Spaces:
Sleeping
Sleeping
Upload 14 files
Browse files- .streamlit/config.toml +6 -0
- README.md +60 -7
- app.py +160 -0
- application_design.md +153 -0
- calculation_methods.py +446 -0
- cooling_load.py +237 -0
- heating_load.py +246 -0
- pages/cooling_calculator.py +1636 -0
- pages/heating_calculator.py +1435 -0
- reference_data.py +616 -0
- requirements.txt +4 -0
- runtime.txt +2 -0
- utils/export.py +196 -0
- utils/validation.py +93 -0
.streamlit/config.toml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[theme]
|
2 |
+
primaryColor = "#1E88E5"
|
3 |
+
backgroundColor = "#FFFFFF"
|
4 |
+
secondaryBackgroundColor = "#F0F2F6"
|
5 |
+
textColor = "#262730"
|
6 |
+
font = "sans serif"
|
README.md
CHANGED
@@ -1,13 +1,66 @@
|
|
1 |
---
|
2 |
-
title: HVAC
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: streamlit
|
7 |
-
sdk_version: 1.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
short_description: HVAC tool
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: HVAC Load Calculator
|
3 |
+
emoji: 🔥❄️
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: indigo
|
6 |
sdk: streamlit
|
7 |
+
sdk_version: 1.32.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
|
12 |
+
# HVAC Load Calculator
|
13 |
+
|
14 |
+
A modern web tool for calculating HVAC cooling and heating loads based on the ASHRAE method.
|
15 |
+
|
16 |
+
## Features
|
17 |
+
|
18 |
+
- **Separate Calculators**: Independent cooling and heating load calculators
|
19 |
+
- **Step-by-Step Input Forms**: Guided process with validation
|
20 |
+
- **Reference Data**: Comprehensive material properties and location data
|
21 |
+
- **Visual Results**: Charts and tables for load components
|
22 |
+
- **Smart Validation**: Proceed with warnings rather than blocking progress
|
23 |
+
- **Downloadable Data**: Export results for student assignments
|
24 |
+
- **ASHRAE Method**: Implementation based on industry-standard calculation methods
|
25 |
+
- **Extensible Design**: Framework for adding other calculation methods or locations
|
26 |
+
|
27 |
+
## How to Use
|
28 |
+
|
29 |
+
1. Select either the Cooling Load Calculator or Heating Load Calculator from the sidebar
|
30 |
+
2. Fill in the required information in each step
|
31 |
+
3. Review any warnings that appear (you can proceed with warnings)
|
32 |
+
4. Calculate results and analyze the output
|
33 |
+
5. Export results for your assignments
|
34 |
+
|
35 |
+
## Cooling Load Calculator
|
36 |
+
|
37 |
+
The cooling load calculator helps determine the amount of heat that needs to be removed from a space to maintain comfort conditions. It accounts for:
|
38 |
+
|
39 |
+
- Conduction through building envelope
|
40 |
+
- Solar radiation through windows
|
41 |
+
- Internal heat gains (people, equipment, lighting)
|
42 |
+
- Infiltration and ventilation
|
43 |
+
|
44 |
+
## Heating Load Calculator
|
45 |
+
|
46 |
+
The heating load calculator helps determine the amount of heat that needs to be added to a space to maintain comfort conditions. It accounts for:
|
47 |
+
|
48 |
+
- Conduction through building envelope
|
49 |
+
- Infiltration and ventilation
|
50 |
+
- Annual heating energy requirements based on heating degree days
|
51 |
+
|
52 |
+
## Technical Details
|
53 |
+
|
54 |
+
- Built with Python and Streamlit
|
55 |
+
- Modular design for extensibility
|
56 |
+
- Comprehensive reference data based on ASHRAE standards
|
57 |
+
- Visualization using Plotly
|
58 |
+
- Data export in CSV and JSON formats
|
59 |
+
|
60 |
+
## Educational Purpose
|
61 |
+
|
62 |
+
This tool is designed for educational purposes to help students understand the factors that influence HVAC load calculations. It provides a practical way to apply theoretical knowledge and see how different building parameters affect heating and cooling requirements.
|
63 |
+
|
64 |
+
## Acknowledgements
|
65 |
+
|
66 |
+
Based on ASHRAE calculation methods for heating and cooling loads.
|
app.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Main application file for HVAC Load Calculator
|
3 |
+
|
4 |
+
This is the main entry point for the HVAC Load Calculator web application.
|
5 |
+
It sets up the Streamlit interface and navigation between different pages.
|
6 |
+
"""
|
7 |
+
|
8 |
+
import streamlit as st
|
9 |
+
import os
|
10 |
+
import sys
|
11 |
+
from pathlib import Path
|
12 |
+
|
13 |
+
# Add the parent directory to sys.path to import modules
|
14 |
+
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
15 |
+
|
16 |
+
# Import pages
|
17 |
+
from pages.cooling_calculator import cooling_calculator
|
18 |
+
from pages.heating_calculator import heating_calculator
|
19 |
+
|
20 |
+
# Set page configuration
|
21 |
+
st.set_page_config(
|
22 |
+
page_title="HVAC Load Calculator",
|
23 |
+
page_icon="🔥❄️",
|
24 |
+
layout="wide",
|
25 |
+
initial_sidebar_state="expanded"
|
26 |
+
)
|
27 |
+
|
28 |
+
# Define main function
|
29 |
+
def main():
|
30 |
+
"""Main function for the HVAC Load Calculator web application."""
|
31 |
+
|
32 |
+
# Add custom CSS
|
33 |
+
st.markdown("""
|
34 |
+
<style>
|
35 |
+
.main-header {
|
36 |
+
font-size: 2.5rem;
|
37 |
+
color: #1E88E5;
|
38 |
+
text-align: center;
|
39 |
+
margin-bottom: 1rem;
|
40 |
+
}
|
41 |
+
.sub-header {
|
42 |
+
font-size: 1.5rem;
|
43 |
+
color: #424242;
|
44 |
+
margin-bottom: 1rem;
|
45 |
+
}
|
46 |
+
.info-box {
|
47 |
+
background-color: #E3F2FD;
|
48 |
+
padding: 1rem;
|
49 |
+
border-radius: 0.5rem;
|
50 |
+
margin-bottom: 1rem;
|
51 |
+
}
|
52 |
+
</style>
|
53 |
+
""", unsafe_allow_html=True)
|
54 |
+
|
55 |
+
# Sidebar navigation
|
56 |
+
st.sidebar.title("HVAC Load Calculator")
|
57 |
+
st.sidebar.image("https://img.icons8.com/fluency/96/air-conditioner.png", width=100)
|
58 |
+
|
59 |
+
# Navigation options
|
60 |
+
page = st.sidebar.radio(
|
61 |
+
"Select Calculator",
|
62 |
+
["Home", "Cooling Load Calculator", "Heating Load Calculator"]
|
63 |
+
)
|
64 |
+
|
65 |
+
# Display selected page
|
66 |
+
if page == "Home":
|
67 |
+
display_home_page()
|
68 |
+
elif page == "Cooling Load Calculator":
|
69 |
+
cooling_calculator()
|
70 |
+
elif page == "Heating Load Calculator":
|
71 |
+
heating_calculator()
|
72 |
+
|
73 |
+
# Footer
|
74 |
+
st.sidebar.markdown("---")
|
75 |
+
st.sidebar.info(
|
76 |
+
"HVAC Load Calculator v1.0\n\n"
|
77 |
+
"Based on ASHRAE calculation methods\n\n"
|
78 |
+
"© 2025"
|
79 |
+
)
|
80 |
+
|
81 |
+
|
82 |
+
def display_home_page():
|
83 |
+
"""Display the home page."""
|
84 |
+
|
85 |
+
st.markdown('<h1 class="main-header">HVAC Load Calculator</h1>', unsafe_allow_html=True)
|
86 |
+
st.markdown('<h2 class="sub-header">A Modern Tool for HVAC Design</h2>', unsafe_allow_html=True)
|
87 |
+
|
88 |
+
# Introduction
|
89 |
+
st.markdown("""
|
90 |
+
<div class="info-box">
|
91 |
+
<p>Welcome to the HVAC Load Calculator! This tool helps you calculate cooling and heating loads for buildings
|
92 |
+
using the ASHRAE method. It's designed for educational purposes to help students understand the factors
|
93 |
+
that influence HVAC load calculations.</p>
|
94 |
+
</div>
|
95 |
+
""", unsafe_allow_html=True)
|
96 |
+
|
97 |
+
# Features
|
98 |
+
st.markdown("### Features")
|
99 |
+
|
100 |
+
col1, col2 = st.columns(2)
|
101 |
+
|
102 |
+
with col1:
|
103 |
+
st.markdown("""
|
104 |
+
#### Cooling Load Calculator
|
105 |
+
- Calculate sensible and latent cooling loads
|
106 |
+
- Account for conduction, solar radiation, infiltration, and internal gains
|
107 |
+
- Visualize load components with charts and tables
|
108 |
+
- Export results for assignments
|
109 |
+
""")
|
110 |
+
|
111 |
+
with col2:
|
112 |
+
st.markdown("""
|
113 |
+
#### Heating Load Calculator
|
114 |
+
- Calculate peak heating loads
|
115 |
+
- Account for conduction, infiltration, and ventilation
|
116 |
+
- Estimate annual heating energy requirements
|
117 |
+
- Visualize load components with charts and tables
|
118 |
+
""")
|
119 |
+
|
120 |
+
# How to use
|
121 |
+
st.markdown("### How to Use")
|
122 |
+
st.markdown("""
|
123 |
+
1. Select either the Cooling Load Calculator or Heating Load Calculator from the sidebar
|
124 |
+
2. Fill in the required information in each step
|
125 |
+
3. Review any warnings that appear (you can proceed with warnings)
|
126 |
+
4. Calculate results and analyze the output
|
127 |
+
5. Export results for your assignments
|
128 |
+
""")
|
129 |
+
|
130 |
+
# Reference data
|
131 |
+
st.markdown("### Reference Data")
|
132 |
+
st.markdown("""
|
133 |
+
The calculator includes reference data for:
|
134 |
+
- Building materials (walls, roofs, floors)
|
135 |
+
- Glass types and shading coefficients
|
136 |
+
- Climate data for various locations
|
137 |
+
- Occupancy patterns and internal gains
|
138 |
+
|
139 |
+
This data is based on ASHRAE standards and guidelines.
|
140 |
+
""")
|
141 |
+
|
142 |
+
# Get started button
|
143 |
+
col1, col2, col3 = st.columns([1, 2, 1])
|
144 |
+
with col2:
|
145 |
+
st.markdown("### Get Started")
|
146 |
+
cooling_button = st.button("Go to Cooling Load Calculator")
|
147 |
+
heating_button = st.button("Go to Heating Load Calculator")
|
148 |
+
|
149 |
+
if cooling_button:
|
150 |
+
st.session_state.page = "Cooling Load Calculator"
|
151 |
+
st.experimental_rerun()
|
152 |
+
|
153 |
+
if heating_button:
|
154 |
+
st.session_state.page = "Heating Load Calculator"
|
155 |
+
st.experimental_rerun()
|
156 |
+
|
157 |
+
|
158 |
+
# Run the application
|
159 |
+
if __name__ == "__main__":
|
160 |
+
main()
|
application_design.md
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# HVAC Load Calculator Web Application Design
|
2 |
+
|
3 |
+
## Overview
|
4 |
+
This document outlines the structure and user flow for the HVAC Load Calculator web application. The application will be built using Python and deployed on Hugging Face Spaces, providing a user-friendly interface for calculating cooling and heating loads based on the ASHRAE method.
|
5 |
+
|
6 |
+
## Application Structure
|
7 |
+
|
8 |
+
### 1. Core Components
|
9 |
+
- **Backend Calculation Modules**
|
10 |
+
- `cooling_load.py`: Implements ASHRAE cooling load calculations
|
11 |
+
- `heating_load.py`: Implements ASHRAE heating load calculations
|
12 |
+
- `reference_data.py`: Contains material properties, climate data, and other reference information
|
13 |
+
|
14 |
+
- **Web Interface**
|
15 |
+
- `app.py`: Main Streamlit application entry point
|
16 |
+
- `pages/`: Directory containing individual calculator pages
|
17 |
+
- `cooling_calculator.py`: Cooling load calculator interface
|
18 |
+
- `heating_calculator.py`: Heating load calculator interface
|
19 |
+
- `about.py`: Information about the application and calculation methods
|
20 |
+
|
21 |
+
- **Utilities**
|
22 |
+
- `utils/`: Directory containing utility functions
|
23 |
+
- `validation.py`: Input validation functions
|
24 |
+
- `visualization.py`: Chart and table generation functions
|
25 |
+
- `export.py`: Data export functionality
|
26 |
+
|
27 |
+
### 2. Data Flow
|
28 |
+
```
|
29 |
+
User Input → Validation → Calculation → Results Visualization → Data Export
|
30 |
+
```
|
31 |
+
|
32 |
+
## User Flow
|
33 |
+
|
34 |
+
### Home Page
|
35 |
+
- Introduction to the application
|
36 |
+
- Selection between cooling and heating load calculators
|
37 |
+
- Information about ASHRAE calculation methods
|
38 |
+
- Links to reference materials
|
39 |
+
|
40 |
+
### Cooling Load Calculator
|
41 |
+
1. **Building Information**
|
42 |
+
- Building location
|
43 |
+
- Indoor and outdoor design temperatures
|
44 |
+
- Building dimensions and volume
|
45 |
+
|
46 |
+
2. **Building Envelope**
|
47 |
+
- Wall areas and construction types
|
48 |
+
- Roof/ceiling areas and construction types
|
49 |
+
- Floor areas and construction types
|
50 |
+
|
51 |
+
3. **Windows and Doors**
|
52 |
+
- Window areas by orientation
|
53 |
+
- Glass types and shading information
|
54 |
+
- Door areas and types
|
55 |
+
|
56 |
+
4. **Internal Loads**
|
57 |
+
- Number of occupants
|
58 |
+
- Lighting information
|
59 |
+
- Equipment and appliances
|
60 |
+
|
61 |
+
5. **Ventilation and Infiltration**
|
62 |
+
- Air changes per hour
|
63 |
+
- Ventilation requirements
|
64 |
+
|
65 |
+
6. **Results**
|
66 |
+
- Breakdown of cooling loads by component
|
67 |
+
- Total sensible and latent cooling loads
|
68 |
+
- Visualizations (charts and tables)
|
69 |
+
- Equipment sizing recommendations
|
70 |
+
- Option to download input and result data
|
71 |
+
|
72 |
+
### Heating Load Calculator
|
73 |
+
1. **Building Information**
|
74 |
+
- Building location
|
75 |
+
- Indoor and outdoor design temperatures
|
76 |
+
- Building dimensions and volume
|
77 |
+
|
78 |
+
2. **Building Envelope**
|
79 |
+
- Wall areas and construction types
|
80 |
+
- Roof/ceiling areas and construction types
|
81 |
+
- Floor areas and construction types
|
82 |
+
|
83 |
+
3. **Windows and Doors**
|
84 |
+
- Window areas by orientation
|
85 |
+
- Glass types
|
86 |
+
- Door areas and types
|
87 |
+
|
88 |
+
4. **Ventilation and Infiltration**
|
89 |
+
- Air changes per hour
|
90 |
+
- Ventilation requirements
|
91 |
+
|
92 |
+
5. **Occupancy Information**
|
93 |
+
- Occupancy type and schedule
|
94 |
+
- Heating degree days information
|
95 |
+
|
96 |
+
6. **Results**
|
97 |
+
- Breakdown of heating loads by component
|
98 |
+
- Total peak heating load
|
99 |
+
- Annual heating energy requirement
|
100 |
+
- Visualizations (charts and tables)
|
101 |
+
- Equipment sizing recommendations
|
102 |
+
- Option to download input and result data
|
103 |
+
|
104 |
+
## User Interface Design
|
105 |
+
|
106 |
+
### General Principles
|
107 |
+
- Clean, modern interface with clear navigation
|
108 |
+
- Step-by-step input forms with progress indicators
|
109 |
+
- Immediate feedback on inputs with validation warnings
|
110 |
+
- Informative tooltips and help text for technical terms
|
111 |
+
- Responsive design for different screen sizes
|
112 |
+
|
113 |
+
### Input Forms
|
114 |
+
- Grouped by logical sections
|
115 |
+
- Clear labels and units
|
116 |
+
- Default values where appropriate
|
117 |
+
- Input validation with warning messages
|
118 |
+
- Option to proceed with warnings rather than blocking progress
|
119 |
+
- Reference data selection for materials and locations
|
120 |
+
|
121 |
+
### Results Display
|
122 |
+
- Clear summary of key results
|
123 |
+
- Detailed breakdown of load components
|
124 |
+
- Visual representations (charts and graphs)
|
125 |
+
- Tabular data for detailed analysis
|
126 |
+
- Equipment sizing recommendations
|
127 |
+
- Export options for reports and assignments
|
128 |
+
|
129 |
+
## Validation System
|
130 |
+
- Input validation for required fields
|
131 |
+
- Range checking for numerical inputs
|
132 |
+
- Logical validation between related inputs
|
133 |
+
- Warning system that allows proceeding with caution
|
134 |
+
- Clear error messages with suggestions for correction
|
135 |
+
|
136 |
+
## Data Export Functionality
|
137 |
+
- Export input data in JSON format
|
138 |
+
- Export results in CSV format
|
139 |
+
- Generate PDF reports with inputs and results
|
140 |
+
- Save charts and visualizations as images
|
141 |
+
|
142 |
+
## Extensibility Features
|
143 |
+
- Modular code structure for easy addition of new calculation methods
|
144 |
+
- Configuration-based reference data for easy updates
|
145 |
+
- Pluggable visualization components
|
146 |
+
- Separation of UI and calculation logic
|
147 |
+
|
148 |
+
## Technology Stack
|
149 |
+
- **Backend**: Python
|
150 |
+
- **Web Framework**: Streamlit
|
151 |
+
- **Data Processing**: Pandas, NumPy
|
152 |
+
- **Visualization**: Plotly, Matplotlib
|
153 |
+
- **Deployment**: Hugging Face Spaces
|
calculation_methods.py
ADDED
@@ -0,0 +1,446 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Calculation Method Interface for HVAC Load Calculator
|
3 |
+
|
4 |
+
This module defines the interface for calculation methods in the HVAC Load Calculator.
|
5 |
+
It provides a base class that all calculation methods should inherit from.
|
6 |
+
"""
|
7 |
+
|
8 |
+
from abc import ABC, abstractmethod
|
9 |
+
|
10 |
+
|
11 |
+
class CalculationMethod(ABC):
|
12 |
+
"""
|
13 |
+
Abstract base class for HVAC load calculation methods.
|
14 |
+
|
15 |
+
All calculation methods should inherit from this class and implement
|
16 |
+
the required methods.
|
17 |
+
"""
|
18 |
+
|
19 |
+
@property
|
20 |
+
@abstractmethod
|
21 |
+
def name(self):
|
22 |
+
"""
|
23 |
+
Get the name of the calculation method.
|
24 |
+
|
25 |
+
Returns:
|
26 |
+
str: Name of the calculation method
|
27 |
+
"""
|
28 |
+
pass
|
29 |
+
|
30 |
+
@property
|
31 |
+
@abstractmethod
|
32 |
+
def description(self):
|
33 |
+
"""
|
34 |
+
Get the description of the calculation method.
|
35 |
+
|
36 |
+
Returns:
|
37 |
+
str: Description of the calculation method
|
38 |
+
"""
|
39 |
+
pass
|
40 |
+
|
41 |
+
@property
|
42 |
+
@abstractmethod
|
43 |
+
def version(self):
|
44 |
+
"""
|
45 |
+
Get the version of the calculation method.
|
46 |
+
|
47 |
+
Returns:
|
48 |
+
str: Version of the calculation method
|
49 |
+
"""
|
50 |
+
pass
|
51 |
+
|
52 |
+
@abstractmethod
|
53 |
+
def calculate(self, input_data):
|
54 |
+
"""
|
55 |
+
Perform the calculation.
|
56 |
+
|
57 |
+
Args:
|
58 |
+
input_data (dict): Input data for the calculation
|
59 |
+
|
60 |
+
Returns:
|
61 |
+
dict: Calculation results
|
62 |
+
"""
|
63 |
+
pass
|
64 |
+
|
65 |
+
@abstractmethod
|
66 |
+
def get_input_schema(self):
|
67 |
+
"""
|
68 |
+
Get the input schema for the calculation method.
|
69 |
+
|
70 |
+
Returns:
|
71 |
+
dict: JSON schema for input validation
|
72 |
+
"""
|
73 |
+
pass
|
74 |
+
|
75 |
+
@abstractmethod
|
76 |
+
def get_output_schema(self):
|
77 |
+
"""
|
78 |
+
Get the output schema for the calculation method.
|
79 |
+
|
80 |
+
Returns:
|
81 |
+
dict: JSON schema for output validation
|
82 |
+
"""
|
83 |
+
pass
|
84 |
+
|
85 |
+
|
86 |
+
class ASHRAECoolingMethod(CalculationMethod):
|
87 |
+
"""
|
88 |
+
ASHRAE method for cooling load calculation.
|
89 |
+
"""
|
90 |
+
|
91 |
+
@property
|
92 |
+
def name(self):
|
93 |
+
return "ASHRAE Cooling Load Method"
|
94 |
+
|
95 |
+
@property
|
96 |
+
def description(self):
|
97 |
+
return "Calculates cooling loads using the ASHRAE method for residential buildings."
|
98 |
+
|
99 |
+
@property
|
100 |
+
def version(self):
|
101 |
+
return "1.0"
|
102 |
+
|
103 |
+
def calculate(self, input_data):
|
104 |
+
"""
|
105 |
+
Calculate cooling load using the ASHRAE method.
|
106 |
+
|
107 |
+
Args:
|
108 |
+
input_data (dict): Input data for the calculation
|
109 |
+
|
110 |
+
Returns:
|
111 |
+
dict: Calculation results
|
112 |
+
"""
|
113 |
+
from cooling_load import CoolingLoadCalculator
|
114 |
+
|
115 |
+
calculator = CoolingLoadCalculator()
|
116 |
+
|
117 |
+
# Extract input data
|
118 |
+
building_components = input_data.get('building_components', [])
|
119 |
+
windows = input_data.get('windows', [])
|
120 |
+
infiltration = input_data.get('infiltration', {})
|
121 |
+
internal_gains = input_data.get('internal_gains', {})
|
122 |
+
|
123 |
+
# Perform calculation
|
124 |
+
results = calculator.calculate_total_cooling_load(
|
125 |
+
building_components=building_components,
|
126 |
+
windows=windows,
|
127 |
+
infiltration=infiltration,
|
128 |
+
internal_gains=internal_gains
|
129 |
+
)
|
130 |
+
|
131 |
+
return results
|
132 |
+
|
133 |
+
def get_input_schema(self):
|
134 |
+
"""
|
135 |
+
Get the input schema for the ASHRAE cooling load method.
|
136 |
+
|
137 |
+
Returns:
|
138 |
+
dict: JSON schema for input validation
|
139 |
+
"""
|
140 |
+
return {
|
141 |
+
"type": "object",
|
142 |
+
"properties": {
|
143 |
+
"building_components": {
|
144 |
+
"type": "array",
|
145 |
+
"items": {
|
146 |
+
"type": "object",
|
147 |
+
"properties": {
|
148 |
+
"name": {"type": "string"},
|
149 |
+
"area": {"type": "number", "minimum": 0},
|
150 |
+
"u_value": {"type": "number", "minimum": 0},
|
151 |
+
"temp_diff": {"type": "number"}
|
152 |
+
},
|
153 |
+
"required": ["area", "u_value", "temp_diff"]
|
154 |
+
}
|
155 |
+
},
|
156 |
+
"windows": {
|
157 |
+
"type": "array",
|
158 |
+
"items": {
|
159 |
+
"type": "object",
|
160 |
+
"properties": {
|
161 |
+
"name": {"type": "string"},
|
162 |
+
"area": {"type": "number", "minimum": 0},
|
163 |
+
"u_value": {"type": "number", "minimum": 0},
|
164 |
+
"orientation": {"type": "string", "enum": ["north", "east", "south", "west", "horizontal"]},
|
165 |
+
"glass_type": {"type": "string"},
|
166 |
+
"shading": {"type": "string"},
|
167 |
+
"shade_factor": {"type": "number", "minimum": 0, "maximum": 1},
|
168 |
+
"temp_diff": {"type": "number"}
|
169 |
+
},
|
170 |
+
"required": ["area", "u_value", "orientation", "temp_diff"]
|
171 |
+
}
|
172 |
+
},
|
173 |
+
"infiltration": {
|
174 |
+
"type": "object",
|
175 |
+
"properties": {
|
176 |
+
"volume": {"type": "number", "minimum": 0},
|
177 |
+
"air_changes": {"type": "number", "minimum": 0},
|
178 |
+
"temp_diff": {"type": "number"}
|
179 |
+
},
|
180 |
+
"required": ["volume", "air_changes", "temp_diff"]
|
181 |
+
},
|
182 |
+
"internal_gains": {
|
183 |
+
"type": "object",
|
184 |
+
"properties": {
|
185 |
+
"num_people": {"type": "integer", "minimum": 0},
|
186 |
+
"has_kitchen": {"type": "boolean"},
|
187 |
+
"equipment_watts": {"type": "number", "minimum": 0}
|
188 |
+
},
|
189 |
+
"required": ["num_people"]
|
190 |
+
}
|
191 |
+
},
|
192 |
+
"required": ["building_components", "infiltration", "internal_gains"]
|
193 |
+
}
|
194 |
+
|
195 |
+
def get_output_schema(self):
|
196 |
+
"""
|
197 |
+
Get the output schema for the ASHRAE cooling load method.
|
198 |
+
|
199 |
+
Returns:
|
200 |
+
dict: JSON schema for output validation
|
201 |
+
"""
|
202 |
+
return {
|
203 |
+
"type": "object",
|
204 |
+
"properties": {
|
205 |
+
"conduction_gain": {"type": "number"},
|
206 |
+
"window_conduction_gain": {"type": "number"},
|
207 |
+
"window_solar_gain": {"type": "number"},
|
208 |
+
"infiltration_gain": {"type": "number"},
|
209 |
+
"internal_gain": {"type": "number"},
|
210 |
+
"sensible_load": {"type": "number"},
|
211 |
+
"latent_load": {"type": "number"},
|
212 |
+
"total_load": {"type": "number"}
|
213 |
+
},
|
214 |
+
"required": ["sensible_load", "latent_load", "total_load"]
|
215 |
+
}
|
216 |
+
|
217 |
+
|
218 |
+
class ASHRAEHeatingMethod(CalculationMethod):
|
219 |
+
"""
|
220 |
+
ASHRAE method for heating load calculation.
|
221 |
+
"""
|
222 |
+
|
223 |
+
@property
|
224 |
+
def name(self):
|
225 |
+
return "ASHRAE Heating Load Method"
|
226 |
+
|
227 |
+
@property
|
228 |
+
def description(self):
|
229 |
+
return "Calculates heating loads using the ASHRAE method for residential buildings."
|
230 |
+
|
231 |
+
@property
|
232 |
+
def version(self):
|
233 |
+
return "1.0"
|
234 |
+
|
235 |
+
def calculate(self, input_data):
|
236 |
+
"""
|
237 |
+
Calculate heating load using the ASHRAE method.
|
238 |
+
|
239 |
+
Args:
|
240 |
+
input_data (dict): Input data for the calculation
|
241 |
+
|
242 |
+
Returns:
|
243 |
+
dict: Calculation results
|
244 |
+
"""
|
245 |
+
from heating_load import HeatingLoadCalculator
|
246 |
+
|
247 |
+
calculator = HeatingLoadCalculator()
|
248 |
+
|
249 |
+
# Extract input data
|
250 |
+
building_components = input_data.get('building_components', [])
|
251 |
+
infiltration = input_data.get('infiltration', {})
|
252 |
+
|
253 |
+
# Perform calculation
|
254 |
+
results = calculator.calculate_total_heating_load(
|
255 |
+
building_components=building_components,
|
256 |
+
infiltration=infiltration
|
257 |
+
)
|
258 |
+
|
259 |
+
# Calculate annual heating requirement if location and occupancy data are provided
|
260 |
+
if 'location' in input_data and 'occupancy_type' in input_data:
|
261 |
+
location = input_data.get('location')
|
262 |
+
occupancy_type = input_data.get('occupancy_type')
|
263 |
+
base_temp = input_data.get('base_temp', 18)
|
264 |
+
|
265 |
+
annual_results = calculator.calculate_annual_heating_requirement(
|
266 |
+
results['total_load'],
|
267 |
+
location,
|
268 |
+
occupancy_type,
|
269 |
+
base_temp
|
270 |
+
)
|
271 |
+
|
272 |
+
# Combine results
|
273 |
+
results.update(annual_results)
|
274 |
+
|
275 |
+
return results
|
276 |
+
|
277 |
+
def get_input_schema(self):
|
278 |
+
"""
|
279 |
+
Get the input schema for the ASHRAE heating load method.
