if 'appliances' not in st.session_state.cooling_form_data['internal_loads']:
st.session_state.cooling_form_data['internal_loads']['appliances'] = {
'kitchen': True,
'living_room': True,
'bedroom': True,
'office': False
}
# Occupants section
st.write("### Occupants")
col1, col2 = st.columns(2)
with col1:
occupant_count = st.number_input(
"Number of Occupants",
value=int(st.session_state.cooling_form_data['internal_loads']['occupants'].get('count', 4)),
min_value=1,
step=1
)
with col2:
# Get activity level options from reference data
activity_options = {act_id: act_data['name'] for act_id, act_data in ref_data.internal_loads['people'].items()}
activity_level = st.selectbox(
"Activity Level",
options=list(activity_options.keys()),
format_func=lambda x: activity_options[x],
index=list(activity_options.keys()).index(st.session_state.cooling_form_data['internal_loads']['occupants'].get('activity_level', 'seated_resting')) if st.session_state.cooling_form_data['internal_loads']['occupants'].get('activity_level') in activity_options else 0
)
# Get heat gain per person
activity_data = ref_data.get_internal_load('people', activity_level)
sensible_heat_pp = activity_data['sensible_heat']
latent_heat_pp = activity_data['latent_heat']
total_heat_pp = sensible_heat_pp + latent_heat_pp
st.write(f"Heat gain per person: {total_heat_pp} W ({sensible_heat_pp} W sensible + {latent_heat_pp} W latent)")
st.write(f"Total occupant heat gain: {total_heat_pp * occupant_count} W")
# Save occupants data
st.session_state.cooling_form_data['internal_loads']['occupants'] = {
'count': occupant_count,
'activity_level': activity_level,
'sensible_heat_pp': sensible_heat_pp,
'latent_heat_pp': latent_heat_pp,
'total_heat_gain': total_heat_pp * occupant_count
}
# Lighting section
st.write("### Lighting")
col1, col2 = st.columns(2)
with col1:
# Get lighting type options from reference data
lighting_options = {light_id: light_data['name'] for light_id, light_data in ref_data.internal_loads['lighting'].items()}
lighting_type = st.selectbox(
"Lighting Type",
options=list(lighting_options.keys()),
format_func=lambda x: lighting_options[x],
index=list(lighting_options.keys()).index(st.session_state.cooling_form_data['internal_loads']['lighting'].get('type', 'led')) if st.session_state.cooling_form_data['internal_loads']['lighting'].get('type') in lighting_options else 0
)
with col2:
lighting_power_density = st.number_input(
"Lighting Power Density (W/m²)",
value=float(st.session_state.cooling_form_data['internal_loads']['lighting'].get('power_density', 5.0)),
min_value=1.0,
max_value=20.0,
step=0.5,
help="Typical values: Residential 5-10 W/m², Office 10-15 W/m²"
)
# Get lighting heat factor
lighting_data = ref_data.get_internal_load('lighting', lighting_type)
lighting_heat_factor = lighting_data['heat_factor']
# Calculate lighting heat gain
floor_area = st.session_state.cooling_form_data['building_info'].get('floor_area', 80.0)
lighting_heat_gain = lighting_power_density * floor_area * lighting_heat_factor
st.write(f"Lighting heat factor: {lighting_heat_factor}")
st.write(f"Total lighting heat gain: {lighting_heat_gain:.2f} W")
# Save lighting data
st.session_state.cooling_form_data['internal_loads']['lighting'] = {
'type': lighting_type,
'power_density': lighting_power_density,
'heat_factor': lighting_heat_factor,
'total_heat_gain': lighting_heat_gain
}
# Appliances section
st.write("### Appliances")
# Get appliance options from reference data
appliance_options = {app_id: app_data for app_id, app_data in ref_data.internal_loads['appliances'].items()}
col1, col2 = st.columns(2)
with col1:
has_kitchen = st.checkbox(
"Kitchen Appliances",