|
280 |
+
|
281 |
+
Returns:
|
282 |
+
dict: JSON schema for input validation
|
283 |
+
"""
|
284 |
+
return {
|
285 |
+
"type": "object",
|
286 |
+
"properties": {
|
287 |
+
"building_components": {
|
288 |
+
"type": "array",
|
289 |
+
"items": {
|
290 |
+
"type": "object",
|
291 |
+
"properties": {
|
292 |
+
"name": {"type": "string"},
|
293 |
+
"area": {"type": "number", "minimum": 0},
|
294 |
+
"u_value": {"type": "number", "minimum": 0},
|
295 |
+
"temp_diff": {"type": "number", "minimum": 0}
|
296 |
+
},
|
297 |
+
"required": ["area", "u_value", "temp_diff"]
|
298 |
+
}
|
299 |
+
},
|
300 |
+
"infiltration": {
|
301 |
+
"type": "object",
|
302 |
+
"properties": {
|
303 |
+
"volume": {"type": "number", "minimum": 0},
|
304 |
+
"air_changes": {"type": "number", "minimum": 0},
|
305 |
+
"temp_diff": {"type": "number", "minimum": 0}
|
306 |
+
},
|
307 |
+
"required": ["volume", "air_changes", "temp_diff"]
|
308 |
+
},
|
309 |
+
"location": {"type": "string"},
|
310 |
+
"occupancy_type": {"type": "string"},
|
311 |
+
"base_temp": {"type": "number"}
|
312 |
+
},
|
313 |
+
"required": ["building_components", "infiltration"]
|
314 |
+
}
|
315 |
+
|
316 |
+
def get_output_schema(self):
|
317 |
+
"""
|
318 |
+
Get the output schema for the ASHRAE heating load method.
|
319 |
+
|
320 |
+
Returns:
|
321 |
+
dict: JSON schema for output validation
|
322 |
+
"""
|
323 |
+
return {
|
324 |
+
"type": "object",
|
325 |
+
"properties": {
|
326 |
+
"component_losses": {
|
327 |
+
"type": "object",
|
328 |
+
"additionalProperties": {"type": "number"}
|
329 |
+
},
|
330 |
+
"total_conduction_loss": {"type": "number"},
|
331 |
+
"infiltration_loss": {"type": "number"},
|
332 |
+
"total_load": {"type": "number"},
|
333 |
+
"heating_degree_days": {"type": "number"},
|
334 |
+
"correction_factor": {"type": "number"},
|
335 |
+
"annual_energy_kwh": {"type": "number"},
|
336 |
+
"annual_energy_mj": {"type": "number"}
|
337 |
+
},
|
338 |
+
"required": ["total_load"]
|
339 |
+
}
|
340 |
+
|
341 |
+
|
342 |
+
class CalculationMethodRegistry:
|
343 |
+
"""
|
344 |
+
Registry for calculation methods.
|
345 |
+
|
346 |
+
This class maintains a registry of available calculation methods
|
347 |
+
and provides methods to access them.
|
348 |
+
"""
|
349 |
+
|
350 |
+
def __init__(self):
|
351 |
+
"""Initialize the registry."""
|
352 |
+
self._methods = {}
|
353 |
+
|
354 |
+
def register_method(self, method_id, method_class):
|
355 |
+
"""
|
356 |
+
Register a calculation method.
|
357 |
+
|
358 |
+
Args:
|
359 |
+
method_id (str): Unique identifier for the method
|
360 |
+
method_class (type): Class implementing the CalculationMethod interface
|
361 |
+
|
362 |
+
Returns:
|
363 |
+
bool: True if registration was successful, False otherwise
|
364 |
+
"""
|
365 |
+
if method_id in self._methods:
|
366 |
+
return False
|
367 |
+
|
368 |
+
if not issubclass(method_class, CalculationMethod):
|
369 |
+
return False
|
370 |
+
|
371 |
+
self._methods[method_id] = method_class
|
372 |
+
return True
|
373 |
+
|
374 |
+
def get_method(self, method_id):
|
375 |
+
"""
|
376 |
+
Get a calculation method by ID.
|
377 |
+
|
378 |
+
Args:
|
379 |
+
method_id (str): Unique identifier for the method
|
380 |
+
|
381 |
+
Returns:
|
382 |
+
CalculationMethod: Instance of the calculation method, or None if not found
|
383 |
+
"""
|
384 |
+
if method_id not in self._methods:
|
385 |
+
return None
|
386 |
+
|
387 |
+
return self._methods[method_id]()
|
388 |
+
|
389 |
+
def get_available_methods(self):
|
390 |
+
"""
|
391 |
+
Get a list of available calculation methods.
|
392 |
+
|
393 |
+
Returns:
|
394 |
+
list: List of dictionaries with method information
|
395 |
+
"""
|
396 |
+
methods = []
|
397 |
+
for method_id, method_class in self._methods.items():
|
398 |
+
method = method_class()
|
399 |
+
methods.append({
|
400 |
+
'id': method_id,
|
401 |
+
'name': method.name,
|
402 |
+
'description': method.description,
|
403 |
+
'version': method.version
|
404 |
+
})
|
405 |
+
|
406 |
+
return methods
|
407 |
+
|
408 |
+
|
409 |
+
# Create a global registry instance
|
410 |
+
registry = CalculationMethodRegistry()
|
411 |
+
|
412 |
+
# Register the built-in calculation methods
|
413 |
+
registry.register_method('ashrae_cooling', ASHRAECoolingMethod)
|
414 |
+
registry.register_method('ashrae_heating', ASHRAEHeatingMethod)
|
415 |
+
|
416 |
+
|
417 |
+
# Example of how to add a new calculation method
|
418 |
+
"""
|
419 |
+
class CustomCoolingMethod(CalculationMethod):
|
420 |
+
@property
|
421 |
+
def name(self):
|
422 |
+
return "Custom Cooling Method"
|
423 |
+
|
424 |
+
@property
|
425 |
+
def description(self):
|
426 |
+
return "A custom method for calculating cooling loads."
|
427 |
+
|
428 |
+
@property
|
429 |
+
def version(self):
|
430 |
+
return "1.0"
|
431 |
+
|
432 |
+
def calculate(self, input_data):
|
433 |
+
# Custom calculation logic
|
434 |
+
pass
|
435 |
+
|
436 |
+
def get_input_schema(self):
|
437 |
+
# Custom input schema
|
438 |
+
pass
|
439 |
+
|
440 |
+
def get_output_schema(self):
|
441 |
+
# Custom output schema
|
442 |
+
pass
|
443 |
+
|
444 |
+
# Register the custom method
|
445 |
+
registry.register_method('custom_cooling', CustomCoolingMethod)
|
446 |
+
"""
|
cooling_load.py
ADDED
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
ASHRAE Cooling Load Calculation Module
|
3 |
+
|
4 |
+
This module implements the ASHRAE method for calculating cooling loads in residential buildings.
|
5 |
+
It calculates the sensible cooling load and then applies a factor of 1.3 to account for latent load.
|
6 |
+
"""
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import pandas as pd
|
10 |
+
|
11 |
+
|
12 |
+
class CoolingLoadCalculator:
|
13 |
+
"""
|
14 |
+
A class to calculate cooling loads using the ASHRAE method.
|
15 |
+
"""
|
16 |
+
|
17 |
+
def __init__(self):
|
18 |
+
"""Initialize the cooling load calculator with default values."""
|
19 |
+
# Default values for internal heat gains (W)
|
20 |
+
self.heat_gain_per_person = 75
|
21 |
+
self.heat_gain_kitchen = 1000
|
22 |
+
|
23 |
+
# Specific heat capacity of air × density of air
|
24 |
+
self.air_heat_factor = 0.33
|
25 |
+
|
26 |
+
def calculate_conduction_heat_gain(self, area, u_value, temp_diff):
|
27 |
+
"""
|
28 |
+
Calculate conduction heat gain through building components.
|
29 |
+
|
30 |
+
Args:
|
31 |
+
area (float): Area of the building component in m²
|
32 |
+
u_value (float): U-value of the component in W/m²°C
|
33 |
+
temp_diff (float): Temperature difference (outside - inside) in °C
|
34 |
+
|
35 |
+
Returns:
|
36 |
+
float: Heat gain in Watts
|
37 |
+
"""
|
38 |
+
return area * u_value * temp_diff
|
39 |
+
|
40 |
+
def calculate_solar_heat_gain(self, area, shgf, shade_factor=1.0):
|
41 |
+
"""
|
42 |
+
Calculate solar heat gain through glazing.
|
43 |
+
|
44 |
+
Args:
|
45 |
+
area (float): Area of the glazing in m²
|
46 |
+
shgf (float): Solar Heat Gain Factor based on orientation and climate
|
47 |
+
shade_factor (float): Factor to account for shading (1.0 = no shade, 0.0 = full shade)
|
48 |
+
|
49 |
+
Returns:
|
50 |
+
float: Heat gain in Watts
|
51 |
+
"""
|
52 |
+
return area * shgf * shade_factor
|
53 |
+
|
54 |
+
def calculate_infiltration_heat_gain(self, volume, air_changes, temp_diff):
|
55 |
+
"""
|
56 |
+
Calculate heat gain due to infiltration and ventilation.
|
57 |
+
|
58 |
+
Args:
|
59 |
+
volume (float): Volume of the space in m³
|
60 |
+
air_changes (float): Number of air changes per hour
|
61 |
+
temp_diff (float): Temperature difference (outside - inside) in °C
|
62 |
+
|
63 |
+
Returns:
|
64 |
+
float: Heat gain in Watts
|
65 |
+
"""
|
66 |
+
return self.air_heat_factor * volume * air_changes * temp_diff
|
67 |
+
|
68 |
+
def calculate_internal_heat_gain(self, num_people, has_kitchen=False, equipment_watts=0):
|
69 |
+
"""
|
70 |
+
Calculate internal heat gain from people, kitchen, and equipment.
|
71 |
+
|
72 |
+
Args:
|
73 |
+
num_people (int): Number of occupants
|
74 |
+
has_kitchen (bool): Whether the space includes a kitchen
|
75 |
+
equipment_watts (float): Additional equipment heat gain in Watts
|
76 |
+
|
77 |
+
Returns:
|
78 |
+
float: Heat gain in Watts
|
79 |
+
"""
|
80 |
+
people_gain = num_people * self.heat_gain_per_person
|
81 |
+
kitchen_gain = self.heat_gain_kitchen if has_kitchen else 0
|
82 |
+
return people_gain + kitchen_gain + equipment_watts
|
83 |
+
|
84 |
+
def get_solar_heat_gain_factor(self, orientation, glass_type, daily_range, latitude='medium'):
|
85 |
+
"""
|
86 |
+
Get the Solar Heat Gain Factor based on orientation, glass type, and climate.
|
87 |
+
|
88 |
+
Args:
|
89 |
+
orientation (str): Window orientation ('north', 'east', 'south', 'west')
|
90 |
+
glass_type (str): Type of glass ('single', 'double', 'low_e')
|
91 |
+
daily_range (str): Daily temperature range ('low', 'medium', 'high')
|
92 |
+
latitude (str): Latitude category ('low', 'medium', 'high')
|
93 |
+
|
94 |
+
Returns:
|
95 |
+
float: Solar Heat Gain Factor in W/m²
|
96 |
+
"""
|
97 |
+
# This is a simplified version - in a real implementation, this would use lookup tables
|
98 |
+
# based on the ASHRAE data
|
99 |
+
|
100 |
+
# Base values for single glass at medium latitude
|
101 |
+
base_values = {
|
102 |
+
'north': 200,
|
103 |
+
'east': 550,
|
104 |
+
'south': 350,
|
105 |
+
'west': 550,
|
106 |
+
'horizontal': 650
|
107 |
+
}
|
108 |
+
|
109 |
+
# Adjustments for glass type
|
110 |
+
glass_factors = {
|
111 |
+
'single': 1.0,
|
112 |
+
'double': 0.85,
|
113 |
+
'low_e': 0.65
|
114 |
+
}
|
115 |
+
|
116 |
+
# Adjustments for latitude
|
117 |
+
latitude_factors = {
|
118 |
+
'low': 1.1, # Closer to equator
|
119 |
+
'medium': 1.0, # Mid latitudes
|
120 |
+
'high': 0.9 # Closer to poles
|
121 |
+
}
|
122 |
+
|
123 |
+
# Adjustments for daily temperature range
|
124 |
+
range_factors = {
|
125 |
+
'low': 0.95, # Less than 8.5°C
|
126 |
+
'medium': 1.0, # Between 8.5°C and 14°C
|
127 |
+
'high': 1.05 # Over 14°C
|
128 |
+
}
|
129 |
+
|
130 |
+
# Calculate the adjusted SHGF
|
131 |
+
base_value = base_values.get(orientation.lower(), 350) # Default to south if not found
|
132 |
+
glass_factor = glass_factors.get(glass_type.lower(), 1.0)
|
133 |
+
latitude_factor = latitude_factors.get(latitude.lower(), 1.0)
|
134 |
+
range_factor = range_factors.get(daily_range.lower(), 1.0)
|
135 |
+
|
136 |
+
return base_value * glass_factor * latitude_factor * range_factor
|
137 |
+
|
138 |
+
def calculate_total_cooling_load(self, building_components, windows, infiltration, internal_gains):
|
139 |
+
"""
|
140 |
+
Calculate the total cooling load including latent load.
|
141 |
+
|
142 |
+
Args:
|
143 |
+
building_components (list): List of dicts with 'area', 'u_value', and 'temp_diff' for each component
|
144 |
+
windows (list): List of dicts with 'area', 'orientation', 'glass_type', 'shading', etc.
|
145 |
+
infiltration (dict): Dict with 'volume', 'air_changes', and 'temp_diff'
|
146 |
+
internal_gains (dict): Dict with 'num_people', 'has_kitchen', and 'equipment_watts'
|
147 |
+
|
148 |
+
Returns:
|
149 |
+
dict: Dictionary with sensible load, latent load, and total cooling load in Watts
|
150 |
+
"""
|
151 |
+
# Calculate conduction heat gain through building components
|
152 |
+
conduction_gain = sum(
|
153 |
+
self.calculate_conduction_heat_gain(comp['area'], comp['u_value'], comp['temp_diff'])
|
154 |
+
for comp in building_components
|
155 |
+
)
|
156 |
+
|
157 |
+
# Calculate solar and conduction heat gain through windows
|
158 |
+
window_conduction_gain = 0
|
159 |
+
window_solar_gain = 0
|
160 |
+
|
161 |
+
for window in windows:
|
162 |
+
# Conduction through glass
|
163 |
+
window_conduction_gain += self.calculate_conduction_heat_gain(
|
164 |
+
window['area'], window['u_value'], window['temp_diff']
|
165 |
+
)
|
166 |
+
|
167 |
+
# Solar radiation through glass
|
168 |
+
shgf = self.get_solar_heat_gain_factor(
|
169 |
+
window['orientation'],
|
170 |
+
window['glass_type'],
|
171 |
+
window.get('daily_range', 'medium'),
|
172 |
+
window.get('latitude', 'medium')
|
173 |
+
)
|
174 |
+
|
175 |
+
shading_value = window.get('shading', 0.0)
|
176 |
+
if shading_value == 'none' or shading_value == '':
|
177 |
+
shading_value = 0.0
|
178 |
+
shade_factor = 1.0 - float(shading_value)
|
179 |
+
window_solar_gain += self.calculate_solar_heat_gain(window['area'], shgf, shade_factor)
|
180 |
+
|
181 |
+
# Calculate infiltration heat gain
|
182 |
+
infiltration_gain = self.calculate_infiltration_heat_gain(
|
183 |
+
infiltration['volume'], infiltration['air_changes'], infiltration['temp_diff']
|
184 |
+
)
|
185 |
+
|
186 |
+
# Calculate internal heat gain
|
187 |
+
internal_gain = self.calculate_internal_heat_gain(
|
188 |
+
internal_gains['num_people'],
|
189 |
+
internal_gains.get('has_kitchen', False),
|
190 |
+
internal_gains.get('equipment_watts', 0)
|
191 |
+
)
|
192 |
+
|
193 |
+
# Calculate sensible cooling load
|
194 |
+
sensible_load = conduction_gain + window_conduction_gain + window_solar_gain + infiltration_gain + internal_gain
|
195 |
+
|
196 |
+
# Calculate total cooling load (including latent load)
|
197 |
+
latent_load = sensible_load * 0.3 # 30% of sensible load for latent load
|
198 |
+
total_load = sensible_load * 1.3 # Factor of 1.3 to account for latent load
|
199 |
+
|
200 |
+
return {
|
201 |
+
'conduction_gain': conduction_gain,
|
202 |
+
'window_conduction_gain': window_conduction_gain,
|
203 |
+
'window_solar_gain': window_solar_gain,
|
204 |
+
'infiltration_gain': infiltration_gain,
|
205 |
+
'internal_gain': internal_gain,
|
206 |
+
'sensible_load': sensible_load,
|
207 |
+
'latent_load': latent_load,
|
208 |
+
'total_load': total_load
|
209 |
+
}
|
210 |
+
|
211 |
+
|
212 |
+
# Example usage
|
213 |
+
if __name__ == "__main__":
|
214 |
+
calculator = CoolingLoadCalculator()
|
215 |
+
|
216 |
+
# Example data for a simple room
|
217 |
+
building_components = [
|
218 |
+
{'area': 20, 'u_value': 0.6, 'temp_diff': 11}, # Floor
|
219 |
+
{'area': 50, 'u_value': 1.88, 'temp_diff': 11}, # Walls
|
220 |
+
{'area': 20, 'u_value': 0.46, 'temp_diff': 11} # Ceiling
|
221 |
+
]
|
222 |
+
|
223 |
+
windows = [
|
224 |
+
{'area': 4, 'orientation': 'north', 'glass_type': 'single', 'u_value': 5.8, 'temp_diff': 11, 'shading': 0.5},
|
225 |
+
{'area': 4, 'orientation': 'east', 'glass_type': 'single', 'u_value': 5.8, 'temp_diff': 11, 'shading': 0.0},
|
226 |
+
{'area': 4, 'orientation': 'west', 'glass_type': 'single', 'u_value': 5.8, 'temp_diff': 11, 'shading': 0.0}
|
227 |
+
]
|
228 |
+
|
229 |
+
infiltration = {'volume': 60, 'air_changes': 0.5, 'temp_diff': 11}
|
230 |
+
|
231 |
+
internal_gains = {'num_people': 4, 'has_kitchen': True, 'equipment_watts': 500}
|
232 |
+
|
233 |
+
result = calculator.calculate_total_cooling_load(building_components, windows, infiltration, internal_gains)
|
234 |
+
|
235 |
+
print("Cooling Load Calculation Results:")
|
236 |
+
for key, value in result.items():
|
237 |
+
print(f"{key}: {value:.2f} W")
|
heating_load.py
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
ASHRAE Heating Load Calculation Module
|
3 |
+
|
4 |
+
This module implements the ASHRAE method for calculating heating loads in residential buildings.
|
5 |
+
It calculates the heat loss from the building envelope and unwanted ventilation/infiltration.
|
6 |
+
"""
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import pandas as pd
|
10 |
+
|
11 |
+
|
12 |
+
class HeatingLoadCalculator:
|
13 |
+
"""
|
14 |
+
A class to calculate heating loads using the ASHRAE method.
|
15 |
+
"""
|
16 |
+
|
17 |
+
def __init__(self):
|
18 |
+
"""Initialize the heating load calculator with default values."""
|
19 |
+
# Specific heat capacity of air × density of air
|
20 |
+
self.air_heat_factor = 0.33
|
21 |
+
|
22 |
+
def calculate_conduction_heat_loss(self, area, u_value, temp_diff):
|
23 |
+
"""
|
24 |
+
Calculate conduction heat loss through building components.
|
25 |
+
|
26 |
+
Args:
|
27 |
+
area (float): Area of the building component in m²
|
28 |
+
u_value (float): U-value of the component in W/m²°C
|
29 |
+
temp_diff (float): Temperature difference (inside - outside) in °C
|
30 |
+
|
31 |
+
Returns:
|
32 |
+
float: Heat loss in Watts
|
33 |
+
"""
|
34 |
+
return area * u_value * temp_diff
|
35 |
+
|
36 |
+
def calculate_infiltration_heat_loss(self, volume, air_changes, temp_diff):
|
37 |
+
"""
|
38 |
+
Calculate heat loss due to infiltration and ventilation.
|
39 |
+
|
40 |
+
Args:
|
41 |
+
volume (float): Volume of the space in m³
|
42 |
+
air_changes (float): Number of air changes per hour
|
43 |
+
temp_diff (float): Temperature difference (inside - outside) in °C
|
44 |
+
|
45 |
+
Returns:
|
46 |
+
float: Heat loss in Watts
|
47 |
+
"""
|
48 |
+
return self.air_heat_factor * volume * air_changes * temp_diff
|
49 |
+
|
50 |
+
def calculate_annual_heating_energy(self, total_heat_loss, heating_degree_days, correction_factor=1.0):
|
51 |
+
"""
|
52 |
+
Calculate annual heating energy requirement using heating degree days.
|
53 |
+
|
54 |
+
Args:
|
55 |
+
total_heat_loss (float): Total heat loss in Watts
|
56 |
+
heating_degree_days (float): Number of heating degree days
|
57 |
+
correction_factor (float): Correction factor for occupancy
|
58 |
+
|
59 |
+
Returns:
|
60 |
+
float: Annual heating energy in kWh
|
61 |
+
"""
|
62 |
+
# Convert W to kW
|
63 |
+
heat_loss_kw = total_heat_loss / 1000
|
64 |
+
|
65 |
+
# Calculate annual heating energy (kWh)
|
66 |
+
# 24 hours in a day
|
67 |
+
annual_energy = heat_loss_kw * 24 * heating_degree_days * correction_factor
|
68 |
+
|
69 |
+
return annual_energy
|
70 |
+
|
71 |
+
def get_outdoor_design_temperature(self, location):
|
72 |
+
"""
|
73 |
+
Get the outdoor design temperature for a location.
|
74 |
+
|
75 |
+
Args:
|
76 |
+
location (str): Location name
|
77 |
+
|
78 |
+
Returns:
|
79 |
+
float: Outdoor design temperature in °C
|
80 |
+
"""
|
81 |
+
# This is a simplified version - in a real implementation, this would use lookup tables
|
82 |
+
# based on the AIRAH Design Data Manual
|
83 |
+
|
84 |
+
# Example data for Australian locations
|
85 |
+
temperatures = {
|
86 |
+
'sydney': 7.0,
|
87 |
+
'melbourne': 4.0,
|
88 |
+
'brisbane': 9.0,
|
89 |
+
'perth': 7.0,
|
90 |
+
'adelaide': 5.0,
|
91 |
+
'hobart': 2.0,
|
92 |
+
'darwin': 15.0,
|
93 |
+
'canberra': -1.0,
|
94 |
+
'mildura': 4.5
|
95 |
+
}
|
96 |
+
|
97 |
+
return temperatures.get(location.lower(), 5.0) # Default to 5°C if location not found
|
98 |
+
|
99 |
+
def get_heating_degree_days(self, location, base_temp=18):
|
100 |
+
"""
|
101 |
+
Get the heating degree days for a location.
|
102 |
+
|
103 |
+
Args:
|
104 |
+
location (str): Location name
|
105 |
+
base_temp (int): Base temperature for HDD calculation (default: 18°C)
|
106 |
+
|
107 |
+
Returns:
|
108 |
+
float: Heating degree days
|
109 |
+
"""
|
110 |
+
# This is a simplified version - in a real implementation, this would use lookup tables
|
111 |
+
# or API data from Bureau of Meteorology
|
112 |
+
|
113 |
+
# Example data for Australian locations with base temperature of 18°C
|
114 |
+
hdd_data = {
|
115 |
+
'sydney': 740,
|
116 |
+
'melbourne': 1400,
|
117 |
+
'brisbane': 320,
|
118 |
+
'perth': 760,
|
119 |
+
'adelaide': 1100,
|
120 |
+
'hobart': 1800,
|
121 |
+
'darwin': 0,
|
122 |
+
'canberra': 2000,
|
123 |
+
'mildura': 1200
|
124 |
+
}
|
125 |
+
|
126 |
+
return hdd_data.get(location.lower(), 1000) # Default to 1000 if location not found
|
127 |
+
|
128 |
+
def get_occupancy_correction_factor(self, occupancy_type):
|
129 |
+
"""
|
130 |
+
Get the correction factor for occupancy type.
|
131 |
+
|
132 |
+
Args:
|
133 |
+
occupancy_type (str): Type of occupancy
|
134 |
+
|
135 |
+
Returns:
|
136 |
+
float: Correction factor
|
137 |
+
"""
|
138 |
+
# Correction factors based on occupancy patterns
|
139 |
+
factors = {
|
140 |
+
'continuous': 1.0, # Continuously heated
|
141 |
+
'intermittent': 0.8, # Heated during occupied hours
|
142 |
+
'night_setback': 0.9, # Temperature setback at night
|
143 |
+
'weekend_off': 0.85, # Heating off during weekends
|
144 |
+
'vacation_home': 0.6 # Occasionally occupied
|
145 |
+
}
|
146 |
+
|
147 |
+
return factors.get(occupancy_type.lower(), 1.0) # Default to continuous if not found
|
148 |
+
|
149 |
+
def calculate_total_heating_load(self, building_components, infiltration):
|
150 |
+
"""
|
151 |
+
Calculate the total peak heating load.
|
152 |
+
|
153 |
+
Args:
|
154 |
+
building_components (list): List of dicts with 'area', 'u_value', and 'temp_diff' for each component
|
155 |
+
infiltration (dict): Dict with 'volume', 'air_changes', and 'temp_diff'
|
156 |
+
|
157 |
+
Returns:
|
158 |
+
dict: Dictionary with component heat losses and total heating load in Watts
|
159 |
+
"""
|
160 |
+
# Calculate conduction heat loss through building components
|
161 |
+
component_losses = {}
|
162 |
+
total_conduction_loss = 0
|
163 |
+
|
164 |
+
for comp in building_components:
|
165 |
+
name = comp.get('name', f"Component {len(component_losses) + 1}")
|
166 |
+
loss = self.calculate_conduction_heat_loss(comp['area'], comp['u_value'], comp['temp_diff'])
|
167 |
+
component_losses[name] = loss
|
168 |
+
total_conduction_loss += loss
|
169 |
+
|
170 |
+
# Calculate infiltration heat loss
|
171 |
+
infiltration_loss = self.calculate_infiltration_heat_loss(
|
172 |
+
infiltration['volume'], infiltration['air_changes'], infiltration['temp_diff']
|
173 |
+
)
|
174 |
+
|
175 |
+
# Calculate total heating load
|
176 |
+
total_load = total_conduction_loss + infiltration_loss
|
177 |
+
|
178 |
+
return {
|
179 |
+
'component_losses': component_losses,
|
180 |
+
'total_conduction_loss': total_conduction_loss,
|
181 |
+
'infiltration_loss': infiltration_loss,
|
182 |
+
'total_load': total_load
|
183 |
+
}
|
184 |
+
|
185 |
+
def calculate_annual_heating_requirement(self, total_load, location, occupancy_type='continuous', base_temp=18):
|
186 |
+
"""
|
187 |
+
Calculate the annual heating energy requirement.
|
188 |
+
|
189 |
+
Args:
|
190 |
+
total_load (float): Total heating load in Watts
|
191 |
+
location (str): Location name
|
192 |
+
occupancy_type (str): Type of occupancy
|
193 |
+
base_temp (int): Base temperature for HDD calculation
|
194 |
+
|
195 |
+
Returns:
|
196 |
+
dict: Dictionary with annual heating energy in kWh and related factors
|
197 |
+
"""
|
198 |
+
# Get heating degree days for the location
|
199 |
+
hdd = self.get_heating_degree_days(location, base_temp)
|
200 |
+
|
201 |
+
# Get correction factor for occupancy
|
202 |
+
correction_factor = self.get_occupancy_correction_factor(occupancy_type)
|
203 |
+
|
204 |
+
# Calculate annual heating energy
|
205 |
+
annual_energy = self.calculate_annual_heating_energy(total_load, hdd, correction_factor)
|
206 |
+
|
207 |
+
return {
|
208 |
+
'heating_degree_days': hdd,
|
209 |
+
'correction_factor': correction_factor,
|
210 |
+
'annual_energy_kwh': annual_energy,
|
211 |
+
'annual_energy_mj': annual_energy * 3.6 # Convert kWh to MJ
|
212 |
+
}
|
213 |
+
|
214 |
+
|
215 |
+
# Example usage
|
216 |
+
if __name__ == "__main__":
|
217 |
+
calculator = HeatingLoadCalculator()
|
218 |
+
|
219 |
+
# Example data for a simple room in Mildura
|
220 |
+
building_components = [
|
221 |
+
{'name': 'Floor', 'area': 50, 'u_value': 1.47, 'temp_diff': 16.5}, # Concrete slab
|
222 |
+
{'name': 'Walls', 'area': 80, 'u_value': 1.5, 'temp_diff': 16.5}, # External walls
|
223 |
+
{'name': 'Ceiling', 'area': 50, 'u_value': 0.9, 'temp_diff': 16.5}, # Ceiling
|
224 |
+
{'name': 'Windows', 'area': 8, 'u_value': 5.8, 'temp_diff': 16.5} # Windows
|
225 |
+
]
|
226 |
+
|
227 |
+
infiltration = {'volume': 125, 'air_changes': 0.5, 'temp_diff': 16.5}
|
228 |
+
|
229 |
+
# Calculate peak heating load
|
230 |
+
result = calculator.calculate_total_heating_load(building_components, infiltration)
|
231 |
+
|
232 |
+
print("Heating Load Calculation Results:")
|
233 |
+
for key, value in result.items():
|
234 |
+
if key == 'component_losses':
|
235 |
+
print("Component Losses:")
|
236 |
+
for comp, loss in value.items():
|
237 |
+
print(f" {comp}: {loss:.2f} W")
|
238 |
+
else:
|
239 |
+
print(f"{key}: {value:.2f} W")
|
240 |
+
|
241 |
+
# Calculate annual heating requirement
|
242 |
+
annual_result = calculator.calculate_annual_heating_requirement(result['total_load'], 'mildura')
|
243 |
+
|
244 |
+
print("\nAnnual Heating Requirement:")
|
245 |
+
for key, value in annual_result.items():
|
246 |
+
print(f"{key}: {value:.2f}")
|
pages/cooling_calculator.py
ADDED
@@ -0,0 +1,1636 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Cooling Load Calculator Page
|
3 |
+
|
4 |
+
This module implements the cooling load calculator interface for the HVAC Load Calculator web application.