value=st.session_state.cooling_form_data['internal_loads']['appliances'].get('kitchen', True),
help=f"Heat gain: {appliance_options['kitchen']['heat_gain']} W"
)
has_living_room = st.checkbox(
"Living Room Appliances",
value=st.session_state.cooling_form_data['internal_loads']['appliances'].get('living_room', True),
help=f"Heat gain: {appliance_options['living_room']['heat_gain']} W"
)
with col2:
has_bedroom = st.checkbox(
"Bedroom Appliances",
value=st.session_state.cooling_form_data['internal_loads']['appliances'].get('bedroom', True),
help=f"Heat gain: {appliance_options['bedroom']['heat_gain']} W"
)
has_office = st.checkbox(
"Home Office Equipment",
value=st.session_state.cooling_form_data['internal_loads']['appliances'].get('office', False),
help=f"Heat gain: {appliance_options['office']['heat_gain']} W"
)
# Calculate appliance heat gain
appliance_heat_gain = 0
if has_kitchen:
appliance_heat_gain += appliance_options['kitchen']['heat_gain']
if has_living_room:
appliance_heat_gain += appliance_options['living_room']['heat_gain']
if has_bedroom:
appliance_heat_gain += appliance_options['bedroom']['heat_gain']
if has_office:
appliance_heat_gain += appliance_options['office']['heat_gain']
st.write(f"Total appliance heat gain: {appliance_heat_gain} W")
# Save appliances data
st.session_state.cooling_form_data['internal_loads']['appliances'] = {
'kitchen': has_kitchen,
'living_room': has_living_room,
'bedroom': has_bedroom,
'office': has_office,
'total_heat_gain': appliance_heat_gain
}
# Calculate total internal heat gain
total_internal_gain = (
st.session_state.cooling_form_data['internal_loads']['occupants']['total_heat_gain'] +
st.session_state.cooling_form_data['internal_loads']['lighting']['total_heat_gain'] +
st.session_state.cooling_form_data['internal_loads']['appliances']['total_heat_gain']
)
st.info(f"Total Internal Heat Gain: {total_internal_gain:.2f} W")
# Save total internal gain
st.session_state.cooling_form_data['internal_loads']['total_internal_gain'] = total_internal_gain
# Validate inputs
warnings = []
# Check if occupant count is reasonable for the floor area
floor_area = st.session_state.cooling_form_data['building_info'].get('floor_area', 80.0)
area_per_person = floor_area / occupant_count if occupant_count > 0 else float('inf')
if area_per_person < 10:
warnings.append(ValidationWarning(
"High occupant density",
f"Area per person ({area_per_person:.2f} m²) is low. Typical residential values are 20-30 m² per person."
))
# Check if lighting power density is reasonable
if lighting_power_density > 15:
warnings.append(ValidationWarning(
"High lighting power density",
"Lighting power density exceeds 15 W/m², which is high for residential buildings."
))
# Save warnings to session state
st.session_state.cooling_warnings['internal_loads'] = warnings
# Display warnings if any
if warnings:
st.warning("Please review the following warnings:")
for warning in warnings:
st.write(f"- {warning.message}" + (" (Critical)" if warning.is_critical else ""))
st.write(f" Suggestion: {warning.suggestion}")
# Mark this step as completed if there are no critical warnings
st.session_state.cooling_completed['internal_loads'] = not any(w.is_critical for w in warnings)
# Navigation buttons
col1, col2 = st.columns([1, 1])
with col1:
prev_button = st.button("← Back: Windows & Doors", key="internal_loads_prev")
if prev_button:
st.session_state.cooling_active_tab = "windows"
st.experimental_rerun()
with col2:
next_button = st.button("Next: Ventilation →", key="internal_loads_next")
if next_button:
st.session_state.cooling_active_tab = "ventilation"
st.experimental_rerun()
def ventilation_form(ref_data):
"""
Form for ventilation and infiltration information.
Args:
ref_data: Reference data object
"""
st.subheader("Ventilation & Infiltration")
st.write("Enter information about ventilation and infiltration rates.")
# Get building info
building_info = st.session_state.cooling_form_data['building_info']
volume = building_info.get('volume', 216.0)
temp_diff = building_info.get('temp_diff', 11.0)
# Initialize ventilation data if not already in session state
if 'infiltration' not in st.session_state.cooling_form_data['ventilation']:
st.session_state.cooling_form_data['ventilation']['infiltration'] = {
'air_changes': 0.5
}
if 'ventilation' not in st.session_state.cooling_form_data['ventilation']:
st.session_state.cooling_form_data['ventilation']['ventilation'] = {
'type': 'natural',
'air_changes': 0.0
}
# Infiltration section
st.write("### Infiltration")
st.write("Infiltration is the unintended air leakage through the building envelope.")
infiltration_ach = st.slider(
"Infiltration Rate (air changes per hour)",
value=float(st.session_state.cooling_form_data['ventilation']['infiltration'].get('air_changes', 0.5)),
min_value=0.1,
max_value=2.0,
step=0.1,
help="Typical values: 0.5 ACH for modern construction, 1.0 ACH for average construction, 1.5+ ACH for older buildings"
)
# Calculate infiltration heat gain
infiltration_heat_gain = 0.33 * volume * infiltration_ach * temp_diff
st.write(f"Infiltration heat gain: {infiltration_heat_gain:.2f} W")
# Save infiltration data
st.session_state.cooling_form_data['ventilation']['infiltration'] = {
'air_changes': infiltration_ach,
'volume': volume,
'temp_diff': temp_diff,
'heat_gain': infiltration_heat_gain
}
# Ventilation section
st.write("### Ventilation")
st.write("Ventilation is the intentional introduction of outside air into the building.")
col1, col2 = st.columns(2)
with col1:
ventilation_type = st.selectbox(
"Ventilation Type",
options=["natural", "mechanical", "mixed"],
format_func=lambda x: x.capitalize(),
index=["natural", "mechanical", "mixed"].index(st.session_state.cooling_form_data['ventilation']['ventilation'].get('type', 'natural'))
)
with col2:
ventilation_ach = st.number_input(
"Ventilation Rate (air changes per hour)",
value=float(st.session_state.cooling_form_data['ventilation']['ventilation'].get('air_changes', 0.0)),
min_value=0.0,
max_value=5.0,
step=0.1,
help="Typical values: 0.35-1.0 ACH for residential buildings"
)
# Calculate ventilation heat gain
ventilation_heat_gain = 0.33 * volume * ventilation_ach * temp_diff
st.write(f"Ventilation heat gain: {ventilation_heat_gain:.2f} W")
# Save ventilation data
st.session_state.cooling_form_data['ventilation']['ventilation'] = {
'type': ventilation_type,
'air_changes': ventilation_ach,
'volume': volume,
'temp_diff': temp_diff,
'heat_gain': ventilation_heat_gain
}
# Calculate total ventilation and infiltration heat gain
total_ventilation_gain = infiltration_heat_gain + ventilation_heat_gain
st.info(f"Total Ventilation & Infiltration Heat Gain: {total_ventilation_gain:.2f} W")
# Save total ventilation gain
st.session_state.cooling_form_data['ventilation']['total_gain'] = total_ventilation_gain
# Validate inputs
warnings = []
# Check if infiltration rate is reasonable
if infiltration_ach < 0.3:
warnings.append(ValidationWarning(
"Low infiltration rate",
"Infiltration rate below 0.3 ACH is unusually low for most buildings."
))
elif infiltration_ach > 1.5:
warnings.append(ValidationWarning(
"High infiltration rate",
"Infiltration rate above 1.5 ACH indicates a leaky building envelope."
))
# Check if ventilation rate is reasonable
if ventilation_ach > 0 and ventilation_ach < 0.35:
warnings.append(ValidationWarning(
"Low ventilation rate",
"Ventilation rate below 0.35 ACH may not provide adequate fresh air."