|
5 |
+
It provides a step-by-step form for inputting building information and calculates cooling loads
|
6 |
+
using the ASHRAE method.
|
7 |
+
"""
|
8 |
+
|
9 |
+
import streamlit as st
|
10 |
+
import pandas as pd
|
11 |
+
import numpy as np
|
12 |
+
import plotly.express as px
|
13 |
+
import plotly.graph_objects as go
|
14 |
+
import json
|
15 |
+
import os
|
16 |
+
import sys
|
17 |
+
from pathlib import Path
|
18 |
+
from datetime import datetime
|
19 |
+
|
20 |
+
# Add the parent directory to sys.path to import modules
|
21 |
+
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
22 |
+
|
23 |
+
# Import custom modules
|
24 |
+
from cooling_load import CoolingLoadCalculator
|
25 |
+
from reference_data import ReferenceData
|
26 |
+
from utils.validation import validate_input, ValidationWarning
|
27 |
+
from utils.export import export_data
|
28 |
+
|
29 |
+
|
30 |
+
def load_session_state():
|
31 |
+
"""Initialize or load session state variables."""
|
32 |
+
# Initialize session state for form data
|
33 |
+
if 'cooling_form_data' not in st.session_state:
|
34 |
+
st.session_state.cooling_form_data = {
|
35 |
+
'building_info': {},
|
36 |
+
'building_envelope': {},
|
37 |
+
'windows': {},
|
38 |
+
'internal_loads': {},
|
39 |
+
'ventilation': {},
|
40 |
+
'results': {}
|
41 |
+
}
|
42 |
+
|
43 |
+
# Initialize session state for validation warnings
|
44 |
+
if 'cooling_warnings' not in st.session_state:
|
45 |
+
st.session_state.cooling_warnings = {
|
46 |
+
'building_info': [],
|
47 |
+
'building_envelope': [],
|
48 |
+
'windows': [],
|
49 |
+
'internal_loads': [],
|
50 |
+
'ventilation': []
|
51 |
+
}
|
52 |
+
|
53 |
+
# Initialize session state for form completion status
|
54 |
+
if 'cooling_completed' not in st.session_state:
|
55 |
+
st.session_state.cooling_completed = {
|
56 |
+
'building_info': False,
|
57 |
+
'building_envelope': False,
|
58 |
+
'windows': False,
|
59 |
+
'internal_loads': False,
|
60 |
+
'ventilation': False
|
61 |
+
}
|
62 |
+
|
63 |
+
# Initialize session state for calculation results
|
64 |
+
if 'cooling_results' not in st.session_state:
|
65 |
+
st.session_state.cooling_results = None
|
66 |
+
|
67 |
+
|
68 |
+
def building_info_form(ref_data):
|
69 |
+
"""
|
70 |
+
Form for building information.
|
71 |
+
|
72 |
+
Args:
|
73 |
+
ref_data: Reference data object
|
74 |
+
"""
|
75 |
+
st.subheader("Building Information")
|
76 |
+
st.write("Enter general building information, location, and design temperatures.")
|
77 |
+
|
78 |
+
# Get location options from reference data
|
79 |
+
location_options = {loc_id: loc_data['name'] for loc_id, loc_data in ref_data.locations.items()}
|
80 |
+
|
81 |
+
col1, col2 = st.columns(2)
|
82 |
+
|
83 |
+
with col1:
|
84 |
+
# Building name
|
85 |
+
building_name = st.text_input(
|
86 |
+
"Building Name",
|
87 |
+
value=st.session_state.cooling_form_data['building_info'].get('building_name', ''),
|
88 |
+
help="Enter a name for this building or project"
|
89 |
+
)
|
90 |
+
|
91 |
+
# Location selection
|
92 |
+
location = st.selectbox(
|
93 |
+
"Location",
|
94 |
+
options=list(location_options.keys()),
|
95 |
+
format_func=lambda x: location_options[x],
|
96 |
+
index=list(location_options.keys()).index(st.session_state.cooling_form_data['building_info'].get('location', 'sydney')) if st.session_state.cooling_form_data['building_info'].get('location') in location_options else 0,
|
97 |
+
help="Select the location of the building"
|
98 |
+
)
|
99 |
+
|
100 |
+
# Get climate data for selected location
|
101 |
+
location_data = ref_data.get_location_data(location)
|
102 |
+
|
103 |
+
# Indoor design temperature
|
104 |
+
indoor_temp = st.number_input(
|
105 |
+
"Indoor Design Temperature (°C)",
|
106 |
+
value=float(st.session_state.cooling_form_data['building_info'].get('indoor_temp', 24.0)),
|
107 |
+
min_value=18.0,
|
108 |
+
max_value=30.0,
|
109 |
+
step=0.5,
|
110 |
+
help="Recommended indoor design temperature for cooling is 24°C"
|
111 |
+
)
|
112 |
+
|
113 |
+
with col2:
|
114 |
+
# Building type
|
115 |
+
building_type = st.selectbox(
|
116 |
+
"Building Type",
|
117 |
+
options=["Residential", "Small Office", "Educational", "Other"],
|
118 |
+
index=["Residential", "Small Office", "Educational", "Other"].index(st.session_state.cooling_form_data['building_info'].get('building_type', 'Residential')),
|
119 |
+
help="Select the type of building"
|
120 |
+
)
|
121 |
+
|
122 |
+
# Outdoor design temperature (with default from location data)
|
123 |
+
outdoor_temp = st.number_input(
|
124 |
+
"Outdoor Design Temperature (°C)",
|
125 |
+
value=float(st.session_state.cooling_form_data['building_info'].get('outdoor_temp', location_data['summer_design_temp'])),
|
126 |
+
min_value=25.0,
|
127 |
+
max_value=45.0,
|
128 |
+
step=0.5,
|
129 |
+
help=f"Default value is based on selected location ({location_data['name']})"
|
130 |
+
)
|
131 |
+
|
132 |
+
# Daily temperature range
|
133 |
+
daily_range_options = {
|
134 |
+
"low": "Low (< 8.5°C)",
|
135 |
+
"medium": "Medium (8.5-14°C)",
|
136 |
+
"high": "High (> 14°C)"
|
137 |
+
}
|
138 |
+
daily_range = st.selectbox(
|
139 |
+
"Daily Temperature Range",
|
140 |
+
options=list(daily_range_options.keys()),
|
141 |
+
format_func=lambda x: daily_range_options[x],
|
142 |
+
index=list(daily_range_options.keys()).index(st.session_state.cooling_form_data['building_info'].get('daily_range', location_data['daily_temp_range'])),
|
143 |
+
help="Daily temperature range affects solar heat gain calculations"
|
144 |
+
)
|
145 |
+
|
146 |
+
# Building dimensions
|
147 |
+
st.subheader("Building Dimensions")
|
148 |
+
|
149 |
+
col1, col2, col3 = st.columns(3)
|
150 |
+
|
151 |
+
with col1:
|
152 |
+
length = st.number_input(
|
153 |
+
"Length (m)",
|
154 |
+
value=float(st.session_state.cooling_form_data['building_info'].get('length', 10.0)),
|
155 |
+
min_value=1.0,
|
156 |
+
step=0.1,
|
157 |
+
help="Building length in meters"
|
158 |
+
)
|
159 |
+
|
160 |
+
with col2:
|
161 |
+
width = st.number_input(
|
162 |
+
"Width (m)",
|
163 |
+
value=float(st.session_state.cooling_form_data['building_info'].get('width', 8.0)),
|
164 |
+
min_value=1.0,
|
165 |
+
step=0.1,
|
166 |
+
help="Building width in meters"
|
167 |
+
)
|
168 |
+
|
169 |
+
with col3:
|
170 |
+
height = st.number_input(
|
171 |
+
"Height (m)",
|
172 |
+
value=float(st.session_state.cooling_form_data['building_info'].get('height', 2.7)),
|
173 |
+
min_value=1.0,
|
174 |
+
step=0.1,
|
175 |
+
help="Floor-to-ceiling height in meters"
|
176 |
+
)
|
177 |
+
|
178 |
+
# Calculate floor area and volume
|
179 |
+
floor_area = length * width
|
180 |
+
volume = floor_area * height
|
181 |
+
|
182 |
+
st.info(f"Floor Area: {floor_area:.2f} m² | Volume: {volume:.2f} m³")
|
183 |
+
|
184 |
+
# Save form data to session state
|
185 |
+
form_data = {
|
186 |
+
'building_name': building_name,
|
187 |
+
'building_type': building_type,
|
188 |
+
'location': location,
|
189 |
+
'location_name': location_data['name'],
|
190 |
+
'indoor_temp': indoor_temp,
|
191 |
+
'outdoor_temp': outdoor_temp,
|
192 |
+
'daily_range': daily_range,
|
193 |
+
'length': length,
|
194 |
+
'width': width,
|
195 |
+
'height': height,
|
196 |
+
'floor_area': floor_area,
|
197 |
+
'volume': volume,
|
198 |
+
'temp_diff': outdoor_temp - indoor_temp
|
199 |
+
}
|
200 |
+
|
201 |
+
# Validate inputs
|
202 |
+
warnings = []
|
203 |
+
|
204 |
+
# Check if building name is provided
|
205 |
+
if not building_name:
|
206 |
+
warnings.append(ValidationWarning("Building name is empty", "Consider adding a building name for reference"))
|
207 |
+
|
208 |
+
# Check if temperature difference is reasonable
|
209 |
+
if form_data['temp_diff'] <= 0:
|
210 |
+
warnings.append(ValidationWarning(
|
211 |
+
"Invalid temperature difference",
|
212 |
+
"Outdoor temperature should be higher than indoor temperature for cooling load calculation",
|
213 |
+
is_critical=True
|
214 |
+
))
|
215 |
+
|
216 |
+
# Check if dimensions are reasonable
|
217 |
+
if floor_area > 500:
|
218 |
+
warnings.append(ValidationWarning(
|
219 |
+
"Large floor area",
|
220 |
+
"Floor area exceeds 500 m², verify if this is correct for a residential building"
|
221 |
+
))
|
222 |
+
|
223 |
+
if height < 2.4 or height > 3.5:
|
224 |
+
warnings.append(ValidationWarning(
|
225 |
+
"Unusual ceiling height",
|
226 |
+
"Typical residential ceiling heights are between 2.4m and 3.5m"
|
227 |
+
))
|
228 |
+
|
229 |
+
# Save warnings to session state
|
230 |
+
st.session_state.cooling_warnings['building_info'] = warnings
|
231 |
+
|
232 |
+
# Display warnings if any
|
233 |
+
if warnings:
|
234 |
+
st.warning("Please review the following warnings:")
|
235 |
+
for warning in warnings:
|
236 |
+
st.write(f"- {warning.message}" + (" (Critical)" if warning.is_critical else ""))
|
237 |
+
st.write(f" Suggestion: {warning.suggestion}")
|
238 |
+
|
239 |
+
# Save form data regardless of warnings
|
240 |
+
st.session_state.cooling_form_data['building_info'] = form_data
|
241 |
+
|
242 |
+
# Mark this step as completed if there are no critical warnings
|
243 |
+
st.session_state.cooling_completed['building_info'] = not any(w.is_critical for w in warnings)
|
244 |
+
|
245 |
+
# Navigation buttons
|
246 |
+
col1, col2 = st.columns([1, 1])
|
247 |
+
|
248 |
+
with col2:
|
249 |
+
next_button = st.button("Next: Building Envelope →", key="building_info_next")
|
250 |
+
if next_button:
|
251 |
+
st.session_state.cooling_active_tab = "building_envelope"
|
252 |
+
st.experimental_rerun()
|
253 |
+
|
254 |
+
|
255 |
+
def building_envelope_form(ref_data):
|
256 |
+
"""
|
257 |
+
Form for building envelope information.
|
258 |
+
|
259 |
+
Args:
|
260 |
+
ref_data: Reference data object
|
261 |
+
"""
|
262 |
+
st.subheader("Building Envelope")
|
263 |
+
st.write("Enter information about walls, roof, and floor construction.")
|
264 |
+
|
265 |
+
# Get building dimensions from previous step
|
266 |
+
building_info = st.session_state.cooling_form_data['building_info']
|
267 |
+
length = building_info.get('length', 10.0)
|
268 |
+
width = building_info.get('width', 8.0)
|
269 |
+
height = building_info.get('height', 2.7)
|
270 |
+
temp_diff = building_info.get('temp_diff', 11.0)
|
271 |
+
|
272 |
+
# Calculate default areas
|
273 |
+
default_wall_area = 2 * (length + width) * height
|
274 |
+
default_roof_area = length * width
|
275 |
+
default_floor_area = length * width
|
276 |
+
|
277 |
+
# Initialize envelope data if not already in session state
|
278 |
+
if 'walls' not in st.session_state.cooling_form_data['building_envelope']:
|
279 |
+
st.session_state.cooling_form_data['building_envelope']['walls'] = []
|
280 |
+
|
281 |
+
if 'roof' not in st.session_state.cooling_form_data['building_envelope']:
|
282 |
+
st.session_state.cooling_form_data['building_envelope']['roof'] = {}
|
283 |
+
|
284 |
+
if 'floor' not in st.session_state.cooling_form_data['building_envelope']:
|
285 |
+
st.session_state.cooling_form_data['building_envelope']['floor'] = {}
|
286 |
+
|
287 |
+
# Walls section
|
288 |
+
st.write("### Walls")
|
289 |
+
|
290 |
+
# Get wall material options from reference data
|
291 |
+
wall_material_options = {mat_id: mat_data['name'] for mat_id, mat_data in ref_data.materials['walls'].items()}
|
292 |
+
|
293 |
+
# Display existing wall entries
|
294 |
+
if st.session_state.cooling_form_data['building_envelope']['walls']:
|
295 |
+
st.write("Current walls:")
|
296 |
+
walls_df = pd.DataFrame(st.session_state.cooling_form_data['building_envelope']['walls'])
|
297 |
+
walls_df['Material'] = walls_df['material_id'].map(lambda x: wall_material_options.get(x, "Unknown"))
|
298 |
+
walls_df = walls_df[['name', 'Material', 'area', 'u_value']]
|
299 |
+
walls_df.columns = ['Name', 'Material', 'Area (m²)', 'U-Value (W/m²°C)']
|
300 |
+
st.dataframe(walls_df)
|
301 |
+
|
302 |
+
# Add new wall form
|
303 |
+
st.write("Add a new wall:")
|
304 |
+
|
305 |
+
col1, col2 = st.columns(2)
|
306 |
+
|
307 |
+
with col1:
|
308 |
+
wall_name = st.text_input("Wall Name", value="", key="new_wall_name")
|
309 |
+
wall_material = st.selectbox(
|
310 |
+
"Wall Material",
|
311 |
+
options=list(wall_material_options.keys()),
|
312 |
+
format_func=lambda x: wall_material_options[x],
|
313 |
+
key="new_wall_material"
|
314 |
+
)
|
315 |
+
|
316 |
+
# Get material properties
|
317 |
+
material_data = ref_data.get_material_by_type("walls", wall_material)
|
318 |
+
u_value = material_data['u_value']
|
319 |
+
|
320 |
+
with col2:
|
321 |
+
wall_area = st.number_input(
|
322 |
+
"Wall Area (m²)",
|
323 |
+
value=default_wall_area / 4, # Default to 1/4 of total wall area as a starting point
|
324 |
+
min_value=0.1,
|
325 |
+
step=0.1,
|
326 |
+
key="new_wall_area"
|
327 |
+
)
|
328 |
+
|
329 |
+
st.write(f"Material U-Value: {u_value} W/m²°C")
|
330 |
+
st.write(f"Heat Transfer: {u_value * wall_area * temp_diff:.2f} W")
|
331 |
+
|
332 |
+
# Add wall button
|
333 |
+
if st.button("Add Wall"):
|
334 |
+
new_wall = {
|
335 |
+
'name': wall_name if wall_name else f"Wall {len(st.session_state.cooling_form_data['building_envelope']['walls']) + 1}",
|
336 |
+
'material_id': wall_material,
|
337 |
+
'area': wall_area,
|
338 |
+
'u_value': u_value,
|
339 |
+
'temp_diff': temp_diff
|
340 |
+
}
|
341 |
+
st.session_state.cooling_form_data['building_envelope']['walls'].append(new_wall)
|
342 |
+
st.experimental_rerun()
|
343 |
+
|
344 |
+
# Roof section
|
345 |
+
st.write("### Roof")
|
346 |
+
|
347 |
+
# Get roof material options from reference data
|
348 |
+
roof_material_options = {mat_id: mat_data['name'] for mat_id, mat_data in ref_data.materials['roofs'].items()}
|
349 |
+
|
350 |
+
col1, col2 = st.columns(2)
|
351 |
+
|
352 |
+
with col1:
|
353 |
+
roof_material = st.selectbox(
|
354 |
+
"Roof Material",
|
355 |
+
options=list(roof_material_options.keys()),
|
356 |
+
format_func=lambda x: roof_material_options[x],
|
357 |
+
index=list(roof_material_options.keys()).index(st.session_state.cooling_form_data['building_envelope'].get('roof', {}).get('material_id', 'metal_deck_insulated')) if st.session_state.cooling_form_data['building_envelope'].get('roof', {}).get('material_id') in roof_material_options else 0
|
358 |
+
)
|
359 |
+
|
360 |
+
# Get material properties
|
361 |
+
material_data = ref_data.get_material_by_type("roofs", roof_material)
|
362 |
+
roof_u_value = material_data['u_value']
|
363 |
+
|
364 |
+
with col2:
|
365 |
+
roof_area = st.number_input(
|
366 |
+
"Roof Area (m²)",
|
367 |
+
value=float(st.session_state.cooling_form_data['building_envelope'].get('roof', {}).get('area', default_roof_area)),
|
368 |
+
min_value=0.1,
|
369 |
+
step=0.1
|
370 |
+
)
|
371 |
+
|
372 |
+
st.write(f"Material U-Value: {roof_u_value} W/m²°C")
|
373 |
+
st.write(f"Heat Transfer: {roof_u_value * roof_area * temp_diff:.2f} W")
|
374 |
+
|
375 |
+
# Save roof data
|
376 |
+
st.session_state.cooling_form_data['building_envelope']['roof'] = {
|
377 |
+
'material_id': roof_material,
|
378 |
+
'area': roof_area,
|
379 |
+
'u_value': roof_u_value,
|
380 |
+
'temp_diff': temp_diff
|
381 |
+
}
|
382 |
+
|
383 |
+
# Floor section
|
384 |
+
st.write("### Floor")
|
385 |
+
|
386 |
+
# Get floor material options from reference data
|
387 |
+
floor_material_options = {mat_id: mat_data['name'] for mat_id, mat_data in ref_data.materials['floors'].items()}
|
388 |
+
|
389 |
+
col1, col2 = st.columns(2)
|
390 |
+
|
391 |
+
with col1:
|
392 |
+
floor_material = st.selectbox(
|
393 |
+
"Floor Material",
|
394 |
+
options=list(floor_material_options.keys()),
|
395 |
+
format_func=lambda x: floor_material_options[x],
|
396 |
+
index=list(floor_material_options.keys()).index(st.session_state.cooling_form_data['building_envelope'].get('floor', {}).get('material_id', 'concrete_slab_ground')) if st.session_state.cooling_form_data['building_envelope'].get('floor', {}).get('material_id') in floor_material_options else 0
|
397 |
+
)
|
398 |
+
|
399 |
+
# Get material properties
|
400 |
+
material_data = ref_data.get_material_by_type("floors", floor_material)
|
401 |
+
floor_u_value = material_data['u_value']
|
402 |
+
|
403 |
+
with col2:
|
404 |
+
floor_area = st.number_input(
|
405 |
+
"Floor Area (m²)",
|
406 |
+
value=float(st.session_state.cooling_form_data['building_envelope'].get('floor', {}).get('area', default_floor_area)),
|
407 |
+
min_value=0.1,
|
408 |
+
step=0.1
|
409 |
+
)
|
410 |
+
|
411 |
+
st.write(f"Material U-Value: {floor_u_value} W/m²°C")
|
412 |
+
st.write(f"Heat Transfer: {floor_u_value * floor_area * temp_diff:.2f} W")
|
413 |
+
|
414 |
+
# Save floor data
|
415 |
+
st.session_state.cooling_form_data['building_envelope']['floor'] = {
|
416 |
+
'material_id': floor_material,
|
417 |
+
'area': floor_area,
|
418 |
+
'u_value': floor_u_value,
|
419 |
+
'temp_diff': temp_diff
|
420 |
+
}
|
421 |
+
|
422 |
+
# Validate inputs
|
423 |
+
warnings = []
|
424 |
+
|
425 |
+
# Check if walls are defined
|
426 |
+
if not st.session_state.cooling_form_data['building_envelope']['walls']:
|
427 |
+
warnings.append(ValidationWarning(
|
428 |
+
"No walls defined",
|
429 |
+
"Add at least one wall to continue",
|
430 |
+
is_critical=True
|
431 |
+
))
|
432 |
+
|
433 |
+
# Check if total wall area is reasonable
|
434 |
+
total_wall_area = sum(wall['area'] for wall in st.session_state.cooling_form_data['building_envelope']['walls'])
|
435 |
+
expected_wall_area = 2 * (length + width) * height
|
436 |
+
|
437 |
+
if total_wall_area < expected_wall_area * 0.8 or total_wall_area > expected_wall_area * 1.2:
|
438 |
+
warnings.append(ValidationWarning(
|
439 |
+
"Unusual wall area",
|
440 |
+
f"Total wall area ({total_wall_area:.2f} m²) differs significantly from the expected area ({expected_wall_area:.2f} m²) based on building dimensions"
|
441 |
+
))
|
442 |
+
|
443 |
+
# Check if roof area matches floor area
|
444 |
+
if abs(roof_area - floor_area) > 1.0:
|
445 |
+
warnings.append(ValidationWarning(
|
446 |
+
"Roof area doesn't match floor area",
|
447 |
+
"For a simple building, roof area should approximately match floor area"
|
448 |
+
))
|
449 |
+
|
450 |
+
# Save warnings to session state
|
451 |
+
st.session_state.cooling_warnings['building_envelope'] = warnings
|
452 |
+
|
453 |
+
# Display warnings if any
|
454 |
+
if warnings:
|
455 |
+
st.warning("Please review the following warnings:")
|
456 |
+
for warning in warnings:
|
457 |
+
st.write(f"- {warning.message}" + (" (Critical)" if warning.is_critical else ""))
|
458 |
+
st.write(f" Suggestion: {warning.suggestion}")
|
459 |
+
|
460 |
+
# Mark this step as completed if there are no critical warnings
|
461 |
+
st.session_state.cooling_completed['building_envelope'] = not any(w.is_critical for w in warnings)
|
462 |
+
|
463 |
+
# Navigation buttons
|
464 |
+
col1, col2 = st.columns([1, 1])
|
465 |
+
|
466 |
+
with col1:
|
467 |
+
prev_button = st.button("← Back: Building Information", key="building_envelope_prev")
|
468 |
+
if prev_button:
|
469 |
+
st.session_state.cooling_active_tab = "building_info"
|
470 |
+
st.experimental_rerun()
|
471 |
+
|
472 |
+
with col2:
|
473 |
+
next_button = st.button("Next: Windows & Doors →", key="building_envelope_next")
|
474 |
+
if next_button:
|
475 |
+
st.session_state.cooling_active_tab = "windows"
|
476 |
+
st.experimental_rerun()
|
477 |
+
|
478 |
+
|
479 |
+
def windows_form(ref_data):
|
480 |
+
"""
|
481 |
+
Form for windows and doors information.
|
482 |
+
|
483 |
+
Args:
|
484 |
+
ref_data: Reference data object
|
485 |
+
"""
|
486 |
+
st.subheader("Windows & Doors")
|
487 |
+
st.write("Enter information about windows and doors.")
|
488 |
+
|
489 |
+
# Get temperature difference from building info
|
490 |
+
temp_diff = st.session_state.cooling_form_data['building_info'].get('temp_diff', 11.0)
|
491 |
+
daily_range = st.session_state.cooling_form_data['building_info'].get('daily_range', 'medium')
|
492 |
+
|
493 |
+
# Initialize windows data if not already in session state
|
494 |
+
if 'windows' not in st.session_state.cooling_form_data['windows']:
|
495 |
+
st.session_state.cooling_form_data['windows']['windows'] = []
|
496 |
+
|
497 |
+
if 'doors' not in st.session_state.cooling_form_data['windows']:
|
498 |
+
st.session_state.cooling_form_data['windows']['doors'] = []
|
499 |
+
|
500 |
+
# Windows section
|
501 |
+
st.write("### Windows")
|
502 |
+
|
503 |
+
# Get glass type options from reference data
|
504 |
+
glass_type_options = {glass_id: glass_data['name'] for glass_id, glass_data in ref_data.glass_types.items()}
|
505 |
+
|
506 |
+
# Get shading options from reference data
|
507 |
+
shading_options = {shade_id: shade_data['name'] for shade_id, shade_data in ref_data.shading_factors.items()}
|
508 |
+
|
509 |
+
# Display existing window entries
|
510 |
+
if st.session_state.cooling_form_data['windows']['windows']:
|
511 |
+
st.write("Current windows:")
|
512 |
+
windows_df = pd.DataFrame(st.session_state.cooling_form_data['windows']['windows'])
|
513 |
+
windows_df['Glass Type'] = windows_df['glass_type'].map(lambda x: glass_type_options.get(x, "Unknown"))
|
514 |
+
windows_df['Shading'] = windows_df['shading'].map(lambda x: shading_options.get(x, "Unknown"))
|
515 |
+
windows_df = windows_df[['name', 'orientation', 'Glass Type', 'Shading', 'area', 'u_value']]
|
516 |
+
windows_df.columns = ['Name', 'Orientation', 'Glass Type', 'Shading', 'Area (m²)', 'U-Value (W/m²°C)']
|
517 |
+
st.dataframe(windows_df)
|
518 |
+
|
519 |
+
# Add new window form
|
520 |
+
st.write("Add a new window:")
|
521 |
+
|
522 |
+
col1, col2 = st.columns(2)
|
523 |
+
|
524 |
+
with col1:
|
525 |
+
window_name = st.text_input("Window Name", value="", key="new_window_name")
|
526 |
+
|
527 |
+
orientation = st.selectbox(
|
528 |
+
"Orientation",
|
529 |
+
options=["north", "east", "south", "west", "horizontal"],
|
530 |
+
key="new_window_orientation"
|
531 |
+
)
|
532 |
+
|
533 |
+
glass_type = st.selectbox(
|
534 |
+
"Glass Type",
|
535 |
+
options=list(glass_type_options.keys()),
|
536 |
+
format_func=lambda x: glass_type_options[x],
|
537 |
+
key="new_window_glass_type"
|
538 |
+
)
|
539 |
+
|
540 |
+
# Get glass properties
|
541 |
+
glass_data = ref_data.get_glass_type(glass_type)
|
542 |
+
window_u_value = glass_data['u_value']
|
543 |
+
|
544 |
+
with col2:
|
545 |
+
window_area = st.number_input(
|
546 |
+
"Window Area (m²)",
|
547 |
+
value=2.0,
|
548 |
+
min_value=0.1,
|
549 |
+
step=0.1,
|
550 |
+
key="new_window_area"
|
551 |
+
)
|
552 |
+
|
553 |
+
shading = st.selectbox(
|
554 |
+
"Shading",
|
555 |
+
options=list(shading_options.keys()),
|
556 |
+
format_func=lambda x: shading_options[x],
|
557 |
+
key="new_window_shading"
|
558 |
+
)
|
559 |
+
|
560 |
+
# Get shading factor
|
561 |
+
shading_data = ref_data.get_shading_factor(shading)
|
562 |
+
shade_factor = shading_data['factor']
|
563 |
+
|
564 |
+
st.write(f"Glass U-Value: {window_u_value} W/m²°C")
|
565 |
+
st.write(f"Conduction Heat Transfer: {window_u_value * window_area * temp_diff:.2f} W")
|
566 |
+
|
567 |
+
# Add window button
|
568 |
+
if st.button("Add Window"):
|
569 |
+
# Calculate solar heat gain factor
|
570 |
+
calculator = CoolingLoadCalculator()
|
571 |
+
shgf = calculator.get_solar_heat_gain_factor(
|
572 |
+
orientation=orientation,
|
573 |
+
glass_type=glass_type,
|
574 |
+
daily_range=daily_range
|
575 |
+
)
|
576 |
+
|
577 |
+
new_window = {
|
578 |
+
'name': window_name if window_name else f"Window {len(st.session_state.cooling_form_data['windows']['windows']) + 1}",
|
579 |
+
'orientation': orientation,
|
580 |
+
'glass_type': glass_type,
|
581 |
+
'shading': shading,
|
582 |
+
'area': window_area,
|
583 |
+
'u_value': window_u_value,
|
584 |
+
'shgf': shgf,
|
585 |
+
'shade_factor': shade_factor,
|
586 |
+
'temp_diff': temp_diff
|
587 |
+
}
|
588 |
+
st.session_state.cooling_form_data['windows']['windows'].append(new_window)
|
589 |
+
st.experimental_rerun()
|
590 |
+
|
591 |
+
# Doors section
|
592 |
+
st.write("### Doors")
|
593 |
+
|
594 |
+
# Display existing door entries
|
595 |
+
if st.session_state.cooling_form_data['windows']['doors']:
|
596 |
+
st.write("Current doors:")
|
597 |
+
doors_df = pd.DataFrame(st.session_state.cooling_form_data['windows']['doors'])
|
598 |
+
doors_df = doors_df[['name', 'type', 'area', 'u_value']]
|
599 |
+
doors_df.columns = ['Name', 'Type', 'Area (m²)', 'U-Value (W/m²°C)']
|
600 |
+
st.dataframe(doors_df)
|
601 |
+
|
602 |
+
# Add new door form
|
603 |
+
st.write("Add a new door:")
|
604 |
+
|
605 |
+
col1, col2 = st.columns(2)
|
606 |
+
|
607 |
+
with col1:
|
608 |
+
door_name = st.text_input("Door Name", value="", key="new_door_name")
|
609 |
+
|
610 |
+
door_type = st.selectbox(
|
611 |
+
"Door Type",
|
612 |
+
options=["Solid wood", "Hollow core", "Glass", "Insulated"],
|
613 |
+
key="new_door_type"
|
614 |
+
)
|
615 |
+
|
616 |
+
# Set U-value based on door type
|
617 |
+
door_u_values = {
|
618 |
+
"Solid wood": 2.0,
|
619 |
+
"Hollow core": 2.5,
|
620 |
+
"Glass": 5.0,
|
621 |
+
"Insulated": 1.2
|
622 |
+
}
|
623 |
+
door_u_value = door_u_values[door_type]
|
624 |
+
|
625 |
+
with col2:
|
626 |
+
door_area = st.number_input(
|
627 |
+
"Door Area (m²)",
|
628 |
+
value=2.0,
|
629 |
+
min_value=0.1,
|
630 |
+
step=0.1,
|
631 |
+
key="new_door_area"
|
632 |
+
)
|
633 |
+
|
634 |
+
st.write(f"Door U-Value: {door_u_value} W/m²°C")
|
635 |
+
st.write(f"Heat Transfer: {door_u_value * door_area * temp_diff:.2f} W")
|
636 |
+
|
637 |
+
# Add door button
|
638 |
+
if st.button("Add Door"):
|
639 |
+
new_door = {
|
640 |
+
'name': door_name if door_name else f"Door {len(st.session_state.cooling_form_data['windows']['doors']) + 1}",
|
641 |
+
'type': door_type,
|
642 |
+
'area': door_area,
|
643 |
+
'u_value': door_u_value,
|
644 |
+
'temp_diff': temp_diff
|
645 |
+
}
|
646 |
+
st.session_state.cooling_form_data['windows']['doors'].append(new_door)
|
647 |
+
st.experimental_rerun()
|
648 |
+
|
649 |
+
# Validate inputs
|
650 |
+
warnings = []
|
651 |
+
|
652 |
+
# Check if windows are defined
|
653 |
+
if not st.session_state.cooling_form_data['windows']['windows']:
|
654 |
+
warnings.append(ValidationWarning(
|
655 |
+
"No windows defined",
|
656 |
+
"Add at least one window to continue"
|
657 |
+
))
|
658 |
+
|
659 |
+
# Check window-to-wall ratio
|
660 |
+
if st.session_state.cooling_form_data['windows']['windows']:
|
661 |
+
total_window_area = sum(window['area'] for window in st.session_state.cooling_form_data['windows']['windows'])
|
662 |
+
total_wall_area = sum(wall['area'] for wall in st.session_state.cooling_form_data['building_envelope']['walls'])
|
663 |
+
window_wall_ratio = total_window_area / total_wall_area if total_wall_area > 0 else 0
|
664 |
+
|
665 |
+
if window_wall_ratio > 0.6:
|
666 |
+
warnings.append(ValidationWarning(
|
667 |
+
"High window-to-wall ratio",
|
668 |
+
f"Window-to-wall ratio is {window_wall_ratio:.2f}, which is unusually high. Typical ratios are 0.2-0.4."