))
elif ventilation_ach > 2.0:
warnings.append(ValidationWarning(
"High ventilation rate",
"Ventilation rate above 2.0 ACH is unusually high for residential buildings."
))
# Save warnings to session state
st.session_state.cooling_warnings['ventilation'] = warnings
# Display warnings if any
if warnings:
st.warning("Please review the following warnings:")
for warning in warnings:
st.write(f"- {warning.message}" + (" (Critical)" if warning.is_critical else ""))
st.write(f" Suggestion: {warning.suggestion}")
# Mark this step as completed if there are no critical warnings
st.session_state.cooling_completed['ventilation'] = not any(w.is_critical for w in warnings)
# Navigation buttons
col1, col2 = st.columns([1, 1])
with col1:
prev_button = st.button("← Back: Internal Loads", key="ventilation_prev")
if prev_button:
st.session_state.cooling_active_tab = "internal_loads"
st.experimental_rerun()
with col2:
calculate_button = st.button("Calculate Results →", key="ventilation_calculate")
if calculate_button:
# Calculate cooling load
calculate_cooling_load()
st.session_state.cooling_active_tab = "results"
st.experimental_rerun()
def calculate_cooling_load():
"""Calculate cooling load based on input data."""
# Create calculator instance
calculator = CoolingLoadCalculator()
# Get form data
form_data = st.session_state.cooling_form_data
# Prepare building components for calculation
building_components = []
# Add walls
for wall in form_data['building_envelope'].get('walls', []):
building_components.append({
'name': wall['name'],
'area': wall['area'],
'u_value': wall['u_value'],
'temp_diff': wall['temp_diff']
})
# Add roof
roof = form_data['building_envelope'].get('roof', {})
if roof:
building_components.append({
'name': 'Roof',
'area': roof['area'],
'u_value': roof['u_value'],
'temp_diff': roof['temp_diff']
})
# Add floor
floor = form_data['building_envelope'].get('floor', {})
if floor:
building_components.append({
'name': 'Floor',
'area': floor['area'],
'u_value': floor['u_value'],
'temp_diff': floor['temp_diff']
})
# Prepare windows for calculation
windows = []
for window in form_data['windows'].get('windows', []):
windows.append({
'name': window['name'],
'area': window['area'],
'u_value': window['u_value'],
'orientation': window['orientation'],
'glass_type': window['glass_type'],
'shading': window['shading'],
'shgf': window['shgf'],
'shade_factor': 1.0 - window['shade_factor'],
'temp_diff': window['temp_diff']
})
# Add doors to building components
for door in form_data['windows'].get('doors', []):
building_components.append({
'name': door['name'],
'area': door['area'],
'u_value': door['u_value'],
'temp_diff': door['temp_diff']
})
# Prepare infiltration data
infiltration = form_data['ventilation'].get('infiltration', {})
ventilation = form_data['ventilation'].get('ventilation', {})
infiltration_data = {
'volume': infiltration.get('volume', 0),
'air_changes': infiltration.get('air_changes', 0) + ventilation.get('air_changes', 0),
'temp_diff': infiltration.get('temp_diff', 0)
}
# Prepare internal gains data
internal_gains = {
'num_people': form_data['internal_loads'].get('occupants', {}).get('count', 0),
'has_kitchen': form_data['internal_loads'].get('appliances', {}).get('kitchen', False),
'equipment_watts': (
form_data['internal_loads'].get('lighting', {}).get('total_heat_gain', 0) +
form_data['internal_loads'].get('appliances', {}).get('total_heat_gain', 0) -
(1000 if form_data['internal_loads'].get('appliances', {}).get('kitchen', False) else 0) # Subtract kitchen heat gain if included
)
}
# Calculate cooling load
results = calculator.calculate_total_cooling_load(
building_components=building_components,
windows=windows,
infiltration=infiltration_data,
internal_gains=internal_gains
)
# Save results to session state
st.session_state.cooling_results = results
# Add timestamp
st.session_state.cooling_results['timestamp'] = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# Add building info
st.session_state.cooling_results['building_info'] = form_data['building_info']
return results
def results_page():
"""Display calculation results."""