|
669 |
+
))
|
670 |
+
|
671 |
+
# Save warnings to session state
|
672 |
+
st.session_state.cooling_warnings['windows'] = warnings
|
673 |
+
|
674 |
+
# Display warnings if any
|
675 |
+
if warnings:
|
676 |
+
st.warning("Please review the following warnings:")
|
677 |
+
for warning in warnings:
|
678 |
+
st.write(f"- {warning.message}" + (" (Critical)" if warning.is_critical else ""))
|
679 |
+
st.write(f" Suggestion: {warning.suggestion}")
|
680 |
+
|
681 |
+
# Mark this step as completed if there are no critical warnings
|
682 |
+
st.session_state.cooling_completed['windows'] = not any(w.is_critical for w in warnings)
|
683 |
+
|
684 |
+
# Navigation buttons
|
685 |
+
col1, col2 = st.columns([1, 1])
|
686 |
+
|
687 |
+
with col1:
|
688 |
+
prev_button = st.button("← Back: Building Envelope", key="windows_prev")
|
689 |
+
if prev_button:
|
690 |
+
st.session_state.cooling_active_tab = "building_envelope"
|
691 |
+
st.experimental_rerun()
|
692 |
+
|
693 |
+
with col2:
|
694 |
+
next_button = st.button("Next: Internal Loads →", key="windows_next")
|
695 |
+
if next_button:
|
696 |
+
st.session_state.cooling_active_tab = "internal_loads"
|
697 |
+
st.experimental_rerun()
|
698 |
+
|
699 |
+
|
700 |
+
def internal_loads_form(ref_data):
|
701 |
+
"""
|
702 |
+
Form for internal loads information.
|
703 |
+
|
704 |
+
Args:
|
705 |
+
ref_data: Reference data object
|
706 |
+
"""
|
707 |
+
st.subheader("Internal Loads")
|
708 |
+
st.write("Enter information about occupants, lighting, and equipment.")
|
709 |
+
|
710 |
+
# Initialize internal loads data if not already in session state
|
711 |
+
if 'occupants' not in st.session_state.cooling_form_data['internal_loads']:
|
712 |
+
st.session_state.cooling_form_data['internal_loads']['occupants'] = {
|
713 |
+
'count': 4,
|
714 |
+
'activity_level': 'seated_resting'
|
715 |
+
}
|
716 |
+
|
717 |
+
if 'lighting' not in st.session_state.cooling_form_data['internal_loads']:
|
718 |
+
st.session_state.cooling_form_data['internal_loads']['lighting'] = {
|
719 |
+
'type': 'led',
|
720 |
+
'power_density': 5.0 # W/m²
|
721 |
+
}
|
722 |
+
|
723 |
+
if 'appliances' not in st.session_state.cooling_form_data['internal_loads']:
|
724 |
+
st.session_state.cooling_form_data['internal_loads']['appliances'] = {
|
725 |
+
'kitchen': True,
|
726 |
+
'living_room': True,
|
727 |
+
'bedroom': True,
|
728 |
+
'office': False
|
729 |
+
}
|
730 |
+
|
731 |
+
# Occupants section
|
732 |
+
st.write("### Occupants")
|
733 |
+
|
734 |
+
col1, col2 = st.columns(2)
|
735 |
+
|
736 |
+
with col1:
|
737 |
+
occupant_count = st.number_input(
|
738 |
+
"Number of Occupants",
|
739 |
+
value=int(st.session_state.cooling_form_data['internal_loads']['occupants'].get('count', 4)),
|
740 |
+
min_value=1,
|
741 |
+
step=1
|
742 |
+
)
|
743 |
+
|
744 |
+
with col2:
|
745 |
+
# Get activity level options from reference data
|
746 |
+
activity_options = {act_id: act_data['name'] for act_id, act_data in ref_data.internal_loads['people'].items()}
|
747 |
+
|
748 |
+
activity_level = st.selectbox(
|
749 |
+
"Activity Level",
|
750 |
+
options=list(activity_options.keys()),
|
751 |
+
format_func=lambda x: activity_options[x],
|
752 |
+
index=list(activity_options.keys()).index(st.session_state.cooling_form_data['internal_loads']['occupants'].get('activity_level', 'seated_resting')) if st.session_state.cooling_form_data['internal_loads']['occupants'].get('activity_level') in activity_options else 0
|
753 |
+
)
|
754 |
+
|
755 |
+
# Get heat gain per person
|
756 |
+
activity_data = ref_data.get_internal_load('people', activity_level)
|
757 |
+
sensible_heat_pp = activity_data['sensible_heat']
|
758 |
+
latent_heat_pp = activity_data['latent_heat']
|
759 |
+
total_heat_pp = sensible_heat_pp + latent_heat_pp
|
760 |
+
|
761 |
+
st.write(f"Heat gain per person: {total_heat_pp} W ({sensible_heat_pp} W sensible + {latent_heat_pp} W latent)")
|
762 |
+
st.write(f"Total occupant heat gain: {total_heat_pp * occupant_count} W")
|
763 |
+
|
764 |
+
# Save occupants data
|
765 |
+
st.session_state.cooling_form_data['internal_loads']['occupants'] = {
|
766 |
+
'count': occupant_count,
|
767 |
+
'activity_level': activity_level,
|
768 |
+
'sensible_heat_pp': sensible_heat_pp,
|
769 |
+
'latent_heat_pp': latent_heat_pp,
|
770 |
+
'total_heat_gain': total_heat_pp * occupant_count
|
771 |
+
}
|
772 |
+
|
773 |
+
# Lighting section
|
774 |
+
st.write("### Lighting")
|
775 |
+
|
776 |
+
col1, col2 = st.columns(2)
|
777 |
+
|
778 |
+
with col1:
|
779 |
+
# Get lighting type options from reference data
|
780 |
+
lighting_options = {light_id: light_data['name'] for light_id, light_data in ref_data.internal_loads['lighting'].items()}
|
781 |
+
|
782 |
+
lighting_type = st.selectbox(
|
783 |
+
"Lighting Type",
|
784 |
+
options=list(lighting_options.keys()),
|
785 |
+
format_func=lambda x: lighting_options[x],
|
786 |
+
index=list(lighting_options.keys()).index(st.session_state.cooling_form_data['internal_loads']['lighting'].get('type', 'led')) if st.session_state.cooling_form_data['internal_loads']['lighting'].get('type') in lighting_options else 0
|
787 |
+
)
|
788 |
+
|
789 |
+
with col2:
|
790 |
+
lighting_power_density = st.number_input(
|
791 |
+
"Lighting Power Density (W/m²)",
|
792 |
+
value=float(st.session_state.cooling_form_data['internal_loads']['lighting'].get('power_density', 5.0)),
|
793 |
+
min_value=1.0,
|
794 |
+
max_value=20.0,
|
795 |
+
step=0.5,
|
796 |
+
help="Typical values: Residential 5-10 W/m², Office 10-15 W/m²"
|
797 |
+
)
|
798 |
+
|
799 |
+
# Get lighting heat factor
|
800 |
+
lighting_data = ref_data.get_internal_load('lighting', lighting_type)
|
801 |
+
lighting_heat_factor = lighting_data['heat_factor']
|
802 |
+
|
803 |
+
# Calculate lighting heat gain
|
804 |
+
floor_area = st.session_state.cooling_form_data['building_info'].get('floor_area', 80.0)
|
805 |
+
lighting_heat_gain = lighting_power_density * floor_area * lighting_heat_factor
|
806 |
+
|
807 |
+
st.write(f"Lighting heat factor: {lighting_heat_factor}")
|
808 |
+
st.write(f"Total lighting heat gain: {lighting_heat_gain:.2f} W")
|
809 |
+
|
810 |
+
# Save lighting data
|
811 |
+
st.session_state.cooling_form_data['internal_loads']['lighting'] = {
|
812 |
+
'type': lighting_type,
|
813 |
+
'power_density': lighting_power_density,
|
814 |
+
'heat_factor': lighting_heat_factor,
|
815 |
+
'total_heat_gain': lighting_heat_gain
|
816 |
+
}
|
817 |
+
|
818 |
+
# Appliances section
|
819 |
+
st.write("### Appliances")
|
820 |
+
|
821 |
+
# Get appliance options from reference data
|
822 |
+
appliance_options = {app_id: app_data for app_id, app_data in ref_data.internal_loads['appliances'].items()}
|
823 |
+
|
824 |
+
col1, col2 = st.columns(2)
|
825 |
+
|
826 |
+
with col1:
|
827 |
+
has_kitchen = st.checkbox(
|
828 |
+
"Kitchen Appliances",
|
829 |
+
value=st.session_state.cooling_form_data['internal_loads']['appliances'].get('kitchen', True),
|
830 |
+
help=f"Heat gain: {appliance_options['kitchen']['heat_gain']} W"
|
831 |
+
)
|
832 |
+
|
833 |
+
has_living_room = st.checkbox(
|
834 |
+
"Living Room Appliances",
|
835 |
+
value=st.session_state.cooling_form_data['internal_loads']['appliances'].get('living_room', True),
|
836 |
+
help=f"Heat gain: {appliance_options['living_room']['heat_gain']} W"
|
837 |
+
)
|
838 |
+
|
839 |
+
with col2:
|
840 |
+
has_bedroom = st.checkbox(
|
841 |
+
"Bedroom Appliances",
|
842 |
+
value=st.session_state.cooling_form_data['internal_loads']['appliances'].get('bedroom', True),
|
843 |
+
help=f"Heat gain: {appliance_options['bedroom']['heat_gain']} W"
|
844 |
+
)
|
845 |
+
|
846 |
+
has_office = st.checkbox(
|
847 |
+
"Home Office Equipment",
|
848 |
+
value=st.session_state.cooling_form_data['internal_loads']['appliances'].get('office', False),
|
849 |
+
help=f"Heat gain: {appliance_options['office']['heat_gain']} W"
|
850 |
+
)
|
851 |
+
|
852 |
+
# Calculate appliance heat gain
|
853 |
+
appliance_heat_gain = 0
|
854 |
+
if has_kitchen:
|
855 |
+
appliance_heat_gain += appliance_options['kitchen']['heat_gain']
|
856 |
+
if has_living_room:
|
857 |
+
appliance_heat_gain += appliance_options['living_room']['heat_gain']
|
858 |
+
if has_bedroom:
|
859 |
+
appliance_heat_gain += appliance_options['bedroom']['heat_gain']
|
860 |
+
if has_office:
|
861 |
+
appliance_heat_gain += appliance_options['office']['heat_gain']
|
862 |
+
|
863 |
+
st.write(f"Total appliance heat gain: {appliance_heat_gain} W")
|
864 |
+
|
865 |
+
# Save appliances data
|
866 |
+
st.session_state.cooling_form_data['internal_loads']['appliances'] = {
|
867 |
+
'kitchen': has_kitchen,
|
868 |
+
'living_room': has_living_room,
|
869 |
+
'bedroom': has_bedroom,
|
870 |
+
'office': has_office,
|
871 |
+
'total_heat_gain': appliance_heat_gain
|
872 |
+
}
|
873 |
+
|
874 |
+
# Calculate total internal heat gain
|
875 |
+
total_internal_gain = (
|
876 |
+
st.session_state.cooling_form_data['internal_loads']['occupants']['total_heat_gain'] +
|
877 |
+
st.session_state.cooling_form_data['internal_loads']['lighting']['total_heat_gain'] +
|
878 |
+
st.session_state.cooling_form_data['internal_loads']['appliances']['total_heat_gain']
|
879 |
+
)
|
880 |
+
|
881 |
+
st.info(f"Total Internal Heat Gain: {total_internal_gain:.2f} W")
|
882 |
+
|
883 |
+
# Save total internal gain
|
884 |
+
st.session_state.cooling_form_data['internal_loads']['total_internal_gain'] = total_internal_gain
|
885 |
+
|
886 |
+
# Validate inputs
|
887 |
+
warnings = []
|
888 |
+
|
889 |
+
# Check if occupant count is reasonable for the floor area
|
890 |
+
floor_area = st.session_state.cooling_form_data['building_info'].get('floor_area', 80.0)
|
891 |
+
area_per_person = floor_area / occupant_count if occupant_count > 0 else float('inf')
|
892 |
+
|
893 |
+
if area_per_person < 10:
|
894 |
+
warnings.append(ValidationWarning(
|
895 |
+
"High occupant density",
|
896 |
+
f"Area per person ({area_per_person:.2f} m²) is low. Typical residential values are 20-30 m² per person."
|
897 |
+
))
|
898 |
+
|
899 |
+
# Check if lighting power density is reasonable
|
900 |
+
if lighting_power_density > 15:
|
901 |
+
warnings.append(ValidationWarning(
|
902 |
+
"High lighting power density",
|
903 |
+
"Lighting power density exceeds 15 W/m², which is high for residential buildings."
|
904 |
+
))
|
905 |
+
|
906 |
+
# Save warnings to session state
|
907 |
+
st.session_state.cooling_warnings['internal_loads'] = warnings
|
908 |
+
|
909 |
+
# Display warnings if any
|
910 |
+
if warnings:
|
911 |
+
st.warning("Please review the following warnings:")
|
912 |
+
for warning in warnings:
|
913 |
+
st.write(f"- {warning.message}" + (" (Critical)" if warning.is_critical else ""))
|
914 |
+
st.write(f" Suggestion: {warning.suggestion}")
|
915 |
+
|
916 |
+
# Mark this step as completed if there are no critical warnings
|
917 |
+
st.session_state.cooling_completed['internal_loads'] = not any(w.is_critical for w in warnings)
|
918 |
+
|
919 |
+
# Navigation buttons
|
920 |
+
col1, col2 = st.columns([1, 1])
|
921 |
+
|
922 |
+
with col1:
|
923 |
+
prev_button = st.button("← Back: Windows & Doors", key="internal_loads_prev")
|
924 |
+
if prev_button:
|
925 |
+
st.session_state.cooling_active_tab = "windows"
|
926 |
+
st.experimental_rerun()
|
927 |
+
|
928 |
+
with col2:
|
929 |
+
next_button = st.button("Next: Ventilation →", key="internal_loads_next")
|
930 |
+
if next_button:
|
931 |
+
st.session_state.cooling_active_tab = "ventilation"
|
932 |
+
st.experimental_rerun()
|
933 |
+
|
934 |
+
|
935 |
+
def ventilation_form(ref_data):
|
936 |
+
"""
|
937 |
+
Form for ventilation and infiltration information.
|
938 |
+
|
939 |
+
Args:
|
940 |
+
ref_data: Reference data object
|
941 |
+
"""
|
942 |
+
st.subheader("Ventilation & Infiltration")
|
943 |
+
st.write("Enter information about ventilation and infiltration rates.")
|
944 |
+
|
945 |
+
# Get building info
|
946 |
+
building_info = st.session_state.cooling_form_data['building_info']
|
947 |
+
volume = building_info.get('volume', 216.0)
|
948 |
+
temp_diff = building_info.get('temp_diff', 11.0)
|
949 |
+
|
950 |
+
# Initialize ventilation data if not already in session state
|
951 |
+
if 'infiltration' not in st.session_state.cooling_form_data['ventilation']:
|
952 |
+
st.session_state.cooling_form_data['ventilation']['infiltration'] = {
|
953 |
+
'air_changes': 0.5
|
954 |
+
}
|
955 |
+
|
956 |
+
if 'ventilation' not in st.session_state.cooling_form_data['ventilation']:
|
957 |
+
st.session_state.cooling_form_data['ventilation']['ventilation'] = {
|
958 |
+
'type': 'natural',
|
959 |
+
'air_changes': 0.0
|
960 |
+
}
|
961 |
+
|
962 |
+
# Infiltration section
|
963 |
+
st.write("### Infiltration")
|
964 |
+
st.write("Infiltration is the unintended air leakage through the building envelope.")
|
965 |
+
|
966 |
+
infiltration_ach = st.slider(
|
967 |
+
"Infiltration Rate (air changes per hour)",
|
968 |
+
value=float(st.session_state.cooling_form_data['ventilation']['infiltration'].get('air_changes', 0.5)),
|
969 |
+
min_value=0.1,
|
970 |
+
max_value=2.0,
|
971 |
+
step=0.1,
|
972 |
+
help="Typical values: 0.5 ACH for modern construction, 1.0 ACH for average construction, 1.5+ ACH for older buildings"
|
973 |
+
)
|
974 |
+
|
975 |
+
# Calculate infiltration heat gain
|
976 |
+
infiltration_heat_gain = 0.33 * volume * infiltration_ach * temp_diff
|
977 |
+
|
978 |
+
st.write(f"Infiltration heat gain: {infiltration_heat_gain:.2f} W")
|
979 |
+
|
980 |
+
# Save infiltration data
|
981 |
+
st.session_state.cooling_form_data['ventilation']['infiltration'] = {
|
982 |
+
'air_changes': infiltration_ach,
|
983 |
+
'volume': volume,
|
984 |
+
'temp_diff': temp_diff,
|
985 |
+
'heat_gain': infiltration_heat_gain
|
986 |
+
}
|
987 |
+
|
988 |
+
# Ventilation section
|
989 |
+
st.write("### Ventilation")
|
990 |
+
st.write("Ventilation is the intentional introduction of outside air into the building.")
|
991 |
+
|
992 |
+
col1, col2 = st.columns(2)
|
993 |
+
|
994 |
+
with col1:
|
995 |
+
ventilation_type = st.selectbox(
|
996 |
+
"Ventilation Type",
|
997 |
+
options=["natural", "mechanical", "mixed"],
|
998 |
+
format_func=lambda x: x.capitalize(),
|
999 |
+
index=["natural", "mechanical", "mixed"].index(st.session_state.cooling_form_data['ventilation']['ventilation'].get('type', 'natural'))
|
1000 |
+
)
|
1001 |
+
|
1002 |
+
with col2:
|
1003 |
+
ventilation_ach = st.number_input(
|
1004 |
+
"Ventilation Rate (air changes per hour)",
|
1005 |
+
value=float(st.session_state.cooling_form_data['ventilation']['ventilation'].get('air_changes', 0.0)),
|
1006 |
+
min_value=0.0,
|
1007 |
+
max_value=5.0,
|
1008 |
+
step=0.1,
|
1009 |
+
help="Typical values: 0.35-1.0 ACH for residential buildings"
|
1010 |
+
)
|
1011 |
+
|
1012 |
+
# Calculate ventilation heat gain
|
1013 |
+
ventilation_heat_gain = 0.33 * volume * ventilation_ach * temp_diff
|
1014 |
+
|
1015 |
+
st.write(f"Ventilation heat gain: {ventilation_heat_gain:.2f} W")
|
1016 |
+
|
1017 |
+
# Save ventilation data
|
1018 |
+
st.session_state.cooling_form_data['ventilation']['ventilation'] = {
|
1019 |
+
'type': ventilation_type,
|
1020 |
+
'air_changes': ventilation_ach,
|
1021 |
+
'volume': volume,
|
1022 |
+
'temp_diff': temp_diff,
|
1023 |
+
'heat_gain': ventilation_heat_gain
|
1024 |
+
}
|
1025 |
+
|
1026 |
+
# Calculate total ventilation and infiltration heat gain
|
1027 |
+
total_ventilation_gain = infiltration_heat_gain + ventilation_heat_gain
|
1028 |
+
|
1029 |
+
st.info(f"Total Ventilation & Infiltration Heat Gain: {total_ventilation_gain:.2f} W")
|
1030 |
+
|
1031 |
+
# Save total ventilation gain
|
1032 |
+
st.session_state.cooling_form_data['ventilation']['total_gain'] = total_ventilation_gain
|
1033 |
+
|
1034 |
+
# Validate inputs
|
1035 |
+
warnings = []
|
1036 |
+
|
1037 |
+
# Check if infiltration rate is reasonable
|
1038 |
+
if infiltration_ach < 0.3:
|
1039 |
+
warnings.append(ValidationWarning(
|
1040 |
+
"Low infiltration rate",
|
1041 |
+
"Infiltration rate below 0.3 ACH is unusually low for most buildings."
|
1042 |
+
))
|
1043 |
+
elif infiltration_ach > 1.5:
|
1044 |
+
warnings.append(ValidationWarning(
|
1045 |
+
"High infiltration rate",
|
1046 |
+
"Infiltration rate above 1.5 ACH indicates a leaky building envelope."
|
1047 |
+
))
|
1048 |
+
|
1049 |
+
# Check if ventilation rate is reasonable
|
1050 |
+
if ventilation_ach > 0 and ventilation_ach < 0.35:
|
1051 |
+
warnings.append(ValidationWarning(
|
1052 |
+
"Low ventilation rate",
|
1053 |
+
"Ventilation rate below 0.35 ACH may not provide adequate fresh air."
|
1054 |
+
))
|
1055 |
+
elif ventilation_ach > 2.0:
|
1056 |
+
warnings.append(ValidationWarning(
|
1057 |
+
"High ventilation rate",
|
1058 |
+
"Ventilation rate above 2.0 ACH is unusually high for residential buildings."
|
1059 |
+
))
|
1060 |
+
|
1061 |
+
# Save warnings to session state
|
1062 |
+
st.session_state.cooling_warnings['ventilation'] = warnings
|
1063 |
+
|
1064 |
+
# Display warnings if any
|
1065 |
+
if warnings:
|
1066 |
+
st.warning("Please review the following warnings:")
|
1067 |
+
for warning in warnings:
|
1068 |
+
st.write(f"- {warning.message}" + (" (Critical)" if warning.is_critical else ""))
|
1069 |
+
st.write(f" Suggestion: {warning.suggestion}")
|
1070 |
+
|
1071 |
+
# Mark this step as completed if there are no critical warnings
|
1072 |
+
st.session_state.cooling_completed['ventilation'] = not any(w.is_critical for w in warnings)
|
1073 |
+
|
1074 |
+
# Navigation buttons
|
1075 |
+
col1, col2 = st.columns([1, 1])
|
1076 |
+
|
1077 |
+
with col1:
|
1078 |
+
prev_button = st.button("← Back: Internal Loads", key="ventilation_prev")
|
1079 |
+
if prev_button:
|
1080 |
+
st.session_state.cooling_active_tab = "internal_loads"
|
1081 |
+
st.experimental_rerun()
|
1082 |
+
|
1083 |
+
with col2:
|
1084 |
+
calculate_button = st.button("Calculate Results →", key="ventilation_calculate")
|
1085 |
+
if calculate_button:
|
1086 |
+
# Calculate cooling load
|
1087 |
+
calculate_cooling_load()
|
1088 |
+
st.session_state.cooling_active_tab = "results"
|
1089 |
+
st.experimental_rerun()
|
1090 |
+
|
1091 |
+
|
1092 |
+
def calculate_cooling_load():
|
1093 |
+
"""Calculate cooling load based on input data."""
|
1094 |
+
# Create calculator instance
|
1095 |
+
calculator = CoolingLoadCalculator()
|
1096 |
+
|
1097 |
+
# Get form data
|
1098 |
+
form_data = st.session_state.cooling_form_data
|
1099 |
+
|
1100 |
+
# Prepare building components for calculation
|
1101 |
+
building_components = []
|
1102 |
+
|
1103 |
+
# Add walls
|
1104 |
+
for wall in form_data['building_envelope'].get('walls', []):
|
1105 |
+
building_components.append({
|
1106 |
+
'name': wall['name'],
|
1107 |
+
'area': wall['area'],
|
1108 |
+
'u_value': wall['u_value'],
|
1109 |
+
'temp_diff': wall['temp_diff']
|
1110 |
+
})
|
1111 |
+
|
1112 |
+
# Add roof
|
1113 |
+
roof = form_data['building_envelope'].get('roof', {})
|
1114 |
+
if roof:
|
1115 |
+
building_components.append({
|
1116 |
+
'name': 'Roof',
|
1117 |
+
'area': roof['area'],
|
1118 |
+
'u_value': roof['u_value'],
|
1119 |
+
'temp_diff': roof['temp_diff']
|
1120 |
+
})
|
1121 |
+
|
1122 |
+
# Add floor
|
1123 |
+
floor = form_data['building_envelope'].get('floor', {})
|
1124 |
+
if floor:
|
1125 |
+
building_components.append({
|
1126 |
+
'name': 'Floor',
|
1127 |
+
'area': floor['area'],
|
1128 |
+
'u_value': floor['u_value'],
|
1129 |
+
'temp_diff': floor['temp_diff']
|
1130 |
+
})
|
1131 |
+
|
1132 |
+
# Prepare windows for calculation
|
1133 |
+
windows = []
|
1134 |
+
for window in form_data['windows'].get('windows', []):
|
1135 |
+
windows.append({
|
1136 |
+
'name': window['name'],
|
1137 |
+
'area': window['area'],
|
1138 |
+
'u_value': window['u_value'],
|
1139 |
+
'orientation': window['orientation'],
|
1140 |
+
'glass_type': window['glass_type'],
|
1141 |
+
'shading': window['shading'],
|
1142 |
+
'shgf': window['shgf'],
|
1143 |
+
'shade_factor': 1.0 - window['shade_factor'],
|
1144 |
+
'temp_diff': window['temp_diff']
|
1145 |
+
})
|
1146 |
+
|
1147 |
+
# Add doors to building components
|
1148 |
+
for door in form_data['windows'].get('doors', []):
|
1149 |
+
building_components.append({
|
1150 |
+
'name': door['name'],
|
1151 |
+
'area': door['area'],
|
1152 |
+
'u_value': door['u_value'],
|
1153 |
+
'temp_diff': door['temp_diff']
|
1154 |
+
})
|
1155 |
+
|
1156 |
+
# Prepare infiltration data
|
1157 |
+
infiltration = form_data['ventilation'].get('infiltration', {})
|
1158 |
+
ventilation = form_data['ventilation'].get('ventilation', {})
|
1159 |
+
|
1160 |
+
infiltration_data = {
|
1161 |
+
'volume': infiltration.get('volume', 0),
|
1162 |
+
'air_changes': infiltration.get('air_changes', 0) + ventilation.get('air_changes', 0),
|
1163 |
+
'temp_diff': infiltration.get('temp_diff', 0)
|
1164 |
+
}
|
1165 |
+
|
1166 |
+
# Prepare internal gains data
|
1167 |
+
internal_gains = {
|
1168 |
+
'num_people': form_data['internal_loads'].get('occupants', {}).get('count', 0),
|
1169 |
+
'has_kitchen': form_data['internal_loads'].get('appliances', {}).get('kitchen', False),
|
1170 |
+
'equipment_watts': (
|
1171 |
+
form_data['internal_loads'].get('lighting', {}).get('total_heat_gain', 0) +
|
1172 |
+
form_data['internal_loads'].get('appliances', {}).get('total_heat_gain', 0) -
|
1173 |
+
(1000 if form_data['internal_loads'].get('appliances', {}).get('kitchen', False) else 0) # Subtract kitchen heat gain if included
|
1174 |
+
)
|
1175 |
+
}
|
1176 |
+
|
1177 |
+
# Calculate cooling load
|
1178 |
+
results = calculator.calculate_total_cooling_load(
|
1179 |
+
building_components=building_components,
|
1180 |
+
windows=windows,
|
1181 |
+
infiltration=infiltration_data,
|
1182 |
+
internal_gains=internal_gains
|
1183 |
+
)
|
1184 |
+
|
1185 |
+
# Save results to session state
|
1186 |
+
st.session_state.cooling_results = results
|
1187 |
+
|
1188 |
+
# Add timestamp
|
1189 |
+
st.session_state.cooling_results['timestamp'] = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
1190 |
+
|
1191 |
+
# Add building info
|
1192 |
+
st.session_state.cooling_results['building_info'] = form_data['building_info']
|
1193 |
+
|
1194 |
+
return results
|
1195 |
+
|
1196 |
+
|
1197 |
+
def results_page():
|
1198 |
+
"""Display calculation results."""
|
1199 |
+
st.subheader("Cooling Load Calculation Results")
|
1200 |
+
|
1201 |
+
# Check if results are available
|
1202 |
+
if not st.session_state.cooling_results:
|
1203 |
+
st.warning("No calculation results available. Please complete the input forms and calculate results.")
|
1204 |
+
return
|
1205 |
+
|
1206 |
+
# Get results
|
1207 |
+
results = st.session_state.cooling_results
|
1208 |
+
|
1209 |
+
# Display summary
|
1210 |
+
st.write("### Summary")
|
1211 |
+
|
1212 |
+
col1, col2 = st.columns(2)
|
1213 |
+
|
1214 |
+
with col1:
|
1215 |
+
st.metric("Sensible Cooling Load", f"{results['sensible_load']:.2f} W")
|
1216 |
+
st.metric("Total Cooling Load", f"{results['total_load']:.2f} W")
|
1217 |
+
|
1218 |
+
# Convert to kW
|
1219 |
+
total_load_kw = results['total_load'] / 1000
|
1220 |
+
st.metric("Total Cooling Load", f"{total_load_kw:.2f} kW")
|
1221 |
+
|
1222 |
+
with col2:
|
1223 |
+
st.metric("Latent Cooling Load", f"{results['latent_load']:.2f} W")
|
1224 |
+
|
1225 |
+
# Calculate cooling load per area
|
1226 |
+
floor_area = results['building_info'].get('floor_area', 80.0)
|
1227 |
+
cooling_load_per_area = results['total_load'] / floor_area
|
1228 |
+
st.metric("Cooling Load per Area", f"{cooling_load_per_area:.2f} W/m²")
|
1229 |
+
|
1230 |
+
# Equipment sizing recommendation
|
1231 |
+
# Add 10% safety factor
|
1232 |
+
recommended_size = total_load_kw * 1.1
|
1233 |
+
st.metric("Recommended Equipment Size", f"{recommended_size:.2f} kW")
|
1234 |
+
|
1235 |
+
# Display load breakdown
|
1236 |
+
st.write("### Load Breakdown")
|
1237 |
+
|
1238 |
+
# Prepare data for pie chart
|
1239 |
+
load_components = {
|
1240 |
+
'Conduction (Opaque Surfaces)': results['conduction_gain'],
|
1241 |
+
'Conduction (Windows)': results['window_conduction_gain'],
|
1242 |
+
'Solar Radiation (Windows)': results['window_solar_gain'],
|
1243 |
+
'Infiltration & Ventilation': results['infiltration_gain'],
|
1244 |
+
'Internal Gains': results['internal_gain']
|
1245 |
+
}
|
1246 |
+
|
1247 |
+
# Create pie chart
|
1248 |
+
fig = px.pie(
|
1249 |
+
values=list(load_components.values()),
|
1250 |
+
names=list(load_components.keys()),
|
1251 |
+
title="Cooling Load Components",
|
1252 |
+
color_discrete_sequence=px.colors.qualitative.Set2
|
1253 |
+
)
|
1254 |
+
|
1255 |
+
st.plotly_chart(fig)
|
1256 |
+
|
1257 |
+
# Display load components in a table
|
1258 |
+
load_df = pd.DataFrame({
|
1259 |
+
'Component': list(load_components.keys()),
|
1260 |
+
'Load (W)': list(load_components.values()),
|
1261 |
+
'Percentage (%)': [value / results['sensible_load'] * 100 for value in load_components.values()]
|
1262 |
+
})
|
1263 |
+
|
1264 |
+
st.dataframe(load_df.style.format({
|
1265 |
+
'Load (W)': '{:.2f}',
|
1266 |
+
'Percentage (%)': '{:.2f}'
|
1267 |
+
}))
|
1268 |
+
|
1269 |
+
# Display detailed results
|
1270 |
+
st.write("### Detailed Results")
|
1271 |
+
|
1272 |
+
# Create tabs for different result sections
|
1273 |
+
tabs = st.tabs([
|
1274 |
+
"Building Envelope",
|
1275 |
+
"Windows & Doors",
|
1276 |
+
"Internal Loads",
|
1277 |
+
"Ventilation"
|
1278 |
+
])
|
1279 |
+
|
1280 |
+
with tabs[0]:
|
1281 |
+
st.subheader("Building Envelope Heat Gains")
|
1282 |
+
|
1283 |
+
# Get building components
|
1284 |
+
building_components = []
|
1285 |
+
|
1286 |
+
# Add walls
|
1287 |
+
for wall in st.session_state.cooling_form_data['building_envelope'].get('walls', []):
|
1288 |
+
building_components.append({
|
1289 |
+
'Component': wall['name'],
|
1290 |
+
'Area (m²)': wall['area'],
|
1291 |
+
'U-Value (W/m²°C)': wall['u_value'],
|
1292 |
+
'Temperature Difference (°C)': wall['temp_diff'],
|
1293 |
+
'Heat Gain (W)': wall['area'] * wall['u_value'] * wall['temp_diff']
|
1294 |
+
})
|
1295 |
+
|
1296 |
+
# Add roof
|
1297 |
+
roof = st.session_state.cooling_form_data['building_envelope'].get('roof', {})
|
1298 |
+
if roof:
|
1299 |
+
building_components.append({
|
1300 |
+
'Component': 'Roof',
|
1301 |
+
'Area (m²)': roof['area'],
|
1302 |
+
'U-Value (W/m²°C)': roof['u_value'],
|
1303 |
+
'Temperature Difference (°C)': roof['temp_diff'],
|
1304 |
+
'Heat Gain (W)': roof['area'] * roof['u_value'] * roof['temp_diff']
|
1305 |
+
})
|
1306 |
+
|
1307 |
+
# Add floor
|
1308 |
+
floor = st.session_state.cooling_form_data['building_envelope'].get('floor', {})
|
1309 |
+
if floor:
|
1310 |
+
building_components.append({
|
1311 |
+
'Component': 'Floor',
|
1312 |
+
'Area (m²)': floor['area'],
|
1313 |
+
'U-Value (W/m²°C)': floor['u_value'],
|
1314 |
+
'Temperature Difference (°C)': floor['temp_diff'],
|
1315 |
+
'Heat Gain (W)': floor['area'] * floor['u_value'] * floor['temp_diff']
|
1316 |
+
})
|
1317 |
+
|
1318 |
+
# Create dataframe
|
1319 |
+
envelope_df = pd.DataFrame(building_components)
|
1320 |
+
|
1321 |
+
# Display table
|
1322 |
+
st.dataframe(envelope_df.style.format({
|
1323 |
+
'Area (m²)': '{:.2f}',
|
1324 |
+
'U-Value (W/m²°C)': '{:.2f}',
|
1325 |
+
'Temperature Difference (°C)': '{:.2f}',
|
1326 |
+
'Heat Gain (W)': '{:.2f}'
|
1327 |
+
}))
|
1328 |
+
|
1329 |
+
# Create bar chart
|
1330 |
+
fig = px.bar(
|
1331 |
+
envelope_df,
|
1332 |
+
x='Component',
|
1333 |
+
y='Heat Gain (W)',
|
1334 |
+
title="Heat Gain by Building Component",
|
1335 |
+
color='Component',
|
1336 |
+
color_discrete_sequence=px.colors.qualitative.Set3
|
1337 |
+
)
|
1338 |
+
|
1339 |
+
st.plotly_chart(fig)
|
1340 |
+
|
1341 |
+
with tabs[1]:
|
1342 |
+
st.subheader("Windows & Doors Heat Gains")
|
1343 |
+
|
1344 |
+
# Windows section
|
1345 |
+
st.write("#### Windows")
|
1346 |
+
|
1347 |
+
# Get windows
|
1348 |
+
windows_data = []
|
1349 |
+
for window in st.session_state.cooling_form_data['windows'].get('windows', []):
|
1350 |
+
windows_data.append({
|
1351 |
+
'Component': window['name'],
|
1352 |
+
'Orientation': window['orientation'].capitalize(),
|
1353 |
+
'Area (m²)': window['area'],
|
1354 |
+
'U-Value (W/m²°C)': window['u_value'],
|
1355 |
+
'Temperature Difference (°C)': window['temp_diff'],
|
1356 |
+
'Conduction Heat Gain (W)': window['area'] * window['u_value'] * window['temp_diff'],
|
1357 |
+
'Solar Heat Gain Factor (W/m²)': window['shgf'],
|
1358 |
+
'Shading Factor': 1.0 - window['shade_factor'],
|
1359 |
+
'Solar Heat Gain (W)': window['area'] * window['shgf'] * (1.0 - window['shade_factor']),
|
1360 |
+
'Total Heat Gain (W)': (window['area'] * window['u_value'] * window['temp_diff']) +
|
1361 |
+
(window['area'] * window['shgf'] * (1.0 - window['shade_factor']))
|
1362 |
+
})
|
1363 |
+
|
1364 |
+
if windows_data:
|
1365 |
+
# Create dataframe
|
1366 |
+
windows_df = pd.DataFrame(windows_data)
|
1367 |
+
|
1368 |
+
# Display table
|
1369 |
+
st.dataframe(windows_df.style.format({
|
1370 |
+
'Area (m²)': '{:.2f}',
|
1371 |
+
'U-Value (W/m²°C)': '{:.2f}',
|
1372 |
+
'Temperature Difference (°C)': '{:.2f}',
|
1373 |
+
'Conduction Heat Gain (W)': '{:.2f}',
|
1374 |
+
'Solar Heat Gain Factor (W/m²)': '{:.2f}',
|
1375 |
+
'Shading Factor': '{:.2f}',
|
1376 |
+
'Solar Heat Gain (W)': '{:.2f}',
|
1377 |
+
'Total Heat Gain (W)': '{:.2f}'
|
1378 |
+
}))
|
1379 |
+
|
1380 |
+
# Create grouped bar chart
|
1381 |
+
fig = go.Figure()
|
1382 |
+
|
1383 |
+
fig.add_trace(go.Bar(
|
1384 |
+
x=windows_df['Component'],
|
1385 |
+
y=windows_df['Conduction Heat Gain (W)'],
|
1386 |
+
name='Conduction Heat Gain',
|
1387 |
+
marker_color='indianred'
|
1388 |
+
))
|
1389 |
+
|
1390 |
+
fig.add_trace(go.Bar(
|
1391 |
+
x=windows_df['Component'],
|
1392 |
+
y=windows_df['Solar Heat Gain (W)'],
|
1393 |
+
name='Solar Heat Gain',
|
1394 |
+
marker_color='lightsalmon'
|
1395 |
+
))
|
1396 |
+
|
1397 |
+
fig.update_layout(
|
1398 |
+
title="Window Heat Gains",
|
1399 |
+
xaxis_title="Window",
|
1400 |
+
yaxis_title="Heat Gain (W)",
|
1401 |
+
barmode='stack'
|
1402 |
+
)
|
1403 |
+
|
1404 |
+
st.plotly_chart(fig)
|
1405 |
+
else:
|
1406 |
+
st.write("No windows defined.")
|
1407 |
+
|
1408 |
+
# Doors section
|
1409 |
+
st.write("#### Doors")
|
1410 |
+
|
1411 |
+
# Get doors
|
1412 |
+
doors_data = []
|
1413 |
+
for door in st.session_state.cooling_form_data['windows'].get('doors', []):
|
1414 |
+
doors_data.append({
|
1415 |
+
'Component': door['name'],
|
1416 |
+
'Type': door['type'],
|
1417 |
+
'Area (m²)': door['area'],
|
1418 |
+
'U-Value (W/m²°C)': door['u_value'],
|
1419 |
+
'Temperature Difference (°C)': door['temp_diff'],
|
1420 |
+
'Heat Gain (W)': door['area'] * door['u_value'] * door['temp_diff']
|
1421 |
+
})
|
1422 |
+
|
1423 |
+
if doors_data:
|
1424 |
+
# Create dataframe
|
1425 |
+
doors_df = pd.DataFrame(doors_data)
|
1426 |
+
|
1427 |
+
# Display table
|
1428 |
+
st.dataframe(doors_df.style.format({
|
1429 |
+
'Area (m²)': '{:.2f}',
|
1430 |
+
'U-Value (W/m²°C)': '{:.2f}',
|
1431 |
+
'Temperature Difference (°C)': '{:.2f}',
|
1432 |
+
'Heat Gain (W)': '{:.2f}'
|
1433 |
+
}))
|
1434 |
+
|
1435 |
+
# Create bar chart
|
1436 |
+
fig = px.bar(
|
1437 |
+
doors_df,
|
1438 |
+
x='Component',
|
1439 |
+
y='Heat Gain (W)',
|
1440 |
+
title="Door Heat Gains",
|
1441 |
+
color='Type',
|
1442 |
+
color_discrete_sequence=px.colors.qualitative.Pastel
|
1443 |
+
)
|
1444 |
+
|
1445 |
+
st.plotly_chart(fig)
|
1446 |
+
else:
|
1447 |
+
st.write("No doors defined.")
|
1448 |
+
|
1449 |
+
with tabs[2]:
|
1450 |
+
st.subheader("Internal Heat Gains")
|
1451 |
+
|
1452 |
+
# Get internal loads data
|
1453 |
+
internal_loads = st.session_state.cooling_form_data['internal_loads']
|
1454 |
+
|
1455 |
+
# Create dataframe
|
1456 |
+
internal_loads_data = [
|
1457 |
+
{
|
1458 |
+
'Source': 'Occupants',
|
1459 |
+
'Details': f"{internal_loads['occupants']['count']} people",
|
1460 |
+
'Heat Gain (W)': internal_loads['occupants']['total_heat_gain']
|
1461 |
+
},
|
1462 |
+
{
|
1463 |
+
'Source': 'Lighting',
|
1464 |
+
'Details': f"{internal_loads['lighting']['type']} lighting",
|
1465 |
+
'Heat Gain (W)': internal_loads['lighting']['total_heat_gain']
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
'Source': 'Appliances',
|
1469 |
+
'Details': ', '.join([k for k, v in internal_loads['appliances'].items() if v and k != 'total_heat_gain']),
|
1470 |
+
'Heat Gain (W)': internal_loads['appliances']['total_heat_gain']
|
1471 |
+
}
|
1472 |
+
]
|
1473 |
+
|
1474 |
+
internal_loads_df = pd.DataFrame(internal_loads_data)
|
1475 |
+
|
1476 |
+
# Display table
|
1477 |
+
st.dataframe(internal_loads_df.style.format({
|
1478 |
+
'Heat Gain (W)': '{:.2f}'
|
1479 |
+
}))
|
1480 |
+
|
1481 |
+
# Create bar chart
|
1482 |
+
fig = px.bar(
|
1483 |
+
internal_loads_df,
|
1484 |
+
x='Source',
|
1485 |
+
y='Heat Gain (W)',
|
1486 |
+
title="Internal Heat Gains",
|
1487 |
+
color='Source',
|
1488 |
+
color_discrete_sequence=px.colors.qualitative.Pastel1
|
1489 |
+
)
|
1490 |
+
|
1491 |
+
st.plotly_chart(fig)
|
1492 |
+
|
1493 |
+
with tabs[3]:
|
1494 |
+
st.subheader("Ventilation & Infiltration Heat Gains")
|
1495 |
+
|
1496 |
+
# Get ventilation data
|
1497 |
+
ventilation_data = st.session_state.cooling_form_data['ventilation']
|
1498 |
+
|
1499 |
+
# Create dataframe
|
1500 |
+
ventilation_df = pd.DataFrame([
|
1501 |
+
{
|
1502 |
+
'Source': 'Infiltration',
|
1503 |
+
'Air Changes per Hour': ventilation_data['infiltration']['air_changes'],
|
1504 |
+
'Volume (m³)': ventilation_data['infiltration']['volume'],
|
1505 |
+
'Temperature Difference (°C)': ventilation_data['infiltration']['temp_diff'],
|
1506 |
+
'Heat Gain (W)': ventilation_data['infiltration']['heat_gain']
|
1507 |
+
},
|
1508 |
+
{
|
1509 |
+
'Source': 'Ventilation',
|
1510 |
+
'Air Changes per Hour': ventilation_data['ventilation']['air_changes'],
|
1511 |
+
'Volume (m³)': ventilation_data['ventilation']['volume'],
|
1512 |
+
'Temperature Difference (°C)': ventilation_data['ventilation']['temp_diff'],
|
1513 |
+
'Heat Gain (W)': ventilation_data['ventilation']['heat_gain']
|
1514 |
+
}
|
1515 |
+
])
|
1516 |
+
|
1517 |
+
# Display table
|
1518 |
+
st.dataframe(ventilation_df.style.format({
|
1519 |
+
'Air Changes per Hour': '{:.2f}',
|
1520 |
+
'Volume (m³)': '{:.2f}',
|
1521 |
+
'Temperature Difference (°C)': '{:.2f}',
|
1522 |
+
'Heat Gain (W)': '{:.2f}'
|
1523 |
+
}))
|
1524 |
+
|
1525 |
+
# Create bar chart
|
1526 |
+
fig = px.bar(
|
1527 |
+
ventilation_df,
|
1528 |
+
x='Source',
|
1529 |
+
y='Heat Gain (W)',
|
1530 |
+
title="Ventilation & Infiltration Heat Gains",
|
1531 |
+
color='Source',
|
1532 |
+
color_discrete_sequence=px.colors.qualitative.Pastel2
|
1533 |
+
)
|
1534 |
+
|
1535 |
+
st.plotly_chart(fig)
|
1536 |
+
|
1537 |
+
# Export options
|
1538 |
+
st.write("### Export Options")
|
1539 |
+
|
1540 |
+
col1, col2 = st.columns(2)
|
1541 |
+
|
1542 |
+
with col1:
|
1543 |
+
if st.button("Export Results as CSV"):
|
1544 |
+
# Create a CSV file with results
|
1545 |
+
csv_data = export_data(st.session_state.cooling_form_data, st.session_state.cooling_results, format='csv')
|
1546 |
+
|
1547 |
+
# Provide download link
|
1548 |
+
st.download_button(
|
1549 |
+
label="Download CSV",
|
1550 |
+
data=csv_data,
|
1551 |
+
file_name=f"cooling_load_results_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
|
1552 |
+
mime="text/csv"
|
1553 |
+
)
|
1554 |
+
|
1555 |
+
with col2:
|
1556 |
+
if st.button("Export Results as JSON"):
|
1557 |
+
# Create a JSON file with results
|
1558 |
+
json_data = export_data(st.session_state.cooling_form_data, st.session_state.cooling_results, format='json')
|
1559 |
+
|
1560 |
+
# Provide download link
|
1561 |
+
st.download_button(
|
1562 |
+
label="Download JSON",
|
1563 |
+
data=json_data,
|
1564 |
+
file_name=f"cooling_load_results_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json",
|
1565 |
+
mime="application/json"
|
1566 |
+
)
|
1567 |
+
|
1568 |
+
# Navigation buttons
|
1569 |
+
col1, col2 = st.columns([1, 1])
|
1570 |
+
|
1571 |
+
with col1:
|
1572 |
+
prev_button = st.button("← Back: Ventilation", key="results_prev")
|
1573 |
+
if prev_button:
|
1574 |
+
st.session_state.cooling_active_tab = "ventilation"
|
1575 |
+
st.experimental_rerun()
|
1576 |
+
|
1577 |
+
with col2:
|
1578 |
+
recalculate_button = st.button("Recalculate", key="results_recalculate")
|
1579 |
+
if recalculate_button:
|
1580 |
+
# Recalculate cooling load
|
1581 |
+
calculate_cooling_load()
|
1582 |
+
st.experimental_rerun()
|
1583 |
+
|
1584 |
+
|
1585 |
+
def cooling_calculator():
|
1586 |
+
"""Main function for the cooling load calculator page."""
|
1587 |
+
st.title("Cooling Load Calculator")
|
1588 |
+
|
1589 |
+
# Initialize reference data
|
1590 |
+
ref_data = ReferenceData()
|
1591 |
+
|
1592 |
+
# Initialize session state
|
1593 |
+
load_session_state()
|
1594 |
+
|
1595 |
+
# Initialize active tab if not already set
|
1596 |
+
if 'cooling_active_tab' not in st.session_state:
|
1597 |
+
st.session_state.cooling_active_tab = "building_info"
|
1598 |
+
|
1599 |
+
# Create tabs for different steps
|
1600 |
+
tabs = st.tabs([
|
1601 |
+
"1. Building Information",
|
1602 |
+
"2. Building Envelope",
|
1603 |
+
"3. Windows & Doors",
|
1604 |
+
"4. Internal Loads",
|
1605 |
+
"5. Ventilation",
|
1606 |
+
"6. Results"
|
1607 |
+
])
|
1608 |
+
|
1609 |
+
# Display the active tab
|
1610 |
+
with tabs[0]:
|
1611 |
+
if st.session_state.cooling_active_tab == "building_info":
|
1612 |
+
building_info_form(ref_data)
|
1613 |
+
|
1614 |
+
with tabs[1]:
|
1615 |
+
if st.session_state.cooling_active_tab == "building_envelope":
|
1616 |
+
building_envelope_form(ref_data)
|
1617 |
+
|
1618 |
+
with tabs[2]:
|
1619 |
+
if st.session_state.cooling_active_tab == "windows":
|
1620 |
+
windows_form(ref_data)
|
1621 |
+
|
1622 |
+
with tabs[3]:
|
1623 |
+
if st.session_state.cooling_active_tab == "internal_loads":
|
1624 |
+
internal_loads_form(ref_data)
|
1625 |
+
|
1626 |
+
with tabs[4]:
|
1627 |
+
if st.session_state.cooling_active_tab == "ventilation":
|
1628 |
+
ventilation_form(ref_data)
|
1629 |
+
|
1630 |
+
with tabs[5]:
|
1631 |
+
if st.session_state.cooling_active_tab == "results":
|
1632 |
+
results_page()
|
1633 |
+
|
1634 |
+
|
1635 |
+
if __name__ == "__main__":
|
1636 |
+
cooling_calculator()
|
pages/heating_calculator.py
ADDED
@@ -0,0 +1,1435 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Heating Load Calculator Page
|
3 |
+
|
4 |
+
This module implements the heating load calculator interface for the HVAC Load Calculator web application.
|
5 |
+
It provides a step-by-step form for inputting building information and calculates heating loads
|
6 |
+
using the ASHRAE method.
|
7 |
+
"""
|
8 |
+
|
9 |
+
import streamlit as st
|
10 |
+
import pandas as pd
|
11 |
+
import numpy as np
|
12 |
+
import plotly.express as px
|
13 |
+
import plotly.graph_objects as go
|
14 |
+
import json
|
15 |
+
import os
|
16 |
+
import sys
|
17 |
+
from pathlib import Path
|
18 |
+
from datetime import datetime
|
19 |
+
|
20 |
+
# Add the parent directory to sys.path to import modules
|
21 |
+
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
22 |
+
|
23 |
+
# Import custom modules
|
24 |
+
from heating_load import HeatingLoadCalculator
|
25 |
+
from reference_data import ReferenceData
|
26 |
+
from utils.validation import validate_input, ValidationWarning
|
27 |
+
from utils.export import export_data
|
28 |
+
|
29 |
+
|
30 |
+
def load_session_state():
|
31 |
+
"""Initialize or load session state variables."""
|
32 |
+
# Initialize session state for form data
|
33 |
+
if 'heating_form_data' not in st.session_state:
|
34 |
+
st.session_state.heating_form_data = {
|
35 |
+
'building_info': {},
|
36 |
+
'building_envelope': {},
|
37 |
+
'windows': {},
|
38 |
+
'ventilation': {},
|
39 |
+
'occupancy': {},
|
40 |
+
'results': {}
|
41 |
+
}
|
42 |
+
|
43 |
+
# Initialize session state for validation warnings
|
44 |
+
if 'heating_warnings' not in st.session_state:
|
45 |
+
st.session_state.heating_warnings = {
|
46 |
+
'building_info': [],
|
47 |
+
'building_envelope': [],
|
48 |
+
'windows': [],
|
49 |
+
'ventilation': [],
|
50 |
+
'occupancy': []
|
51 |
+
}
|
52 |
+
|
53 |
+
# Initialize session state for form completion status
|
54 |
+
if 'heating_completed' not in st.session_state:
|
55 |
+
st.session_state.heating_completed = {
|
56 |
+
'building_info': False,
|
57 |
+
'building_envelope': False,
|
58 |
+
'windows': False,
|
59 |
+
'ventilation': False,
|
60 |
+
'occupancy': False
|
61 |
+
}
|
62 |
+
|
63 |
+
# Initialize session state for calculation results
|
64 |
+
if 'heating_results' not in st.session_state:
|
65 |
+
st.session_state.heating_results = None
|
66 |
+
|
67 |
+
|
68 |
+
def building_info_form(ref_data):
|
69 |
+
"""
|
70 |
+
Form for building information.
|
71 |
+
|
72 |
+
Args:
|
73 |
+
ref_data: Reference data object
|
74 |
+
"""
|
75 |
+
st.subheader("Building Information")
|
76 |
+
st.write("Enter general building information, location, and design temperatures.")