st.subheader("Cooling Load Calculation Results")
# Check if results are available
if not st.session_state.cooling_results:
st.warning("No calculation results available. Please complete the input forms and calculate results.")
return
# Get results
results = st.session_state.cooling_results
# Display summary
st.write("### Summary")
col1, col2 = st.columns(2)
with col1:
st.metric("Sensible Cooling Load", f"{results['sensible_load']:.2f} W")
st.metric("Total Cooling Load", f"{results['total_load']:.2f} W")
# Convert to kW
total_load_kw = results['total_load'] / 1000
st.metric("Total Cooling Load", f"{total_load_kw:.2f} kW")
with col2:
st.metric("Latent Cooling Load", f"{results['latent_load']:.2f} W")
# Calculate cooling load per area
floor_area = results['building_info'].get('floor_area', 80.0)
cooling_load_per_area = results['total_load'] / floor_area
st.metric("Cooling Load per Area", f"{cooling_load_per_area:.2f} W/m²")
# Equipment sizing recommendation
# Add 10% safety factor
recommended_size = total_load_kw * 1.1
st.metric("Recommended Equipment Size", f"{recommended_size:.2f} kW")
# Display load breakdown
st.write("### Load Breakdown")
# Prepare data for pie chart
load_components = {
'Conduction (Opaque Surfaces)': results['conduction_gain'],
'Conduction (Windows)': results['window_conduction_gain'],
'Solar Radiation (Windows)': results['window_solar_gain'],
'Infiltration & Ventilation': results['infiltration_gain'],
'Internal Gains': results['internal_gain']
}
# Create pie chart
fig = px.pie(
values=list(load_components.values()),
names=list(load_components.keys()),
title="Cooling Load Components",
color_discrete_sequence=px.colors.sequential.Turbo,
hole=0.4, # Create a donut chart for better readability
labels={'label': 'Component', 'value': 'Heat Gain (W)'}
)
# Improve layout and formatting
fig.update_traces(
textposition='inside',
textinfo='percent+label',
hoverinfo='label+percent+value',
marker=dict(line=dict(color='#FFFFFF', width=2))
)
# Improve layout
fig.update_layout(
legend_title_text='Load Components',
font=dict(size=14),
title_font=dict(size=18),
title_x=0.5, # Center the title
margin=dict(t=50, b=50, l=50, r=50)
)
st.plotly_chart(fig)
# Display load components in a table
load_df = pd.DataFrame({
'Component': list(load_components.keys()),
'Load (W)': list(load_components.values()),
'Percentage (%)': [value / results['sensible_load'] * 100 for value in load_components.values()]
})
# Sort by load value for better readability
load_df = load_df.sort_values(by='Load (W)', ascending=False).reset_index(drop=True)
st.dataframe(load_df.style.format({
'Load (W)': '{:.2f}',
'Percentage (%)': '{:.2f}'
}).background_gradient(cmap='Blues', subset=['Percentage (%)']))
# Display detailed results
st.write("### Detailed Results")
# Create tabs for different result sections
tabs = st.tabs([
"Building Envelope",
"Windows & Doors",
"Internal Loads",
"Ventilation"
])
with tabs[0]:
st.subheader("Building Envelope Heat Gains")
# Get building components
building_components = []
# Add walls
for wall in st.session_state.cooling_form_data['building_envelope'].get('walls', []):
building_components.append({
'Component': wall['name'],
'Area (m²)': wall['area'],
'U-Value (W/m²°C)': wall['u_value'],
'Temperature Difference (°C)': wall['temp_diff'],
'Heat Gain (W)': wall['area'] * wall['u_value'] * wall['temp_diff']
})