|
77 |
+
|
78 |
+
# Get location options from reference data
|
79 |
+
location_options = {loc_id: loc_data['name'] for loc_id, loc_data in ref_data.locations.items()}
|
80 |
+
|
81 |
+
col1, col2 = st.columns(2)
|
82 |
+
|
83 |
+
with col1:
|
84 |
+
# Building name
|
85 |
+
building_name = st.text_input(
|
86 |
+
"Building Name",
|
87 |
+
value=st.session_state.heating_form_data['building_info'].get('building_name', ''),
|
88 |
+
help="Enter a name for this building or project"
|
89 |
+
)
|
90 |
+
|
91 |
+
# Location selection
|
92 |
+
location = st.selectbox(
|
93 |
+
"Location",
|
94 |
+
options=list(location_options.keys()),
|
95 |
+
format_func=lambda x: location_options[x],
|
96 |
+
index=list(location_options.keys()).index(st.session_state.heating_form_data['building_info'].get('location', 'sydney')) if st.session_state.heating_form_data['building_info'].get('location') in location_options else 0,
|
97 |
+
help="Select the location of the building"
|
98 |
+
)
|
99 |
+
|
100 |
+
# Get climate data for selected location
|
101 |
+
location_data = ref_data.get_location_data(location)
|
102 |
+
|
103 |
+
# Indoor design temperature
|
104 |
+
indoor_temp = st.number_input(
|
105 |
+
"Indoor Design Temperature (°C)",
|
106 |
+
value=float(st.session_state.heating_form_data['building_info'].get('indoor_temp', 21.0)),
|
107 |
+
min_value=15.0,
|
108 |
+
max_value=25.0,
|
109 |
+
step=0.5,
|
110 |
+
help="Recommended indoor design temperature for heating is 21°C for living areas and 17°C for bedrooms"
|
111 |
+
)
|
112 |
+
|
113 |
+
with col2:
|
114 |
+
# Building type
|
115 |
+
building_type = st.selectbox(
|
116 |
+
"Building Type",
|
117 |
+
options=["Residential", "Small Office", "Educational", "Other"],
|
118 |
+
index=["Residential", "Small Office", "Educational", "Other"].index(st.session_state.heating_form_data['building_info'].get('building_type', 'Residential')),
|
119 |
+
help="Select the type of building"
|
120 |
+
)
|
121 |
+
|
122 |
+
# Outdoor design temperature (with default from location data)
|
123 |
+
outdoor_temp = st.number_input(
|
124 |
+
"Outdoor Design Temperature (°C)",
|
125 |
+
value=float(st.session_state.heating_form_data['building_info'].get('outdoor_temp', location_data['winter_design_temp'])),
|
126 |
+
min_value=-10.0,
|
127 |
+
max_value=15.0,
|
128 |
+
step=0.5,
|
129 |
+
help=f"Default value is based on selected location ({location_data['name']})"
|
130 |
+
)
|
131 |
+
|
132 |
+
# Building dimensions
|
133 |
+
st.subheader("Building Dimensions")
|
134 |
+
|
135 |
+
col1, col2, col3 = st.columns(3)
|
136 |
+
|
137 |
+
with col1:
|
138 |
+
length = st.number_input(
|
139 |
+
"Length (m)",
|
140 |
+
value=float(st.session_state.heating_form_data['building_info'].get('length', 10.0)),
|
141 |
+
min_value=1.0,
|
142 |
+
step=0.1,
|
143 |
+
help="Building length in meters"
|
144 |
+
)
|
145 |
+
|
146 |
+
with col2:
|
147 |
+
width = st.number_input(
|
148 |
+
"Width (m)",
|
149 |
+
value=float(st.session_state.heating_form_data['building_info'].get('width', 8.0)),
|
150 |
+
min_value=1.0,
|
151 |
+
step=0.1,
|
152 |
+
help="Building width in meters"
|
153 |
+
)
|
154 |
+
|
155 |
+
with col3:
|
156 |
+
height = st.number_input(
|
157 |
+
"Height (m)",
|
158 |
+
value=float(st.session_state.heating_form_data['building_info'].get('height', 2.7)),
|
159 |
+
min_value=1.0,
|
160 |
+
step=0.1,
|
161 |
+
help="Floor-to-ceiling height in meters"
|
162 |
+
)
|
163 |
+
|
164 |
+
# Calculate floor area and volume
|
165 |
+
floor_area = length * width
|
166 |
+
volume = floor_area * height
|
167 |
+
|
168 |
+
st.info(f"Floor Area: {floor_area:.2f} m² | Volume: {volume:.2f} m³")
|
169 |
+
|
170 |
+
# Save form data to session state
|
171 |
+
form_data = {
|
172 |
+
'building_name': building_name,
|
173 |
+
'building_type': building_type,
|
174 |
+
'location': location,
|
175 |
+
'location_name': location_data['name'],
|
176 |
+
'indoor_temp': indoor_temp,
|
177 |
+
'outdoor_temp': outdoor_temp,
|
178 |
+
'length': length,
|
179 |
+
'width': width,
|
180 |
+
'height': height,
|
181 |
+
'floor_area': floor_area,
|
182 |
+
'volume': volume,
|
183 |
+
'temp_diff': indoor_temp - outdoor_temp
|
184 |
+
}
|
185 |
+
|
186 |
+
# Validate inputs
|
187 |
+
warnings = []
|
188 |
+
|
189 |
+
# Check if building name is provided
|
190 |
+
if not building_name:
|
191 |
+
warnings.append(ValidationWarning("Building name is empty", "Consider adding a building name for reference"))
|
192 |
+
|
193 |
+
# Check if temperature difference is reasonable
|
194 |
+
if form_data['temp_diff'] <= 0:
|
195 |
+
warnings.append(ValidationWarning(
|
196 |
+
"Invalid temperature difference",
|
197 |
+
"Indoor temperature should be higher than outdoor temperature for heating load calculation",
|
198 |
+
is_critical=True
|
199 |
+
))
|
200 |
+
|
201 |
+
# Check if dimensions are reasonable
|
202 |
+
if floor_area > 500:
|
203 |
+
warnings.append(ValidationWarning(
|
204 |
+
"Large floor area",
|
205 |
+
"Floor area exceeds 500 m², verify if this is correct for a residential building"
|
206 |
+
))
|
207 |
+
|
208 |
+
if height < 2.4 or height > 3.5:
|
209 |
+
warnings.append(ValidationWarning(
|
210 |
+
"Unusual ceiling height",
|
211 |
+
"Typical residential ceiling heights are between 2.4m and 3.5m"
|
212 |
+
))
|
213 |
+
|
214 |
+
# Save warnings to session state
|
215 |
+
st.session_state.heating_warnings['building_info'] = warnings
|
216 |
+
|
217 |
+
# Display warnings if any
|
218 |
+
if warnings:
|
219 |
+
st.warning("Please review the following warnings:")
|
220 |
+
for warning in warnings:
|
221 |
+
st.write(f"- {warning.message}" + (" (Critical)" if warning.is_critical else ""))
|
222 |
+
st.write(f" Suggestion: {warning.suggestion}")
|
223 |
+
|
224 |
+
# Save form data regardless of warnings
|
225 |
+
st.session_state.heating_form_data['building_info'] = form_data
|
226 |
+
|
227 |
+
# Mark this step as completed if there are no critical warnings
|
228 |
+
st.session_state.heating_completed['building_info'] = not any(w.is_critical for w in warnings)
|
229 |
+
|
230 |
+
# Navigation buttons
|
231 |
+
col1, col2 = st.columns([1, 1])
|
232 |
+
|
233 |
+
with col2:
|
234 |
+
next_button = st.button("Next: Building Envelope →", key="heating_building_info_next")
|
235 |
+
if next_button:
|
236 |
+
st.session_state.heating_active_tab = "building_envelope"
|
237 |
+
st.experimental_rerun()
|
238 |
+
|
239 |
+
|
240 |
+
def building_envelope_form(ref_data):
|
241 |
+
"""
|
242 |
+
Form for building envelope information.
|
243 |
+
|
244 |
+
Args:
|
245 |
+
ref_data: Reference data object
|
246 |
+
"""
|
247 |
+
st.subheader("Building Envelope")
|
248 |
+
st.write("Enter information about walls, roof, and floor construction.")
|
249 |
+
|
250 |
+
# Get building dimensions from previous step
|
251 |
+
building_info = st.session_state.heating_form_data['building_info']
|
252 |
+
length = building_info.get('length', 10.0)
|
253 |
+
width = building_info.get('width', 8.0)
|
254 |
+
height = building_info.get('height', 2.7)
|
255 |
+
temp_diff = building_info.get('temp_diff', 16.5)
|
256 |
+
|
257 |
+
# Calculate default areas
|
258 |
+
default_wall_area = 2 * (length + width) * height
|
259 |
+
default_roof_area = length * width
|
260 |
+
default_floor_area = length * width
|
261 |
+
|
262 |
+
# Initialize envelope data if not already in session state
|
263 |
+
if 'walls' not in st.session_state.heating_form_data['building_envelope']:
|
264 |
+
st.session_state.heating_form_data['building_envelope']['walls'] = []
|
265 |
+
|
266 |
+
if 'roof' not in st.session_state.heating_form_data['building_envelope']:
|
267 |
+
st.session_state.heating_form_data['building_envelope']['roof'] = {}
|
268 |
+
|
269 |
+
if 'floor' not in st.session_state.heating_form_data['building_envelope']:
|
270 |
+
st.session_state.heating_form_data['building_envelope']['floor'] = {}
|
271 |
+
|
272 |
+
# Walls section
|
273 |
+
st.write("### Walls")
|
274 |
+
|
275 |
+
# Get wall material options from reference data
|
276 |
+
wall_material_options = {mat_id: mat_data['name'] for mat_id, mat_data in ref_data.materials['walls'].items()}
|
277 |
+
|
278 |
+
# Display existing wall entries
|
279 |
+
if st.session_state.heating_form_data['building_envelope']['walls']:
|
280 |
+
st.write("Current walls:")
|
281 |
+
walls_df = pd.DataFrame(st.session_state.heating_form_data['building_envelope']['walls'])
|
282 |
+
walls_df['Material'] = walls_df['material_id'].map(lambda x: wall_material_options.get(x, "Unknown"))
|
283 |
+
walls_df = walls_df[['name', 'Material', 'area', 'u_value']]
|
284 |
+
walls_df.columns = ['Name', 'Material', 'Area (m²)', 'U-Value (W/m²°C)']
|
285 |
+
st.dataframe(walls_df)
|
286 |
+
|
287 |
+
# Add new wall form
|
288 |
+
st.write("Add a new wall:")
|
289 |
+
|
290 |
+
col1, col2 = st.columns(2)
|
291 |
+
|
292 |
+
with col1:
|
293 |
+
wall_name = st.text_input("Wall Name", value="", key="new_wall_name_heating")
|
294 |
+
wall_material = st.selectbox(
|
295 |
+
"Wall Material",
|
296 |
+
options=list(wall_material_options.keys()),
|
297 |
+
format_func=lambda x: wall_material_options[x],
|
298 |
+
key="new_wall_material_heating"
|
299 |
+
)
|
300 |
+
|
301 |
+
# Get material properties
|
302 |
+
material_data = ref_data.get_material_by_type("walls", wall_material)
|
303 |
+
u_value = material_data['u_value']
|
304 |
+
|
305 |
+
with col2:
|
306 |
+
wall_area = st.number_input(
|
307 |
+
"Wall Area (m²)",
|
308 |
+
value=default_wall_area / 4, # Default to 1/4 of total wall area as a starting point
|
309 |
+
min_value=0.1,
|
310 |
+
step=0.1,
|
311 |
+
key="new_wall_area_heating"
|
312 |
+
)
|
313 |
+
|
314 |
+
st.write(f"Material U-Value: {u_value} W/m²°C")
|
315 |
+
st.write(f"Heat Loss: {u_value * wall_area * temp_diff:.2f} W")
|
316 |
+
|
317 |
+
# Add wall button
|
318 |
+
if st.button("Add Wall", key="add_wall_heating"):
|
319 |
+
new_wall = {
|
320 |
+
'name': wall_name if wall_name else f"Wall {len(st.session_state.heating_form_data['building_envelope']['walls']) + 1}",
|
321 |
+
'material_id': wall_material,
|
322 |
+
'area': wall_area,
|
323 |
+
'u_value': u_value,
|
324 |
+
'temp_diff': temp_diff
|
325 |
+
}
|
326 |
+
st.session_state.heating_form_data['building_envelope']['walls'].append(new_wall)
|
327 |
+
st.experimental_rerun()
|
328 |
+
|
329 |
+
# Roof section
|
330 |
+
st.write("### Roof")
|
331 |
+
|
332 |
+
# Get roof material options from reference data
|
333 |
+
roof_material_options = {mat_id: mat_data['name'] for mat_id, mat_data in ref_data.materials['roofs'].items()}
|
334 |
+
|
335 |
+
col1, col2 = st.columns(2)
|
336 |
+
|
337 |
+
with col1:
|
338 |
+
roof_material = st.selectbox(
|
339 |
+
"Roof Material",
|
340 |
+
options=list(roof_material_options.keys()),
|
341 |
+
format_func=lambda x: roof_material_options[x],
|
342 |
+
index=list(roof_material_options.keys()).index(st.session_state.heating_form_data['building_envelope'].get('roof', {}).get('material_id', 'metal_deck_insulated')) if st.session_state.heating_form_data['building_envelope'].get('roof', {}).get('material_id') in roof_material_options else 0
|
343 |
+
)
|
344 |
+
|
345 |
+
# Get material properties
|
346 |
+
material_data = ref_data.get_material_by_type("roofs", roof_material)
|
347 |
+
roof_u_value = material_data['u_value']
|
348 |
+
|
349 |
+
with col2:
|
350 |
+
roof_area = st.number_input(
|
351 |
+
"Roof Area (m²)",
|
352 |
+
value=float(st.session_state.heating_form_data['building_envelope'].get('roof', {}).get('area', default_roof_area)),
|
353 |
+
min_value=0.1,
|
354 |
+
step=0.1,
|
355 |
+
key="roof_area_heating"
|
356 |
+
)
|
357 |
+
|
358 |
+
st.write(f"Material U-Value: {roof_u_value} W/m²°C")
|
359 |
+
st.write(f"Heat Loss: {roof_u_value * roof_area * temp_diff:.2f} W")
|
360 |
+
|
361 |
+
# Save roof data
|
362 |
+
st.session_state.heating_form_data['building_envelope']['roof'] = {
|
363 |
+
'material_id': roof_material,
|
364 |
+
'area': roof_area,
|
365 |
+
'u_value': roof_u_value,
|
366 |
+
'temp_diff': temp_diff
|
367 |
+
}
|
368 |
+
|
369 |
+
# Floor section
|
370 |
+
st.write("### Floor")
|
371 |
+
|
372 |
+
# Get floor material options from reference data
|
373 |
+
floor_material_options = {mat_id: mat_data['name'] for mat_id, mat_data in ref_data.materials['floors'].items()}
|
374 |
+
|
375 |
+
col1, col2 = st.columns(2)
|
376 |
+
|
377 |
+
with col1:
|
378 |
+
floor_material = st.selectbox(
|
379 |
+
"Floor Material",
|
380 |
+
options=list(floor_material_options.keys()),
|
381 |
+
format_func=lambda x: floor_material_options[x],
|
382 |
+
index=list(floor_material_options.keys()).index(st.session_state.heating_form_data['building_envelope'].get('floor', {}).get('material_id', 'concrete_slab_ground')) if st.session_state.heating_form_data['building_envelope'].get('floor', {}).get('material_id') in floor_material_options else 0
|
383 |
+
)
|
384 |
+
|
385 |
+
# Get material properties
|
386 |
+
material_data = ref_data.get_material_by_type("floors", floor_material)
|
387 |
+
floor_u_value = material_data['u_value']
|
388 |
+
|
389 |
+
with col2:
|
390 |
+
floor_area = st.number_input(
|
391 |
+
"Floor Area (m²)",
|
392 |
+
value=float(st.session_state.heating_form_data['building_envelope'].get('floor', {}).get('area', default_floor_area)),
|
393 |
+
min_value=0.1,
|
394 |
+
step=0.1,
|
395 |
+
key="floor_area_heating"
|
396 |
+
)
|
397 |
+
|
398 |
+
st.write(f"Material U-Value: {floor_u_value} W/m²°C")
|
399 |
+
st.write(f"Heat Loss: {floor_u_value * floor_area * temp_diff:.2f} W")
|
400 |
+
|
401 |
+
# Save floor data
|
402 |
+
st.session_state.heating_form_data['building_envelope']['floor'] = {
|
403 |
+
'material_id': floor_material,
|
404 |
+
'area': floor_area,
|
405 |
+
'u_value': floor_u_value,
|
406 |
+
'temp_diff': temp_diff
|
407 |
+
}
|
408 |
+
|
409 |
+
# Validate inputs
|
410 |
+
warnings = []
|
411 |
+
|
412 |
+
# Check if walls are defined
|
413 |
+
if not st.session_state.heating_form_data['building_envelope']['walls']:
|
414 |
+
warnings.append(ValidationWarning(
|
415 |
+
"No walls defined",
|
416 |
+
"Add at least one wall to continue",
|
417 |
+
is_critical=True
|
418 |
+
))
|
419 |
+
|
420 |
+
# Check if total wall area is reasonable
|
421 |
+
total_wall_area = sum(wall['area'] for wall in st.session_state.heating_form_data['building_envelope']['walls'])
|
422 |
+
expected_wall_area = 2 * (length + width) * height
|
423 |
+
|
424 |
+
if total_wall_area < expected_wall_area * 0.8 or total_wall_area > expected_wall_area * 1.2:
|
425 |
+
warnings.append(ValidationWarning(
|
426 |
+
"Unusual wall area",
|
427 |
+
f"Total wall area ({total_wall_area:.2f} m²) differs significantly from the expected area ({expected_wall_area:.2f} m²) based on building dimensions"
|
428 |
+
))
|
429 |
+
|
430 |
+
# Check if roof area matches floor area
|
431 |
+
if abs(roof_area - floor_area) > 1.0:
|
432 |
+
warnings.append(ValidationWarning(
|
433 |
+
"Roof area doesn't match floor area",
|
434 |
+
"For a simple building, roof area should approximately match floor area"
|
435 |
+
))
|
436 |
+
|
437 |
+
# Save warnings to session state
|
438 |
+
st.session_state.heating_warnings['building_envelope'] = warnings
|
439 |
+
|
440 |
+
# Display warnings if any
|
441 |
+
if warnings:
|
442 |
+
st.warning("Please review the following warnings:")
|
443 |
+
for warning in warnings:
|
444 |
+
st.write(f"- {warning.message}" + (" (Critical)" if warning.is_critical else ""))
|
445 |
+
st.write(f" Suggestion: {warning.suggestion}")
|
446 |
+
|
447 |
+
# Mark this step as completed if there are no critical warnings
|
448 |
+
st.session_state.heating_completed['building_envelope'] = not any(w.is_critical for w in warnings)
|
449 |
+
|
450 |
+
# Navigation buttons
|
451 |
+
col1, col2 = st.columns([1, 1])
|
452 |
+
|
453 |
+
with col1:
|
454 |
+
prev_button = st.button("← Back: Building Information", key="heating_building_envelope_prev")
|
455 |
+
if prev_button:
|
456 |
+
st.session_state.heating_active_tab = "building_info"
|
457 |
+
st.experimental_rerun()
|
458 |
+
|
459 |
+
with col2:
|
460 |
+
next_button = st.button("Next: Windows & Doors →", key="heating_building_envelope_next")
|
461 |
+
if next_button:
|
462 |
+
st.session_state.heating_active_tab = "windows"
|
463 |
+
st.experimental_rerun()
|
464 |
+
|
465 |
+
|
466 |
+
def windows_form(ref_data):
|
467 |
+
"""
|
468 |
+
Form for windows and doors information.
|
469 |
+
|
470 |
+
Args:
|
471 |
+
ref_data: Reference data object
|
472 |
+
"""
|
473 |
+
st.subheader("Windows & Doors")
|
474 |
+
st.write("Enter information about windows and doors.")
|
475 |
+
|
476 |
+
# Get temperature difference from building info
|
477 |
+
temp_diff = st.session_state.heating_form_data['building_info'].get('temp_diff', 16.5)
|
478 |
+
|
479 |
+
# Initialize windows data if not already in session state
|
480 |
+
if 'windows' not in st.session_state.heating_form_data['windows']:
|
481 |
+
st.session_state.heating_form_data['windows']['windows'] = []
|
482 |
+
|
483 |
+
if 'doors' not in st.session_state.heating_form_data['windows']:
|
484 |
+
st.session_state.heating_form_data['windows']['doors'] = []
|
485 |
+
|
486 |
+
# Windows section
|
487 |
+
st.write("### Windows")
|
488 |
+
|
489 |
+
# Get glass type options from reference data
|
490 |
+
glass_type_options = {glass_id: glass_data['name'] for glass_id, glass_data in ref_data.glass_types.items()}
|
491 |
+
|
492 |
+
# Display existing window entries
|
493 |
+
if st.session_state.heating_form_data['windows']['windows']:
|
494 |
+
st.write("Current windows:")
|
495 |
+
windows_df = pd.DataFrame(st.session_state.heating_form_data['windows']['windows'])
|
496 |
+
windows_df['Glass Type'] = windows_df['glass_type'].map(lambda x: glass_type_options.get(x, "Unknown"))
|
497 |
+
windows_df = windows_df[['name', 'orientation', 'Glass Type', 'area', 'u_value']]
|
498 |
+
windows_df.columns = ['Name', 'Orientation', 'Glass Type', 'Area (m²)', 'U-Value (W/m²°C)']
|
499 |
+
st.dataframe(windows_df)
|
500 |
+
|
501 |
+
# Add new window form
|
502 |
+
st.write("Add a new window:")
|
503 |
+
|
504 |
+
col1, col2 = st.columns(2)
|
505 |
+
|
506 |
+
with col1:
|
507 |
+
window_name = st.text_input("Window Name", value="", key="new_window_name_heating")
|
508 |
+
|
509 |
+
orientation = st.selectbox(
|
510 |
+
"Orientation",
|
511 |
+
options=["north", "east", "south", "west", "horizontal"],
|
512 |
+
key="new_window_orientation_heating"
|
513 |
+
)
|
514 |
+
|
515 |
+
glass_type = st.selectbox(
|
516 |
+
"Glass Type",
|
517 |
+
options=list(glass_type_options.keys()),
|
518 |
+
format_func=lambda x: glass_type_options[x],
|
519 |
+
key="new_window_glass_type_heating"
|
520 |
+
)
|
521 |
+
|
522 |
+
# Get glass properties
|
523 |
+
glass_data = ref_data.get_glass_type(glass_type)
|
524 |
+
window_u_value = glass_data['u_value']
|
525 |
+
|
526 |
+
with col2:
|
527 |
+
window_area = st.number_input(
|
528 |
+
"Window Area (m²)",
|
529 |
+
value=2.0,
|
530 |
+
min_value=0.1,
|
531 |
+
step=0.1,
|
532 |
+
key="new_window_area_heating"
|
533 |
+
)
|
534 |
+
|
535 |
+
st.write(f"Glass U-Value: {window_u_value} W/m²°C")
|
536 |
+
st.write(f"Heat Loss: {window_u_value * window_area * temp_diff:.2f} W")
|
537 |
+
|
538 |
+
# Add window button
|
539 |
+
if st.button("Add Window", key="add_window_heating"):
|
540 |
+
new_window = {
|
541 |
+
'name': window_name if window_name else f"Window {len(st.session_state.heating_form_data['windows']['windows']) + 1}",
|
542 |
+
'orientation': orientation,
|
543 |
+
'glass_type': glass_type,
|
544 |
+
'area': window_area,
|
545 |
+
'u_value': window_u_value,
|
546 |
+
'temp_diff': temp_diff
|
547 |
+
}
|
548 |
+
st.session_state.heating_form_data['windows']['windows'].append(new_window)
|
549 |
+
st.experimental_rerun()
|
550 |
+
|
551 |
+
# Doors section
|
552 |
+
st.write("### Doors")
|
553 |
+
|
554 |
+
# Display existing door entries
|
555 |
+
if st.session_state.heating_form_data['windows']['doors']:
|
556 |
+
st.write("Current doors:")
|
557 |
+
doors_df = pd.DataFrame(st.session_state.heating_form_data['windows']['doors'])
|
558 |
+
doors_df = doors_df[['name', 'type', 'area', 'u_value']]
|
559 |
+
doors_df.columns = ['Name', 'Type', 'Area (m²)', 'U-Value (W/m²°C)']
|
560 |
+
st.dataframe(doors_df)
|
561 |
+
|
562 |
+
# Add new door form
|
563 |
+
st.write("Add a new door:")
|
564 |
+
|
565 |
+
col1, col2 = st.columns(2)
|
566 |
+
|
567 |
+
with col1:
|
568 |
+
door_name = st.text_input("Door Name", value="", key="new_door_name_heating")
|
569 |
+
|
570 |
+
door_type = st.selectbox(
|
571 |
+
"Door Type",
|
572 |
+
options=["Solid wood", "Hollow core", "Glass", "Insulated"],
|
573 |
+
key="new_door_type_heating"
|
574 |
+
)
|
575 |
+
|
576 |
+
# Set U-value based on door type
|
577 |
+
door_u_values = {
|
578 |
+
"Solid wood": 2.0,
|
579 |
+
"Hollow core": 2.5,
|
580 |
+
"Glass": 5.0,
|
581 |
+
"Insulated": 1.2
|
582 |
+
}
|
583 |
+
door_u_value = door_u_values[door_type]
|
584 |
+
|
585 |
+
with col2:
|
586 |
+
door_area = st.number_input(
|
587 |
+
"Door Area (m²)",
|
588 |
+
value=2.0,
|
589 |
+
min_value=0.1,
|
590 |
+
step=0.1,
|
591 |
+
key="new_door_area_heating"
|
592 |
+
)
|
593 |
+
|
594 |
+
st.write(f"Door U-Value: {door_u_value} W/m²°C")
|
595 |
+
st.write(f"Heat Loss: {door_u_value * door_area * temp_diff:.2f} W")
|
596 |
+
|
597 |
+
# Add door button
|
598 |
+
if st.button("Add Door", key="add_door_heating"):
|
599 |
+
new_door = {
|
600 |
+
'name': door_name if door_name else f"Door {len(st.session_state.heating_form_data['windows']['doors']) + 1}",
|
601 |
+
'type': door_type,
|
602 |
+
'area': door_area,
|
603 |
+
'u_value': door_u_value,
|
604 |
+
'temp_diff': temp_diff
|
605 |
+
}
|
606 |
+
st.session_state.heating_form_data['windows']['doors'].append(new_door)
|
607 |
+
st.experimental_rerun()
|
608 |
+
|
609 |
+
# Validate inputs
|
610 |
+
warnings = []
|
611 |
+
|
612 |
+
# Check if windows are defined
|
613 |
+
if not st.session_state.heating_form_data['windows']['windows']:
|
614 |
+
warnings.append(ValidationWarning(
|
615 |
+
"No windows defined",
|
616 |
+
"Add at least one window to continue"
|
617 |
+
))
|
618 |
+
|
619 |
+
# Check window-to-wall ratio
|
620 |
+
if st.session_state.heating_form_data['windows']['windows']:
|
621 |
+
total_window_area = sum(window['area'] for window in st.session_state.heating_form_data['windows']['windows'])
|
622 |
+
total_wall_area = sum(wall['area'] for wall in st.session_state.heating_form_data['building_envelope']['walls'])
|
623 |
+
window_wall_ratio = total_window_area / total_wall_area if total_wall_area > 0 else 0
|
624 |
+
|
625 |
+
if window_wall_ratio > 0.6:
|
626 |
+
warnings.append(ValidationWarning(
|
627 |
+
"High window-to-wall ratio",
|
628 |
+
f"Window-to-wall ratio is {window_wall_ratio:.2f}, which is unusually high. Typical ratios are 0.2-0.4."
|
629 |
+
))
|
630 |
+
|
631 |
+
# Save warnings to session state
|
632 |
+
st.session_state.heating_warnings['windows'] = warnings
|
633 |
+
|
634 |
+
# Display warnings if any
|
635 |
+
if warnings:
|
636 |
+
st.warning("Please review the following warnings:")
|
637 |
+
for warning in warnings:
|
638 |
+
st.write(f"- {warning.message}" + (" (Critical)" if warning.is_critical else ""))
|
639 |
+
st.write(f" Suggestion: {warning.suggestion}")
|
640 |
+
|
641 |
+
# Mark this step as completed if there are no critical warnings
|
642 |
+
st.session_state.heating_completed['windows'] = not any(w.is_critical for w in warnings)
|
643 |
+
|
644 |
+
# Navigation buttons
|
645 |
+
col1, col2 = st.columns([1, 1])
|
646 |
+
|
647 |
+
with col1:
|
648 |
+
prev_button = st.button("← Back: Building Envelope", key="heating_windows_prev")
|
649 |
+
if prev_button:
|
650 |
+
st.session_state.heating_active_tab = "building_envelope"
|
651 |
+
st.experimental_rerun()
|
652 |
+
|
653 |
+
with col2:
|
654 |
+
next_button = st.button("Next: Ventilation →", key="heating_windows_next")
|
655 |
+
if next_button:
|
656 |
+
st.session_state.heating_active_tab = "ventilation"
|
657 |
+
st.experimental_rerun()
|
658 |
+
|
659 |
+
|
660 |
+
def ventilation_form(ref_data):
|
661 |
+
"""
|
662 |
+
Form for ventilation and infiltration information.
|
663 |
+
|
664 |
+
Args:
|
665 |
+
ref_data: Reference data object
|
666 |
+
"""
|
667 |
+
st.subheader("Ventilation & Infiltration")
|
668 |
+
st.write("Enter information about ventilation and infiltration rates.")
|
669 |
+
|
670 |
+
# Get building info
|
671 |
+
building_info = st.session_state.heating_form_data['building_info']
|
672 |
+
volume = building_info.get('volume', 216.0)
|
673 |
+
temp_diff = building_info.get('temp_diff', 16.5)
|
674 |
+
|
675 |
+
# Initialize ventilation data if not already in session state
|
676 |
+
if 'infiltration' not in st.session_state.heating_form_data['ventilation']:
|
677 |
+
st.session_state.heating_form_data['ventilation']['infiltration'] = {
|
678 |
+
'air_changes': 0.5
|
679 |
+
}
|
680 |
+
|
681 |
+
if 'ventilation' not in st.session_state.heating_form_data['ventilation']:
|
682 |
+
st.session_state.heating_form_data['ventilation']['ventilation'] = {
|
683 |
+
'type': 'natural',
|
684 |
+
'air_changes': 0.0
|
685 |
+
}
|
686 |
+
|
687 |
+
# Infiltration section
|
688 |
+
st.write("### Infiltration")
|
689 |
+
st.write("Infiltration is the unintended air leakage through the building envelope.")
|
690 |
+
|
691 |
+
infiltration_ach = st.slider(
|
692 |
+
"Infiltration Rate (air changes per hour)",
|
693 |
+
value=float(st.session_state.heating_form_data['ventilation']['infiltration'].get('air_changes', 0.5)),
|
694 |
+
min_value=0.1,
|
695 |
+
max_value=2.0,
|
696 |
+
step=0.1,
|
697 |
+
help="Typical values: 0.5 ACH for modern construction, 1.0 ACH for average construction, 1.5+ ACH for older buildings",
|
698 |
+
key="infiltration_ach_heating"
|
699 |
+
)
|
700 |
+
|
701 |
+
# Calculate infiltration heat loss
|
702 |
+
infiltration_heat_loss = 0.33 * volume * infiltration_ach * temp_diff
|
703 |
+
|
704 |
+
st.write(f"Infiltration heat loss: {infiltration_heat_loss:.2f} W")
|
705 |
+
|
706 |
+
# Save infiltration data
|
707 |
+
st.session_state.heating_form_data['ventilation']['infiltration'] = {
|
708 |
+
'air_changes': infiltration_ach,
|
709 |
+
'volume': volume,
|
710 |
+
'temp_diff': temp_diff,
|
711 |
+
'heat_loss': infiltration_heat_loss
|
712 |
+
}
|
713 |
+
|
714 |
+
# Ventilation section
|
715 |
+
st.write("### Ventilation")
|
716 |
+
st.write("Ventilation is the intentional introduction of outside air into the building.")
|
717 |
+
|
718 |
+
col1, col2 = st.columns(2)
|
719 |
+
|
720 |
+
with col1:
|
721 |
+
ventilation_type = st.selectbox(
|
722 |
+
"Ventilation Type",
|
723 |
+
options=["natural", "mechanical", "mixed"],
|
724 |
+
format_func=lambda x: x.capitalize(),
|
725 |
+
index=["natural", "mechanical", "mixed"].index(st.session_state.heating_form_data['ventilation']['ventilation'].get('type', 'natural')),
|
726 |
+
key="ventilation_type_heating"
|
727 |
+
)
|
728 |
+
|
729 |
+
with col2:
|
730 |
+
ventilation_ach = st.number_input(
|
731 |
+
"Ventilation Rate (air changes per hour)",
|
732 |
+
value=float(st.session_state.heating_form_data['ventilation']['ventilation'].get('air_changes', 0.0)),
|
733 |
+
min_value=0.0,
|
734 |
+
max_value=5.0,
|
735 |
+
step=0.1,
|
736 |
+
help="Typical values: 0.35-1.0 ACH for residential buildings",
|
737 |
+
key="ventilation_ach_heating"
|
738 |
+
)
|
739 |
+
|
740 |
+
# Calculate ventilation heat loss
|
741 |
+
ventilation_heat_loss = 0.33 * volume * ventilation_ach * temp_diff
|
742 |
+
|
743 |
+
st.write(f"Ventilation heat loss: {ventilation_heat_loss:.2f} W")
|
744 |
+
|
745 |
+
# Save ventilation data
|
746 |
+
st.session_state.heating_form_data['ventilation']['ventilation'] = {
|
747 |
+
'type': ventilation_type,
|
748 |
+
'air_changes': ventilation_ach,
|
749 |
+
'volume': volume,
|
750 |
+
'temp_diff': temp_diff,
|
751 |
+
'heat_loss': ventilation_heat_loss
|
752 |
+
}
|
753 |
+
|
754 |
+
# Calculate total ventilation and infiltration heat loss
|
755 |
+
total_ventilation_loss = infiltration_heat_loss + ventilation_heat_loss
|
756 |
+
|
757 |
+
st.info(f"Total Ventilation & Infiltration Heat Loss: {total_ventilation_loss:.2f} W")
|
758 |
+
|
759 |
+
# Save total ventilation loss
|
760 |
+
st.session_state.heating_form_data['ventilation']['total_loss'] = total_ventilation_loss
|
761 |
+
|
762 |
+
# Validate inputs
|
763 |
+
warnings = []
|
764 |
+
|
765 |
+
# Check if infiltration rate is reasonable
|
766 |
+
if infiltration_ach < 0.3:
|
767 |
+
warnings.append(ValidationWarning(
|
768 |
+
"Low infiltration rate",
|
769 |
+
"Infiltration rate below 0.3 ACH is unusually low for most buildings."
|
770 |
+
))
|
771 |
+
elif infiltration_ach > 1.5:
|
772 |
+
warnings.append(ValidationWarning(
|
773 |
+
"High infiltration rate",
|
774 |
+
"Infiltration rate above 1.5 ACH indicates a leaky building envelope."
|
775 |
+
))
|
776 |
+
|
777 |
+
# Check if ventilation rate is reasonable
|
778 |
+
if ventilation_ach > 0 and ventilation_ach < 0.35:
|
779 |
+
warnings.append(ValidationWarning(
|
780 |
+
"Low ventilation rate",
|
781 |
+
"Ventilation rate below 0.35 ACH may not provide adequate fresh air."
|
782 |
+
))
|
783 |
+
elif ventilation_ach > 2.0:
|
784 |
+
warnings.append(ValidationWarning(
|
785 |
+
"High ventilation rate",
|
786 |
+
"Ventilation rate above 2.0 ACH is unusually high for residential buildings."
|
787 |
+
))
|
788 |
+
|
789 |
+
# Save warnings to session state
|
790 |
+
st.session_state.heating_warnings['ventilation'] = warnings
|
791 |
+
|
792 |
+
# Display warnings if any
|
793 |
+
if warnings:
|
794 |
+
st.warning("Please review the following warnings:")
|
795 |
+
for warning in warnings:
|
796 |
+
st.write(f"- {warning.message}" + (" (Critical)" if warning.is_critical else ""))
|
797 |
+
st.write(f" Suggestion: {warning.suggestion}")
|
798 |
+
|
799 |
+
# Mark this step as completed if there are no critical warnings
|
800 |
+
st.session_state.heating_completed['ventilation'] = not any(w.is_critical for w in warnings)
|
801 |
+
|
802 |
+
# Navigation buttons
|
803 |
+
col1, col2 = st.columns([1, 1])
|
804 |
+
|
805 |
+
with col1:
|
806 |
+
prev_button = st.button("← Back: Windows & Doors", key="heating_ventilation_prev")
|
807 |
+
if prev_button:
|
808 |
+
st.session_state.heating_active_tab = "windows"
|
809 |
+
st.experimental_rerun()
|
810 |
+
|
811 |
+
with col2:
|
812 |
+
next_button = st.button("Next: Occupancy →", key="heating_ventilation_next")
|
813 |
+
if next_button:
|
814 |
+
st.session_state.heating_active_tab = "occupancy"
|
815 |
+
st.experimental_rerun()
|
816 |
+
|
817 |
+
|
818 |
+
def occupancy_form(ref_data):
|
819 |
+
"""
|
820 |
+
Form for occupancy information.
|
821 |
+
|
822 |
+
Args:
|
823 |
+
ref_data: Reference data object
|
824 |
+
"""
|
825 |
+
st.subheader("Occupancy Information")
|
826 |
+
st.write("Enter information about occupancy patterns and heating degree days.")
|
827 |
+
|
828 |
+
# Get location from building info
|
829 |
+
location = st.session_state.heating_form_data['building_info'].get('location', 'sydney')
|
830 |
+
location_name = st.session_state.heating_form_data['building_info'].get('location_name', 'Sydney')
|
831 |
+
|
832 |
+
# Initialize occupancy data if not already in session state
|
833 |
+
if 'occupancy_type' not in st.session_state.heating_form_data['occupancy']:
|
834 |
+
st.session_state.heating_form_data['occupancy']['occupancy_type'] = 'continuous'
|
835 |
+
|
836 |
+
if 'heating_degree_days' not in st.session_state.heating_form_data['occupancy']:
|
837 |
+
# Get default HDD from reference data
|
838 |
+
calculator = HeatingLoadCalculator()
|
839 |
+
default_hdd = calculator.get_heating_degree_days(location)
|
840 |
+
st.session_state.heating_form_data['occupancy']['heating_degree_days'] = default_hdd
|
841 |
+
|
842 |
+
# Occupancy section
|
843 |
+
st.write("### Occupancy Pattern")
|
844 |
+
|
845 |
+
# Get occupancy options from reference data
|
846 |
+
occupancy_options = {occ_id: occ_data['name'] for occ_id, occ_data in ref_data.occupancy_factors.items()}
|
847 |
+
|
848 |
+
occupancy_type = st.selectbox(
|
849 |
+
"Occupancy Type",
|
850 |
+
options=list(occupancy_options.keys()),
|
851 |
+
format_func=lambda x: occupancy_options[x],
|
852 |
+
index=list(occupancy_options.keys()).index(st.session_state.heating_form_data['occupancy'].get('occupancy_type', 'continuous')) if st.session_state.heating_form_data['occupancy'].get('occupancy_type') in occupancy_options else 0,
|
853 |
+
help="Select the occupancy pattern that best describes how the building is used"
|
854 |
+
)
|
855 |
+
|
856 |
+
# Get occupancy factor
|
857 |
+
occupancy_data = ref_data.get_occupancy_factor(occupancy_type)
|
858 |
+
occupancy_factor = occupancy_data['factor']
|
859 |
+
|
860 |
+
st.write(f"Occupancy correction factor: {occupancy_factor}")
|
861 |
+
st.write(f"Description: {occupancy_data['description']}")
|
862 |
+
|
863 |
+
# Save occupancy data
|
864 |
+
st.session_state.heating_form_data['occupancy']['occupancy_type'] = occupancy_type
|
865 |
+
st.session_state.heating_form_data['occupancy']['occupancy_factor'] = occupancy_factor
|
866 |
+
|
867 |
+
# Heating degree days section
|
868 |
+
st.write("### Heating Degree Days")
|
869 |
+
st.write("Heating degree days are used to estimate annual heating energy requirements.")
|
870 |
+
|
871 |
+
col1, col2 = st.columns(2)
|
872 |
+
|
873 |
+
with col1:
|
874 |
+
base_temp = st.selectbox(
|
875 |
+
"Base Temperature",
|
876 |
+
options=[18, 15.5, 12],
|
877 |
+
index=[18, 15.5, 12].index(st.session_state.heating_form_data['occupancy'].get('base_temp', 18)) if st.session_state.heating_form_data['occupancy'].get('base_temp') in [18, 15.5, 12] else 0,
|
878 |
+
help="Base temperature for heating degree days calculation"
|
879 |
+
)
|
880 |
+
|
881 |
+
with col2:
|
882 |
+
# Get default HDD from reference data
|
883 |
+
calculator = HeatingLoadCalculator()
|
884 |
+
default_hdd = calculator.get_heating_degree_days(location, base_temp)
|
885 |
+
|
886 |
+
heating_degree_days = st.number_input(
|
887 |
+
"Heating Degree Days",
|
888 |
+
value=float(st.session_state.heating_form_data['occupancy'].get('heating_degree_days', default_hdd)),
|
889 |
+
min_value=0.0,
|
890 |
+
step=10.0,
|
891 |
+
help=f"Default value for {location_name} at base {base_temp}°C: {default_hdd}"
|
892 |
+
)
|
893 |
+
|
894 |
+
st.write(f"Heating degree days represent the sum of daily temperature differences between the base temperature and the average daily temperature when it falls below the base temperature.")
|
895 |
+
|
896 |
+
# Save heating degree days data
|
897 |
+
st.session_state.heating_form_data['occupancy']['base_temp'] = base_temp
|
898 |
+
st.session_state.heating_form_data['occupancy']['heating_degree_days'] = heating_degree_days
|
899 |
+
|
900 |
+
# Validate inputs
|
901 |
+
warnings = []
|
902 |
+
|
903 |
+
# Check if heating degree days are reasonable
|
904 |
+
if heating_degree_days == 0:
|
905 |
+
warnings.append(ValidationWarning(
|
906 |
+
"Zero heating degree days",
|
907 |
+
"With zero heating degree days, annual heating energy will be zero."
|
908 |
+
))
|
909 |
+
elif heating_degree_days < 100 and base_temp == 18:
|
910 |
+
warnings.append(ValidationWarning(
|
911 |
+
"Very low heating degree days",
|
912 |
+
f"Heating degree days below 100 at base {base_temp}°C is unusually low for most locations."
|
913 |
+
))
|
914 |
+
elif heating_degree_days > 3000:
|
915 |
+
warnings.append(ValidationWarning(
|
916 |
+
"Very high heating degree days",
|
917 |
+
"Heating degree days above 3000 is unusually high for most locations."
|
918 |
+
))
|
919 |
+
|
920 |
+
# Save warnings to session state
|
921 |
+
st.session_state.heating_warnings['occupancy'] = warnings
|
922 |
+
|
923 |
+
# Display warnings if any
|
924 |
+
if warnings:
|
925 |
+
st.warning("Please review the following warnings:")
|
926 |
+
for warning in warnings:
|
927 |
+
st.write(f"- {warning.message}" + (" (Critical)" if warning.is_critical else ""))
|
928 |
+
st.write(f" Suggestion: {warning.suggestion}")
|
929 |
+
|
930 |
+
# Mark this step as completed if there are no critical warnings
|
931 |
+
st.session_state.heating_completed['occupancy'] = not any(w.is_critical for w in warnings)
|
932 |
+
|
933 |
+
# Navigation buttons
|
934 |
+
col1, col2 = st.columns([1, 1])
|
935 |
+
|
936 |
+
with col1:
|
937 |
+
prev_button = st.button("← Back: Ventilation", key="heating_occupancy_prev")
|
938 |
+
if prev_button:
|
939 |
+
st.session_state.heating_active_tab = "ventilation"
|
940 |
+
st.experimental_rerun()
|
941 |
+
|
942 |
+
with col2:
|
943 |
+
calculate_button = st.button("Calculate Results →", key="heating_occupancy_calculate")
|
944 |
+
if calculate_button:
|
945 |
+
# Calculate heating load
|
946 |
+
calculate_heating_load()
|
947 |
+
st.session_state.heating_active_tab = "results"
|
948 |
+
st.experimental_rerun()
|
949 |
+
|
950 |
+
|
951 |
+
def calculate_heating_load():
|
952 |
+
"""Calculate heating load based on input data."""
|
953 |
+
# Create calculator instance
|
954 |
+
calculator = HeatingLoadCalculator()
|
955 |
+
|
956 |
+
# Get form data
|
957 |
+
form_data = st.session_state.heating_form_data
|
958 |
+
|
959 |
+
# Prepare building components for calculation
|
960 |
+
building_components = []
|
961 |
+
|
962 |
+
# Add walls
|
963 |
+
for wall in form_data['building_envelope'].get('walls', []):
|
964 |
+
building_components.append({
|
965 |
+
'name': wall['name'],
|
966 |
+
'area': wall['area'],
|
967 |
+
'u_value': wall['u_value'],
|
968 |
+
'temp_diff': wall['temp_diff']
|
969 |
+
})
|
970 |
+
|
971 |
+
# Add roof
|
972 |
+
roof = form_data['building_envelope'].get('roof', {})
|
973 |
+
if roof:
|
974 |
+
building_components.append({
|
975 |
+
'name': 'Roof',
|
976 |
+
'area': roof['area'],
|
977 |
+
'u_value': roof['u_value'],
|
978 |
+
'temp_diff': roof['temp_diff']
|
979 |
+
})
|
980 |
+
|
981 |
+
# Add floor
|
982 |
+
floor = form_data['building_envelope'].get('floor', {})
|
983 |
+
if floor:
|
984 |
+
building_components.append({
|
985 |
+
'name': 'Floor',
|
986 |
+
'area': floor['area'],
|
987 |
+
'u_value': floor['u_value'],
|
988 |
+
'temp_diff': floor['temp_diff']
|
989 |
+
})
|
990 |
+
|
991 |
+
# Add windows
|
992 |
+
for window in form_data['windows'].get('windows', []):
|
993 |
+
building_components.append({
|
994 |
+
'name': window['name'],
|
995 |
+
'area': window['area'],
|
996 |
+
'u_value': window['u_value'],
|
997 |
+
'temp_diff': window['temp_diff']
|
998 |
+
})
|
999 |
+
|
1000 |
+
# Add doors
|
1001 |
+
for door in form_data['windows'].get('doors', []):
|
1002 |
+
building_components.append({
|
1003 |
+
'name': door['name'],
|
1004 |
+
'area': door['area'],
|
1005 |
+
'u_value': door['u_value'],
|
1006 |
+
'temp_diff': door['temp_diff']
|
1007 |
+
})
|
1008 |
+
|
1009 |
+
# Prepare infiltration data
|
1010 |
+
infiltration = form_data['ventilation'].get('infiltration', {})
|
1011 |
+
ventilation = form_data['ventilation'].get('ventilation', {})
|
1012 |
+
|
1013 |
+
infiltration_data = {
|
1014 |
+
'volume': infiltration.get('volume', 0),
|
1015 |
+
'air_changes': infiltration.get('air_changes', 0) + ventilation.get('air_changes', 0),
|
1016 |
+
'temp_diff': infiltration.get('temp_diff', 0)
|
1017 |
+
}
|
1018 |
+
|
1019 |
+
# Calculate heating load
|
1020 |
+
results = calculator.calculate_total_heating_load(
|
1021 |
+
building_components=building_components,
|
1022 |
+
infiltration=infiltration_data
|
1023 |
+
)
|
1024 |
+
|
1025 |
+
# Calculate annual heating requirement
|
1026 |
+
location = form_data['building_info'].get('location', 'sydney')
|
1027 |
+
occupancy_type = form_data['occupancy'].get('occupancy_type', 'continuous')
|
1028 |
+
base_temp = form_data['occupancy'].get('base_temp', 18)
|
1029 |
+
|
1030 |
+
annual_results = calculator.calculate_annual_heating_requirement(
|
1031 |
+
results['total_load'],
|
1032 |
+
location,
|
1033 |
+
occupancy_type,
|
1034 |
+
base_temp
|
1035 |
+
)
|
1036 |
+
|
1037 |
+
# Combine results
|
1038 |
+
combined_results = {**results, **annual_results}
|
1039 |
+
|
1040 |
+
# Save results to session state
|
1041 |
+
st.session_state.heating_results = combined_results
|
1042 |
+
|
1043 |
+
# Add timestamp
|
1044 |
+
st.session_state.heating_results['timestamp'] = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
1045 |
+
|
1046 |
+
# Add building info
|
1047 |
+
st.session_state.heating_results['building_info'] = form_data['building_info']
|
1048 |
+
|
1049 |
+
return combined_results
|
1050 |
+
|
1051 |
+
|
1052 |
+
def results_page():
|
1053 |
+
"""Display calculation results."""
|
1054 |
+
st.subheader("Heating Load Calculation Results")
|
1055 |
+
|
1056 |
+
# Check if results are available
|
1057 |
+
if not st.session_state.heating_results:
|
1058 |
+
st.warning("No calculation results available. Please complete the input forms and calculate results.")
|
1059 |
+
return
|
1060 |
+
|
1061 |
+
# Get results
|
1062 |
+
results = st.session_state.heating_results
|
1063 |
+
|
1064 |
+
# Display summary
|
1065 |
+
st.write("### Summary")
|
1066 |
+
|
1067 |
+
col1, col2 = st.columns(2)
|
1068 |
+
|
1069 |
+
with col1:
|
1070 |
+
st.metric("Total Heating Load", f"{results['total_load']:.2f} W")
|
1071 |
+
|
1072 |
+
# Convert to kW
|
1073 |
+
total_load_kw = results['total_load'] / 1000
|
1074 |
+
st.metric("Total Heating Load", f"{total_load_kw:.2f} kW")
|
1075 |
+
|
1076 |
+
# Annual heating energy
|
1077 |
+
st.metric("Annual Heating Energy", f"{results['annual_energy_kwh']:.2f} kWh")
|
1078 |
+
|
1079 |
+
with col2:
|
1080 |
+
# Calculate heating load per area
|
1081 |
+
floor_area = results['building_info'].get('floor_area', 80.0)
|
1082 |
+
heating_load_per_area = results['total_load'] / floor_area
|
1083 |
+
st.metric("Heating Load per Area", f"{heating_load_per_area:.2f} W/m²")
|
1084 |
+
|
1085 |
+
# Annual heating energy per area
|
1086 |
+
annual_energy_per_area = results['annual_energy_kwh'] / floor_area
|
1087 |
+
st.metric("Annual Heating Energy per Area", f"{annual_energy_per_area:.2f} kWh/m²")
|
1088 |
+
|
1089 |
+
# Equipment sizing recommendation
|
1090 |
+
# Add 10% safety factor
|
1091 |
+
recommended_size = total_load_kw * 1.1
|
1092 |
+
st.metric("Recommended Equipment Size", f"{recommended_size:.2f} kW")
|
1093 |
+
|
1094 |
+
# Display load breakdown
|
1095 |
+
st.write("### Load Breakdown")
|
1096 |
+
|
1097 |
+
# Prepare data for pie chart
|
1098 |
+
component_losses = results['component_losses']
|
1099 |
+
|
1100 |
+
# Create pie chart for component losses
|
1101 |
+
fig = px.pie(
|
1102 |
+
values=list(component_losses.values()),
|
1103 |
+
names=list(component_losses.keys()),
|
1104 |
+
title="Heating Load Components",
|
1105 |
+
color_discrete_sequence=px.colors.qualitative.Set2
|
1106 |
+
)
|
1107 |
+
|
1108 |
+
st.plotly_chart(fig)
|
1109 |
+
|
1110 |
+
# Display load components in a table
|
1111 |
+
load_components = {
|
1112 |
+
'Conduction (Building Envelope)': results['total_conduction_loss'] - results.get('infiltration_loss', 0),
|
1113 |
+
'Infiltration & Ventilation': results.get('infiltration_loss', 0)
|
1114 |
+
}
|
1115 |
+
|
1116 |
+
load_df = pd.DataFrame({
|
1117 |
+
'Component': list(load_components.keys()),
|
1118 |
+
'Load (W)': list(load_components.values()),
|
1119 |
+
'Percentage (%)': [value / results['total_load'] * 100 for value in load_components.values()]
|
1120 |
+
})
|
1121 |
+
|
1122 |
+
st.dataframe(load_df.style.format({
|
1123 |
+
'Load (W)': '{:.2f}',
|
1124 |
+
'Percentage (%)': '{:.2f}'
|
1125 |
+
}))
|
1126 |
+
|
1127 |
+
# Display detailed results
|
1128 |
+
st.write("### Detailed Results")
|
1129 |
+
|
1130 |
+
# Create tabs for different result sections
|
1131 |
+
tabs = st.tabs([
|
1132 |
+
"Building Components",
|
1133 |
+
"Ventilation",
|
1134 |
+
"Annual Energy"
|
1135 |
+
])
|
1136 |
+
|
1137 |
+
with tabs[0]:
|
1138 |
+
st.subheader("Building Component Heat Losses")
|
1139 |
+
|
1140 |
+
# Create dataframe from component losses
|
1141 |
+
components_data = []
|
1142 |
+
for name, loss in component_losses.items():
|
1143 |
+
# Find the component in the original data to get area and U-value
|
1144 |
+
component = None
|
1145 |
+
for comp in st.session_state.heating_form_data['building_envelope'].get('walls', []):
|
1146 |
+
if comp['name'] == name:
|
1147 |
+
component = comp
|
1148 |
+
break
|
1149 |
+
|
1150 |
+
if name == 'Roof':
|
1151 |
+
component = st.session_state.heating_form_data['building_envelope'].get('roof', {})
|
1152 |
+
elif name == 'Floor':
|
1153 |
+
component = st.session_state.heating_form_data['building_envelope'].get('floor', {})
|
1154 |
+
|
1155 |
+
# Check windows and doors
|
1156 |
+
if not component:
|
1157 |
+
for window in st.session_state.heating_form_data['windows'].get('windows', []):
|
1158 |
+
if window['name'] == name:
|
1159 |
+
component = window
|
1160 |
+
break
|
1161 |
+
|
1162 |
+
if not component:
|
1163 |
+
for door in st.session_state.heating_form_data['windows'].get('doors', []):
|
1164 |
+
if door['name'] == name:
|
1165 |
+
component = door
|
1166 |
+
break
|
1167 |
+
|
1168 |
+
if component:
|
1169 |
+
components_data.append({
|
1170 |
+
'Component': name,
|
1171 |
+
'Area (m²)': component.get('area', 0),
|
1172 |
+
'U-Value (W/m²°C)': component.get('u_value', 0),
|
1173 |
+
'Temperature Difference (°C)': component.get('temp_diff', 0),
|
1174 |
+
'Heat Loss (W)': loss
|
1175 |
+
})
|
1176 |
+
else:
|
1177 |
+
components_data.append({
|
1178 |
+
'Component': name,
|
1179 |
+
'Area (m²)': 0,
|
1180 |
+
'U-Value (W/m²°C)': 0,
|
1181 |
+
'Temperature Difference (°C)': 0,
|
1182 |
+
'Heat Loss (W)': loss
|
1183 |
+
})
|
1184 |
+
|
1185 |
+
# Create dataframe
|
1186 |
+
components_df = pd.DataFrame(components_data)
|
1187 |
+
|
1188 |
+
# Display table
|
1189 |
+
st.dataframe(components_df.style.format({
|
1190 |
+
'Area (m²)': '{:.2f}',
|
1191 |
+
'U-Value (W/m²°C)': '{:.2f}',
|
1192 |
+
'Temperature Difference (°C)': '{:.2f}',
|
1193 |
+
'Heat Loss (W)': '{:.2f}'
|
1194 |
+
}))
|
1195 |
+
|
1196 |
+
# Create bar chart
|
1197 |
+
fig = px.bar(
|
1198 |
+
components_df,
|
1199 |
+
x='Component',
|
1200 |
+
y='Heat Loss (W)',
|
1201 |
+
title="Heat Loss by Building Component",
|
1202 |
+
color='Component',
|
1203 |
+
color_discrete_sequence=px.colors.qualitative.Set3
|
1204 |
+
)
|
1205 |
+
|
1206 |
+
st.plotly_chart(fig)
|
1207 |
+
|
1208 |
+
with tabs[1]:
|
1209 |
+
st.subheader("Ventilation & Infiltration Heat Losses")
|
1210 |
+
|
1211 |
+
# Get ventilation data
|
1212 |
+
ventilation_data = st.session_state.heating_form_data['ventilation']
|
1213 |
+
|
1214 |
+
# Create dataframe
|
1215 |
+
ventilation_df = pd.DataFrame([
|
1216 |
+
{
|
1217 |
+
'Source': 'Infiltration',
|
1218 |
+
'Air Changes per Hour': ventilation_data['infiltration']['air_changes'],
|
1219 |
+
'Volume (m³)': ventilation_data['infiltration']['volume'],
|
1220 |
+
'Temperature Difference (°C)': ventilation_data['infiltration']['temp_diff'],
|
1221 |
+
'Heat Loss (W)': ventilation_data['infiltration']['heat_loss']
|
1222 |
+
},
|
1223 |
+
{
|
1224 |
+
'Source': 'Ventilation',
|
1225 |
+
'Air Changes per Hour': ventilation_data['ventilation']['air_changes'],
|
1226 |
+
'Volume (m³)': ventilation_data['ventilation']['volume'],
|
1227 |
+
'Temperature Difference (°C)': ventilation_data['ventilation']['temp_diff'],
|
1228 |
+
'Heat Loss (W)': ventilation_data['ventilation']['heat_loss']
|
1229 |
+
}
|
1230 |
+
])
|
1231 |
+
|
1232 |
+
# Display table
|
1233 |
+
st.dataframe(ventilation_df.style.format({
|
1234 |
+
'Air Changes per Hour': '{:.2f}',
|
1235 |
+
'Volume (m³)': '{:.2f}',
|
1236 |
+
'Temperature Difference (°C)': '{:.2f}',
|
1237 |
+
'Heat Loss (W)': '{:.2f}'
|
1238 |
+
}))
|
1239 |
+
|
1240 |
+
# Create bar chart
|
1241 |
+
fig = px.bar(
|
1242 |
+
ventilation_df,
|
1243 |
+
x='Source',
|
1244 |
+
y='Heat Loss (W)',
|
1245 |
+
title="Ventilation & Infiltration Heat Losses",
|
1246 |
+
color='Source',
|
1247 |
+
color_discrete_sequence=px.colors.qualitative.Pastel2
|
1248 |
+
)
|
1249 |
+
|
1250 |
+
st.plotly_chart(fig)
|
1251 |
+
|
1252 |
+
with tabs[2]:
|
1253 |
+
st.subheader("Annual Heating Energy")
|
1254 |
+
|
1255 |
+
# Get occupancy data
|
1256 |
+
occupancy_data = st.session_state.heating_form_data['occupancy']
|
1257 |
+
|
1258 |
+
# Create dataframe
|
1259 |
+
annual_data = pd.DataFrame([
|
1260 |
+
{
|
1261 |
+
'Parameter': 'Heating Degree Days',
|
1262 |
+
'Value': results['heating_degree_days'],
|
1263 |
+
'Unit': 'HDD'
|
1264 |
+
},
|
1265 |
+
{
|
1266 |
+
'Parameter': 'Base Temperature',
|
1267 |
+
'Value': occupancy_data['base_temp'],
|
1268 |
+
'Unit': '°C'
|
1269 |
+
},
|
1270 |
+
{
|
1271 |
+
'Parameter': 'Occupancy Type',
|
1272 |
+
'Value': occupancy_data['occupancy_type'].capitalize(),
|
1273 |
+
'Unit': ''
|
1274 |
+
},
|
1275 |
+
{
|
1276 |
+
'Parameter': 'Correction Factor',
|
1277 |
+
'Value': results['correction_factor'],
|
1278 |
+
'Unit': ''
|
1279 |
+
},
|
1280 |
+
{
|
1281 |
+
'Parameter': 'Annual Heating Energy',
|
1282 |
+
'Value': results['annual_energy_kwh'],
|
1283 |
+
'Unit': 'kWh'
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
'Parameter': 'Annual Heating Energy',
|
1287 |
+
'Value': results['annual_energy_mj'],
|
1288 |
+
'Unit': 'MJ'
|
1289 |
+
}
|
1290 |
+
])
|
1291 |
+
|
1292 |
+
# Display table
|
1293 |
+
st.dataframe(annual_data.style.format({
|
1294 |
+
'Value': lambda x: f"{x:.2f}" if isinstance(x, (int, float)) else str(x)
|
1295 |
+
}))
|
1296 |
+
|
1297 |
+
# Create bar chart for monthly distribution (estimated)
|
1298 |
+
# This is a simplified distribution based on heating degree days
|
1299 |
+
months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
|
1300 |
+
|
1301 |
+
# Get location
|
1302 |
+
location = st.session_state.heating_form_data['building_info'].get('location', 'sydney')
|
1303 |
+
|
1304 |
+
# Simplified monthly distribution factors based on hemisphere
|
1305 |
+
# Southern hemisphere: winter is June-August
|
1306 |
+
# Northern hemisphere: winter is December-February
|
1307 |
+
southern_hemisphere = ['sydney', 'melbourne', 'brisbane', 'perth', 'adelaide', 'hobart', 'darwin', 'canberra', 'mildura']
|
1308 |
+
|
1309 |
+
if location.lower() in southern_hemisphere:
|
1310 |
+
# Southern hemisphere distribution
|
1311 |
+
monthly_factors = [0.02, 0.01, 0.03, 0.08, 0.12, 0.16, 0.18, 0.16, 0.12, 0.08, 0.03, 0.01]
|
1312 |
+
else:
|
1313 |
+
# Northern hemisphere distribution
|
1314 |
+
monthly_factors = [0.18, 0.16, 0.12, 0.08, 0.03, 0.01, 0.01, 0.01, 0.03, 0.08, 0.12, 0.17]
|
1315 |
+
|
1316 |
+
# Calculate monthly energy
|
1317 |
+
monthly_energy = [results['annual_energy_kwh'] * factor for factor in monthly_factors]
|
1318 |
+
|
1319 |
+
# Create dataframe
|
1320 |
+
monthly_df = pd.DataFrame({
|
1321 |
+
'Month': months,
|
1322 |
+
'Energy (kWh)': monthly_energy
|
1323 |
+
})
|
1324 |
+
|
1325 |
+
# Create bar chart
|
1326 |
+
fig = px.bar(
|
1327 |
+
monthly_df,
|
1328 |
+
x='Month',
|
1329 |
+
y='Energy (kWh)',
|
1330 |
+
title="Estimated Monthly Heating Energy Distribution",
|
1331 |
+
color_discrete_sequence=['indianred']
|
1332 |
+
)
|
1333 |
+
|
1334 |
+
st.plotly_chart(fig)
|
1335 |
+
|
1336 |
+
# Export options
|
1337 |
+
st.write("### Export Options")
|
1338 |
+
|
1339 |
+
col1, col2 = st.columns(2)
|
1340 |
+
|
1341 |
+
with col1:
|
1342 |
+
if st.button("Export Results as CSV", key="export_csv_heating"):
|
1343 |
+
# Create a CSV file with results
|
1344 |
+
csv_data = export_data(st.session_state.heating_form_data, st.session_state.heating_results, format='csv')
|
1345 |
+
|
1346 |
+
# Provide download link
|
1347 |
+
st.download_button(
|
1348 |
+
label="Download CSV",
|
1349 |
+
data=csv_data,
|
1350 |
+
file_name=f"heating_load_results_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
|
1351 |
+
mime="text/csv"
|
1352 |
+
)
|
1353 |
+
|
1354 |
+
with col2:
|
1355 |
+
if st.button("Export Results as JSON", key="export_json_heating"):
|
1356 |
+
# Create a JSON file with results
|
1357 |
+
json_data = export_data(st.session_state.heating_form_data, st.session_state.heating_results, format='json')
|
1358 |
+
|
1359 |
+
# Provide download link
|
1360 |
+
st.download_button(
|
1361 |
+
label="Download JSON",
|
1362 |
+
data=json_data,
|
1363 |
+
file_name=f"heating_load_results_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json",
|
1364 |
+
mime="application/json"
|
1365 |
+
)
|
1366 |
+
|
1367 |
+
# Navigation buttons
|
1368 |
+
col1, col2 = st.columns([1, 1])
|
1369 |
+
|
1370 |
+
with col1:
|
1371 |
+
prev_button = st.button("← Back: Occupancy", key="heating_results_prev")
|
1372 |
+
if prev_button:
|
1373 |
+
st.session_state.heating_active_tab = "occupancy"
|
1374 |
+
st.experimental_rerun()
|
1375 |
+
|
1376 |
+
with col2:
|
1377 |
+
recalculate_button = st.button("Recalculate", key="heating_results_recalculate")
|
1378 |
+
if recalculate_button:
|
1379 |
+
# Recalculate heating load
|
1380 |
+
calculate_heating_load()
|
1381 |
+
st.experimental_rerun()
|
1382 |
+
|
1383 |
+
|
1384 |
+
def heating_calculator():
|
1385 |
+
"""Main function for the heating load calculator page."""