# Add roof
roof = st.session_state.cooling_form_data['building_envelope'].get('roof', {})
if roof:
building_components.append({
'Component': 'Roof',
'Area (m²)': roof['area'],
'U-Value (W/m²°C)': roof['u_value'],
'Temperature Difference (°C)': roof['temp_diff'],
'Heat Gain (W)': roof['area'] * roof['u_value'] * roof['temp_diff']
})
# Add floor
floor = st.session_state.cooling_form_data['building_envelope'].get('floor', {})
if floor:
building_components.append({
'Component': 'Floor',
'Area (m²)': floor['area'],
'U-Value (W/m²°C)': floor['u_value'],
'Temperature Difference (°C)': floor['temp_diff'],
'Heat Gain (W)': floor['area'] * floor['u_value'] * floor['temp_diff']
})
# Create dataframe
envelope_df = pd.DataFrame(building_components)
# Display table
st.dataframe(envelope_df.style.format({
'Area (m²)': '{:.2f}',
'U-Value (W/m²°C)': '{:.2f}',
'Temperature Difference (°C)': '{:.2f}',
'Heat Gain (W)': '{:.2f}'
}))
# Create bar chart
fig = px.bar(
envelope_df,
x='Component',
y='Heat Gain (W)',
title="Heat Gain by Building Component",
color='Component',
color_discrete_sequence=px.colors.qualitative.Set3
)
st.plotly_chart(fig)
with tabs[1]:
st.subheader("Windows & Doors Heat Gains")
# Windows section
st.write("#### Windows")
# Get windows
windows_data = []
for window in st.session_state.cooling_form_data['windows'].get('windows', []):
windows_data.append({
'Component': window['name'],
'Orientation': window['orientation'].capitalize(),
'Area (m²)': window['area'],
'U-Value (W/m²°C)': window['u_value'],
'Temperature Difference (°C)': window['temp_diff'],
'Conduction Heat Gain (W)': window['area'] * window['u_value'] * window['temp_diff'],
'Solar Heat Gain Factor (W/m²)': window['shgf'],
'Shading Factor': 1.0 - window['shade_factor'],
'Solar Heat Gain (W)': window['area'] * window['shgf'] * (1.0 - window['shade_factor']),
'Total Heat Gain (W)': (window['area'] * window['u_value'] * window['temp_diff']) +
(window['area'] * window['shgf'] * (1.0 - window['shade_factor']))
})
if windows_data:
# Create dataframe
windows_df = pd.DataFrame(windows_data)
# Display table
st.dataframe(windows_df.style.format({
'Area (m²)': '{:.2f}',
'U-Value (W/m²°C)': '{:.2f}',
'Temperature Difference (°C)': '{:.2f}',
'Conduction Heat Gain (W)': '{:.2f}',
'Solar Heat Gain Factor (W/m²)': '{:.2f}',
'Shading Factor': '{:.2f}',
'Solar Heat Gain (W)': '{:.2f}',
'Total Heat Gain (W)': '{:.2f}'
}))
# Create grouped bar chart
fig = go.Figure()
fig.add_trace(go.Bar(
x=windows_df['Component'],
y=windows_df['Conduction Heat Gain (W)'],
name='Conduction Heat Gain',
marker_color='#1f77b4',
text=windows_df['Conduction Heat Gain (W)'].round(1),
textposition='auto',
hovertemplate='<b>%{x}</b><br>Conduction Heat Gain: %{y:.1f} W<extra></extra>'
))
fig.add_trace(go.Bar(
x=windows_df['Component'],
y=windows_df['Solar Heat Gain (W)'],
name='Solar Heat Gain',
marker_color='#ff7f0e',
text=windows_df['Solar Heat Gain (W)'].round(1),
textposition='auto',
hovertemplate='<b>%{x}</b><br>Solar Heat Gain: %{y:.1f} W<extra></extra>'
))
fig.update_layout(
title="Window Heat Gains",
xaxis_title="Window",
yaxis_title="Heat Gain (W)",
barmode='stack',
font=dict(size=14),
title_font=dict(size=18),
title_x=0.5, # Center the title
margin=dict(t=50, b=50, l=50, r=50),
legend=dict(
orientation="h",
yanchor="bottom",
y=1.02,
xanchor="right",
x=1
)
)
st.plotly_chart(fig)
else:
st.write("No windows defined.")
# Doors section
st.write("#### Doors")
# Get doors
doors_data = []
for door in st.session_state.cooling_form_data['windows'].get('doors', []):
doors_data.append({
'Component': door['name'],
'Type': door['type'],
'Area (m²)': door['area'],
'U-Value (W/m²°C)': door['u_value'],
'Temperature Difference (°C)': door['temp_diff'],
'Heat Gain (W)': door['area'] * door['u_value'] * door['temp_diff']
})
if doors_data:
# Create dataframe
doors_df = pd.DataFrame(doors_data)
# Display table
st.dataframe(doors_df.style.format({
'Area (m²)': '{:.2f}',
'U-Value (W/m²°C)': '{:.2f}',
'Temperature Difference (°C)': '{:.2f}',
'Heat Gain (W)': '{:.2f}'
}))
# Create bar chart
fig = px.bar(
doors_df,
x='Component',
y='Heat Gain (W)',
title="Door Heat Gains",
color='Type',
color_discrete_sequence=px.colors.qualitative.Pastel
)
st.plotly_chart(fig)
else:
st.write("No doors defined.")
with tabs[2]:
st.subheader("Internal Heat Gains")
# Get internal loads data
internal_loads = st.session_state.cooling_form_data['internal_loads']
# Create dataframe
internal_loads_data = [
{
'Source': 'Occupants',
'Details': f"{internal_loads['occupants']['count']} people",
'Heat Gain (W)': internal_loads['occupants']['total_heat_gain']
},
{
'Source': 'Lighting',
'Details': f"{internal_loads['lighting']['type']} lighting",
'Heat Gain (W)': internal_loads['lighting']['total_heat_gain']
},
{
'Source': 'Appliances',
'Details': ', '.join([k for k, v in internal_loads['appliances'].items() if v and k != 'total_heat_gain']),
'Heat Gain (W)': internal_loads['appliances']['total_heat_gain']
}
]
internal_loads_df = pd.DataFrame(internal_loads_data)
# Display table
st.dataframe(internal_loads_df.style.format({
'Heat Gain (W)': '{:.2f}'
}))
# Create bar chart
fig = px.bar(
internal_loads_df,
x='Source',
y='Heat Gain (W)',
title="Internal Heat Gains",
color='Source',
color_discrete_sequence=px.colors.qualitative.Pastel1
)
st.plotly_chart(fig)
with tabs[3]:
st.subheader("Ventilation & Infiltration Heat Gains")
# Get ventilation data
ventilation_data = st.session_state.cooling_form_data['ventilation']
# Create dataframe
ventilation_df = pd.DataFrame([
{
'Source': 'Infiltration',
'Air Changes per Hour': ventilation_data['infiltration']['air_changes'],
'Volume (m³)': ventilation_data['infiltration']['volume'],
'Temperature Difference (°C)': ventilation_data['infiltration']['temp_diff'],
'Heat Gain (W)': ventilation_data['infiltration']['heat_gain']
},
{
'Source': 'Ventilation',
'Air Changes per Hour': ventilation_data['ventilation']['air_changes'],
'Volume (m³)': ventilation_data['ventilation']['volume'],
'Temperature Difference (°C)': ventilation_data['ventilation']['temp_diff'],
'Heat Gain (W)': ventilation_data['ventilation']['heat_gain']
}
])
# Display table
st.dataframe(ventilation_df.style.format({
'Air Changes per Hour': '{:.2f}',
'Volume (m³)': '{:.2f}',
'Temperature Difference (°C)': '{:.2f}',
'Heat Gain (W)': '{:.2f}'
}))
# Create bar chart
fig = px.bar(
ventilation_df,
x='Source',
y='Heat Gain (W)',
title="Ventilation & Infiltration Heat Gains",
color='Source',
color_discrete_sequence=px.colors.qualitative.Pastel2
)
st.plotly_chart(fig)
# Export options
st.write("### Export Options")
col1, col2 = st.columns(2)
with col1:
if st.button("Export Results as CSV"):
# Create a CSV file with results
csv_data = export_data(st.session_state.cooling_form_data, st.session_state.cooling_results, format='csv')
# Provide download link
st.download_button(
label="Download CSV",
data=csv_data,
file_name=f"cooling_load_results_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
mime="text/csv"
)
with col2:
if st.button("Export Results as JSON"):
# Create a JSON file with results
json_data = export_data(st.session_state.cooling_form_data, st.session_state.cooling_results, format='json')
# Provide download link
st.download_button(
label="Download JSON",
data=json_data,
file_name=f"cooling_load_results_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json",
mime="application/json"
)
# Navigation buttons
col1, col2 = st.columns([1, 1])
with col1:
prev_button = st.button("← Back: Ventilation", key="results_prev")
if prev_button:
st.session_state.cooling_active_tab = "ventilation"
st.experimental_rerun()
with col2:
recalculate_button = st.button("Recalculate", key="results_recalculate")
if recalculate_button:
# Recalculate cooling load
calculate_cooling_load()
st.experimental_rerun()
def cooling_calculator():
"""Main function for the cooling load calculator page."""
st.title("Cooling Load Calculator")
# Initialize reference data
ref_data = ReferenceData()
# Initialize session state
load_session_state()
# Initialize active tab if not already set
if 'cooling_active_tab' not in st.session_state:
st.session_state.cooling_active_tab = "building_info"
# Create tabs for different steps
tabs = st.tabs([
"1. Building Information",
"2. Building Envelope",
"3. Windows & Doors",
"4. Internal Loads",
"5. Ventilation",
"6. Results"
])
# Add direct navigation buttons at the top
st.write("### Navigation")
st.write("Click on any button below to navigate directly to that section:")
col1, col2, col3 = st.columns(3)
with col1:
if st.button("1. Building Information", key="direct_nav_building_info"):
st.session_state.cooling_active_tab = "building_info"
st.experimental_rerun()
if st.button("2. Building Envelope", key="direct_nav_building_envelope"):
st.session_state.cooling_active_tab = "building_envelope"
st.experimental_rerun()
with col2:
if st.button("3. Windows & Doors", key="direct_nav_windows"):
st.session_state.cooling_active_tab = "windows"
st.experimental_rerun()
if st.button("4. Internal Loads", key="direct_nav_internal_loads"):
st.session_state.cooling_active_tab = "internal_loads"
st.experimental_rerun()
with col3:
if st.button("5. Ventilation", key="direct_nav_ventilation"):
st.session_state.cooling_active_tab = "ventilation"
st.experimental_rerun()
if st.button("6. Results", key="direct_nav_results"):
# Only enable if all previous steps are completed
if all(st.session_state.cooling_completed.values()):
st.session_state.cooling_active_tab = "results"
st.experimental_rerun()
else:
st.warning("Please complete all previous steps before viewing results.")
# Display the active tab
with tabs[0]:
if st.session_state.cooling_active_tab == "building_info":
building_info_form(ref_data)
with tabs[1]:
if st.session_state.cooling_active_tab == "building_envelope":
building_envelope_form(ref_data)
with tabs[2]:
if st.session_state.cooling_active_tab == "windows":
windows_form(ref_data)
with tabs[3]:
if st.session_state.cooling_active_tab == "internal_loads":
internal_loads_form(ref_data)
with tabs[4]:
if st.session_state.cooling_active_tab == "ventilation":
ventilation_form(ref_data)
with tabs[5]:
if st.session_state.cooling_active_tab == "results":
results_page()
if __name__ == "__main__":
cooling_calculator()
|