|
1386 |
+
st.title("Heating Load Calculator")
|
1387 |
+
|
1388 |
+
# Initialize reference data
|
1389 |
+
ref_data = ReferenceData()
|
1390 |
+
|
1391 |
+
# Initialize session state
|
1392 |
+
load_session_state()
|
1393 |
+
|
1394 |
+
# Initialize active tab if not already set
|
1395 |
+
if 'heating_active_tab' not in st.session_state:
|
1396 |
+
st.session_state.heating_active_tab = "building_info"
|
1397 |
+
|
1398 |
+
# Create tabs for different steps
|
1399 |
+
tabs = st.tabs([
|
1400 |
+
"1. Building Information",
|
1401 |
+
"2. Building Envelope",
|
1402 |
+
"3. Windows & Doors",
|
1403 |
+
"4. Ventilation",
|
1404 |
+
"5. Occupancy",
|
1405 |
+
"6. Results"
|
1406 |
+
])
|
1407 |
+
|
1408 |
+
# Display the active tab
|
1409 |
+
with tabs[0]:
|
1410 |
+
if st.session_state.heating_active_tab == "building_info":
|
1411 |
+
building_info_form(ref_data)
|
1412 |
+
|
1413 |
+
with tabs[1]:
|
1414 |
+
if st.session_state.heating_active_tab == "building_envelope":
|
1415 |
+
building_envelope_form(ref_data)
|
1416 |
+
|
1417 |
+
with tabs[2]:
|
1418 |
+
if st.session_state.heating_active_tab == "windows":
|
1419 |
+
windows_form(ref_data)
|
1420 |
+
|
1421 |
+
with tabs[3]:
|
1422 |
+
if st.session_state.heating_active_tab == "ventilation":
|
1423 |
+
ventilation_form(ref_data)
|
1424 |
+
|
1425 |
+
with tabs[4]:
|
1426 |
+
if st.session_state.heating_active_tab == "occupancy":
|
1427 |
+
occupancy_form(ref_data)
|
1428 |
+
|
1429 |
+
with tabs[5]:
|
1430 |
+
if st.session_state.heating_active_tab == "results":
|
1431 |
+
results_page()
|
1432 |
+
|
1433 |
+
|
1434 |
+
if __name__ == "__main__":
|
1435 |
+
heating_calculator()
|
reference_data.py
ADDED
@@ -0,0 +1,616 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Reference Data Module for HVAC Load Calculator
|
3 |
+
|
4 |
+
This module provides reference data for materials, locations, and other parameters
|
5 |
+
needed for HVAC load calculations.
|
6 |
+
"""
|
7 |
+
|
8 |
+
import pandas as pd
|
9 |
+
import json
|
10 |
+
from pathlib import Path
|
11 |
+
|
12 |
+
|
13 |
+
class ReferenceData:
|
14 |
+
"""
|
15 |
+
A class to manage reference data for HVAC load calculations.
|
16 |
+
"""
|
17 |
+
|
18 |
+
def __init__(self):
|
19 |
+
"""Initialize the reference data."""
|
20 |
+
self.materials = self._load_materials()
|
21 |
+
self.locations = self._load_locations()
|
22 |
+
self.glass_types = self._load_glass_types()
|
23 |
+
self.shading_factors = self._load_shading_factors()
|
24 |
+
self.internal_loads = self._load_internal_loads()
|
25 |
+
self.occupancy_factors = self._load_occupancy_factors()
|
26 |
+
|
27 |
+
def _load_materials(self):
|
28 |
+
"""
|
29 |
+
Load building material properties.
|
30 |
+
|
31 |
+
Returns:
|
32 |
+
dict: Dictionary of material properties
|
33 |
+
"""
|
34 |
+
# This would typically load from a JSON or CSV file
|
35 |
+
# For now, we'll define it directly
|
36 |
+
|
37 |
+
materials = {
|
38 |
+
"walls": {
|
39 |
+
"brick_veneer": {
|
40 |
+
"name": "Brick veneer with insulation",
|
41 |
+
"u_value": 0.5, # W/m²°C
|
42 |
+
"r_value": 2.0, # m²°C/W
|
43 |
+
"description": "Brick veneer with timber frame and insulation"
|
44 |
+
},
|
45 |
+
"double_brick": {
|
46 |
+
"name": "Double brick",
|
47 |
+
"u_value": 1.88, # W/m²°C
|
48 |
+
"r_value": 0.53, # m²°C/W
|
49 |
+
"description": "Double brick wall without insulation"
|
50 |
+
},
|
51 |
+
"double_brick_insulated": {
|
52 |
+
"name": "Double brick with insulation",
|
53 |
+
"u_value": 0.6, # W/m²°C
|
54 |
+
"r_value": 1.67, # m²°C/W
|
55 |
+
"description": "Double brick wall with insulation"
|
56 |
+
},
|
57 |
+
"timber_frame": {
|
58 |
+
"name": "Timber frame",
|
59 |
+
"u_value": 0.8, # W/m²°C
|
60 |
+
"r_value": 1.25, # m²°C/W
|
61 |
+
"description": "Timber frame wall with insulation"
|
62 |
+
},
|
63 |
+
"concrete_block": {
|
64 |
+
"name": "Concrete block",
|
65 |
+
"u_value": 2.3, # W/m²°C
|
66 |
+
"r_value": 0.43, # m²°C/W
|
67 |
+
"description": "Concrete block wall without insulation"
|
68 |
+
},
|
69 |
+
"concrete_block_insulated": {
|
70 |
+
"name": "Concrete block with insulation",
|
71 |
+
"u_value": 0.7, # W/m²°C
|
72 |
+
"r_value": 1.43, # m²°C/W
|
73 |
+
"description": "Concrete block wall with insulation"
|
74 |
+
}
|
75 |
+
},
|
76 |
+
"roofs": {
|
77 |
+
"metal_deck_insulated": {
|
78 |
+
"name": "Metal deck with insulation",
|
79 |
+
"u_value": 0.46, # W/m²°C
|
80 |
+
"r_value": 2.17, # m²°C/W
|
81 |
+
"description": "Metal deck roof with insulation and plasterboard ceiling"
|
82 |
+
},
|
83 |
+
"metal_deck_uninsulated": {
|
84 |
+
"name": "Metal deck without insulation",
|
85 |
+
"u_value": 2.2, # W/m²°C
|
86 |
+
"r_value": 0.45, # m²°C/W
|
87 |
+
"description": "Metal deck roof without insulation"
|
88 |
+
},
|
89 |
+
"concrete_slab_roof": {
|
90 |
+
"name": "Concrete slab roof",
|
91 |
+
"u_value": 3.1, # W/m²°C
|
92 |
+
"r_value": 0.32, # m²°C/W
|
93 |
+
"description": "Concrete slab roof without insulation"
|
94 |
+
},
|
95 |
+
"concrete_slab_insulated": {
|
96 |
+
"name": "Concrete slab roof with insulation",
|
97 |
+
"u_value": 0.5, # W/m²°C
|
98 |
+
"r_value": 2.0, # m²°C/W
|
99 |
+
"description": "Concrete slab roof with insulation"
|
100 |
+
},
|
101 |
+
"tiled_roof_insulated": {
|
102 |
+
"name": "Tiled roof with insulation",
|
103 |
+
"u_value": 0.4, # W/m²°C
|
104 |
+
"r_value": 2.5, # m²°C/W
|
105 |
+
"description": "Tiled roof with insulation and plasterboard ceiling"
|
106 |
+
},
|
107 |
+
"tiled_roof_uninsulated": {
|
108 |
+
"name": "Tiled roof without insulation",
|
109 |
+
"u_value": 2.0, # W/m²°C
|
110 |
+
"r_value": 0.5, # m²°C/W
|
111 |
+
"description": "Tiled roof without insulation"
|
112 |
+
}
|
113 |
+
},
|
114 |
+
"floors": {
|
115 |
+
"concrete_slab_ground": {
|
116 |
+
"name": "Concrete slab on ground",
|
117 |
+
"u_value": 0.6, # W/m²°C
|
118 |
+
"r_value": 1.67, # m²°C/W
|
119 |
+
"description": "Concrete slab directly on ground"
|
120 |
+
},
|
121 |
+
"concrete_slab_insulated": {
|
122 |
+
"name": "Concrete slab with insulation",
|
123 |
+
"u_value": 0.3, # W/m²°C
|
124 |
+
"r_value": 3.33, # m²°C/W
|
125 |
+
"description": "Concrete slab with insulation"
|
126 |
+
},
|
127 |
+
"suspended_timber": {
|
128 |
+
"name": "Suspended timber floor",
|
129 |
+
"u_value": 1.5, # W/m²°C
|
130 |
+
"r_value": 0.67, # m²°C/W
|
131 |
+
"description": "Suspended timber floor without insulation"
|
132 |
+
},
|
133 |
+
"suspended_timber_insulated": {
|
134 |
+
"name": "Suspended timber floor with insulation",
|
135 |
+
"u_value": 0.4, # W/m²°C
|
136 |
+
"r_value": 2.5, # m²°C/W
|
137 |
+
"description": "Suspended timber floor with insulation"
|
138 |
+
}
|
139 |
+
}
|
140 |
+
}
|
141 |
+
|
142 |
+
return materials
|
143 |
+
|
144 |
+
def _load_locations(self):
|
145 |
+
"""
|
146 |
+
Load climate data for different locations.
|
147 |
+
|
148 |
+
Returns:
|
149 |
+
dict: Dictionary of location climate data
|
150 |
+
"""
|
151 |
+
# This would typically load from a JSON or CSV file
|
152 |
+
# For now, we'll define it directly
|
153 |
+
|
154 |
+
locations = {
|
155 |
+
"sydney": {
|
156 |
+
"name": "Sydney",
|
157 |
+
"state": "NSW",
|
158 |
+
"summer_design_temp": 32.0, # °C
|
159 |
+
"winter_design_temp": 7.0, # °C
|
160 |
+
"daily_temp_range": "medium", # 8.5-14°C
|
161 |
+
"heating_degree_days": 740, # Base 18°C
|
162 |
+
"cooling_degree_days": 350, # Base 18°C
|
163 |
+
"latitude": -33.87,
|
164 |
+
"longitude": 151.21
|
165 |
+
},
|
166 |
+
"melbourne": {
|
167 |
+
"name": "Melbourne",
|
168 |
+
"state": "VIC",
|
169 |
+
"summer_design_temp": 35.0, # °C
|
170 |
+
"winter_design_temp": 4.0, # °C
|
171 |
+
"daily_temp_range": "medium", # 8.5-14°C
|
172 |
+
"heating_degree_days": 1400, # Base 18°C
|
173 |
+
"cooling_degree_days": 200, # Base 18°C
|
174 |
+
"latitude": -37.81,
|
175 |
+
"longitude": 144.96
|
176 |
+
},
|
177 |
+
"brisbane": {
|
178 |
+
"name": "Brisbane",
|
179 |
+
"state": "QLD",
|
180 |
+
"summer_design_temp": 32.0, # °C
|
181 |
+
"winter_design_temp": 9.0, # °C
|
182 |
+
"daily_temp_range": "medium", # 8.5-14°C
|
183 |
+
"heating_degree_days": 320, # Base 18°C
|
184 |
+
"cooling_degree_days": 750, # Base 18°C
|
185 |
+
"latitude": -27.47,
|
186 |
+
"longitude": 153.03
|
187 |
+
},
|
188 |
+
"perth": {
|
189 |
+
"name": "Perth",
|
190 |
+
"state": "WA",
|
191 |
+
"summer_design_temp": 37.0, # °C
|
192 |
+
"winter_design_temp": 7.0, # °C
|
193 |
+
"daily_temp_range": "high", # >14°C
|
194 |
+
"heating_degree_days": 760, # Base 18°C
|
195 |
+
"cooling_degree_days": 600, # Base 18°C
|
196 |
+
"latitude": -31.95,
|
197 |
+
"longitude": 115.86
|
198 |
+
},
|
199 |
+
"adelaide": {
|
200 |
+
"name": "Adelaide",
|
201 |
+
"state": "SA",
|
202 |
+
"summer_design_temp": 38.0, # °C
|
203 |
+
"winter_design_temp": 5.0, # °C
|
204 |
+
"daily_temp_range": "high", # >14°C
|
205 |
+
"heating_degree_days": 1100, # Base 18°C
|
206 |
+
"cooling_degree_days": 500, # Base 18°C
|
207 |
+
"latitude": -34.93,
|
208 |
+
"longitude": 138.60
|
209 |
+
},
|
210 |
+
"hobart": {
|
211 |
+
"name": "Hobart",
|
212 |
+
"state": "TAS",
|
213 |
+
"summer_design_temp": 28.0, # °C
|
214 |
+
"winter_design_temp": 2.0, # °C
|
215 |
+
"daily_temp_range": "medium", # 8.5-14°C
|
216 |
+
"heating_degree_days": 1800, # Base 18°C
|
217 |
+
"cooling_degree_days": 50, # Base 18°C
|
218 |
+
"latitude": -42.88,
|
219 |
+
"longitude": 147.33
|
220 |
+
},
|
221 |
+
"darwin": {
|
222 |
+
"name": "Darwin",
|
223 |
+
"state": "NT",
|
224 |
+
"summer_design_temp": 34.0, # °C
|
225 |
+
"winter_design_temp": 15.0, # °C
|
226 |
+
"daily_temp_range": "low", # <8.5°C
|
227 |
+
"heating_degree_days": 0, # Base 18°C
|
228 |
+
"cooling_degree_days": 3500, # Base 18°C
|
229 |
+
"latitude": -12.46,
|
230 |
+
"longitude": 130.84
|
231 |
+
},
|
232 |
+
"canberra": {
|
233 |
+
"name": "Canberra",
|
234 |
+
"state": "ACT",
|
235 |
+
"summer_design_temp": 35.0, # °C
|
236 |
+
"winter_design_temp": -1.0, # °C
|
237 |
+
"daily_temp_range": "high", # >14°C
|
238 |
+
"heating_degree_days": 2000, # Base 18°C
|
239 |
+
"cooling_degree_days": 150, # Base 18°C
|
240 |
+
"latitude": -35.28,
|
241 |
+
"longitude": 149.13
|
242 |
+
},
|
243 |
+
"mildura": {
|
244 |
+
"name": "Mildura",
|
245 |
+
"state": "VIC",
|
246 |
+
"summer_design_temp": 38.0, # °C
|
247 |
+
"winter_design_temp": 4.5, # °C
|
248 |
+
"daily_temp_range": "high", # >14°C
|
249 |
+
"heating_degree_days": 1200, # Base 18°C
|
250 |
+
"cooling_degree_days": 700, # Base 18°C
|
251 |
+
"latitude": -34.21,
|
252 |
+
"longitude": 142.14
|
253 |
+
}
|
254 |
+
}
|
255 |
+
|
256 |
+
return locations
|
257 |
+
|
258 |
+
def _load_glass_types(self):
|
259 |
+
"""
|
260 |
+
Load glass type properties.
|
261 |
+
|
262 |
+
Returns:
|
263 |
+
dict: Dictionary of glass type properties
|
264 |
+
"""
|
265 |
+
# This would typically load from a JSON or CSV file
|
266 |
+
# For now, we'll define it directly
|
267 |
+
|
268 |
+
glass_types = {
|
269 |
+
"single": {
|
270 |
+
"name": "Single glazing",
|
271 |
+
"u_value": 5.8, # W/m²°C
|
272 |
+
"shgc": 0.85, # Solar Heat Gain Coefficient
|
273 |
+
"description": "Standard single glazed window"
|
274 |
+
},
|
275 |
+
"double": {
|
276 |
+
"name": "Double glazing",
|
277 |
+
"u_value": 2.9, # W/m²°C
|
278 |
+
"shgc": 0.75, # Solar Heat Gain Coefficient
|
279 |
+
"description": "Standard double glazed window"
|
280 |
+
},
|
281 |
+
"low_e": {
|
282 |
+
"name": "Low-E double glazing",
|
283 |
+
"u_value": 1.8, # W/m²°C
|
284 |
+
"shgc": 0.65, # Solar Heat Gain Coefficient
|
285 |
+
"description": "Double glazed window with low-emissivity coating"
|
286 |
+
},
|
287 |
+
"triple": {
|
288 |
+
"name": "Triple glazing",
|
289 |
+
"u_value": 1.2, # W/m²°C
|
290 |
+
"shgc": 0.6, # Solar Heat Gain Coefficient
|
291 |
+
"description": "Triple glazed window"
|
292 |
+
},
|
293 |
+
"tinted": {
|
294 |
+
"name": "Tinted single glazing",
|
295 |
+
"u_value": 5.8, # W/m²°C
|
296 |
+
"shgc": 0.65, # Solar Heat Gain Coefficient
|
297 |
+
"description": "Single glazed window with tinting"
|
298 |
+
},
|
299 |
+
"tinted_double": {
|
300 |
+
"name": "Tinted double glazing",
|
301 |
+
"u_value": 2.9, # W/m²°C
|
302 |
+
"shgc": 0.55, # Solar Heat Gain Coefficient
|
303 |
+
"description": "Double glazed window with tinting"
|
304 |
+
}
|
305 |
+
}
|
306 |
+
|
307 |
+
return glass_types
|
308 |
+
|
309 |
+
def _load_shading_factors(self):
|
310 |
+
"""
|
311 |
+
Load shading factors for different shading devices.
|
312 |
+
|
313 |
+
Returns:
|
314 |
+
dict: Dictionary of shading factors
|
315 |
+
"""
|
316 |
+
# This would typically load from a JSON or CSV file
|
317 |
+
# For now, we'll define it directly
|
318 |
+
|
319 |
+
shading_factors = {
|
320 |
+
"none": {
|
321 |
+
"name": "No shading",
|
322 |
+
"factor": 0.0,
|
323 |
+
"description": "No shading devices"
|
324 |
+
},
|
325 |
+
"internal_blinds": {
|
326 |
+
"name": "Internal venetian blinds",
|
327 |
+
"factor": 0.4,
|
328 |
+
"description": "Internal venetian blinds"
|
329 |
+
},
|
330 |
+
"internal_drapes": {
|
331 |
+
"name": "Internal drapes",
|
332 |
+
"factor": 0.3,
|
333 |
+
"description": "Internal drapes or curtains"
|
334 |
+
},
|
335 |
+
"external_awning": {
|
336 |
+
"name": "External awning",
|
337 |
+
"factor": 0.7,
|
338 |
+
"description": "External awning"
|
339 |
+
},
|
340 |
+
"external_shutters": {
|
341 |
+
"name": "External shutters",
|
342 |
+
"factor": 0.8,
|
343 |
+
"description": "External shutters"
|
344 |
+
},
|
345 |
+
"eaves": {
|
346 |
+
"name": "Eaves or overhang",
|
347 |
+
"factor": 0.5,
|
348 |
+
"description": "Eaves or overhang"
|
349 |
+
},
|
350 |
+
"pergola": {
|
351 |
+
"name": "Pergola with vegetation",
|
352 |
+
"factor": 0.6,
|
353 |
+
"description": "Pergola with vegetation"
|
354 |
+
}
|
355 |
+
}
|
356 |
+
|
357 |
+
return shading_factors
|
358 |
+
|
359 |
+
def _load_internal_loads(self):
|
360 |
+
"""
|
361 |
+
Load internal load data.
|
362 |
+
|
363 |
+
Returns:
|
364 |
+
dict: Dictionary of internal load data
|
365 |
+
"""
|
366 |
+
# This would typically load from a JSON or CSV file
|
367 |
+
# For now, we'll define it directly
|
368 |
+
|
369 |
+
internal_loads = {
|
370 |
+
"people": {
|
371 |
+
"seated_resting": {
|
372 |
+
"name": "Seated, resting",
|
373 |
+
"sensible_heat": 75, # W per person
|
374 |
+
"latent_heat": 30 # W per person
|
375 |
+
},
|
376 |
+
"seated_light_work": {
|
377 |
+
"name": "Seated, light work",
|
378 |
+
"sensible_heat": 85, # W per person
|
379 |
+
"latent_heat": 40 # W per person
|
380 |
+
},
|
381 |
+
"standing_light_work": {
|
382 |
+
"name": "Standing, light work",
|
383 |
+
"sensible_heat": 90, # W per person
|
384 |
+
"latent_heat": 50 # W per person
|
385 |
+
},
|
386 |
+
"light_activity": {
|
387 |
+
"name": "Light activity",
|
388 |
+
"sensible_heat": 100, # W per person
|
389 |
+
"latent_heat": 60 # W per person
|
390 |
+
},
|
391 |
+
"medium_activity": {
|
392 |
+
"name": "Medium activity",
|
393 |
+
"sensible_heat": 120, # W per person
|
394 |
+
"latent_heat": 80 # W per person
|
395 |
+
}
|
396 |
+
},
|
397 |
+
"lighting": {
|
398 |
+
"incandescent": {
|
399 |
+
"name": "Incandescent",
|
400 |
+
"heat_factor": 1.0 # 100% of wattage becomes heat
|
401 |
+
},
|
402 |
+
"fluorescent": {
|
403 |
+
"name": "Fluorescent",
|
404 |
+
"heat_factor": 1.2 # 120% of wattage becomes heat (includes ballast)
|
405 |
+
},
|
406 |
+
"led": {
|
407 |
+
"name": "LED",
|
408 |
+
"heat_factor": 0.8 # 80% of wattage becomes heat
|
409 |
+
}
|
410 |
+
},
|
411 |
+
"appliances": {
|
412 |
+
"kitchen": {
|
413 |
+
"name": "Kitchen",
|
414 |
+
"heat_gain": 1000 # W
|
415 |
+
},
|
416 |
+
"living_room": {
|
417 |
+
"name": "Living room",
|
418 |
+
"heat_gain": 300 # W
|
419 |
+
},
|
420 |
+
"bedroom": {
|
421 |
+
"name": "Bedroom",
|
422 |
+
"heat_gain": 150 # W
|
423 |
+
},
|
424 |
+
"office": {
|
425 |
+
"name": "Home office",
|
426 |
+
"heat_gain": 450 # W
|
427 |
+
}
|
428 |
+
}
|
429 |
+
}
|
430 |
+
|
431 |
+
return internal_loads
|
432 |
+
|
433 |
+
def _load_occupancy_factors(self):
|
434 |
+
"""
|
435 |
+
Load occupancy correction factors.
|
436 |
+
|
437 |
+
Returns:
|
438 |
+
dict: Dictionary of occupancy correction factors
|
439 |
+
"""
|
440 |
+
# This would typically load from a JSON or CSV file
|
441 |
+
# For now, we'll define it directly
|
442 |
+
|
443 |
+
occupancy_factors = {
|
444 |
+
"continuous": {
|
445 |
+
"name": "Continuous",
|
446 |
+
"factor": 1.0,
|
447 |
+
"description": "Continuously heated"
|
448 |
+
},
|
449 |
+
"intermittent": {
|
450 |
+
"name": "Intermittent",
|
451 |
+
"factor": 0.8,
|
452 |
+
"description": "Heated during occupied hours"
|
453 |
+
},
|
454 |
+
"night_setback": {
|
455 |
+
"name": "Night setback",
|
456 |
+
"factor": 0.9,
|
457 |
+
"description": "Temperature setback at night"
|
458 |
+
},
|
459 |
+
"weekend_off": {
|
460 |
+
"name": "Weekend off",
|
461 |
+
"factor": 0.85,
|
462 |
+
"description": "Heating off during weekends"
|
463 |
+
},
|
464 |
+
"vacation_home": {
|
465 |
+
"name": "Vacation home",
|
466 |
+
"factor": 0.6,
|
467 |
+
"description": "Occasionally occupied"
|
468 |
+
}
|
469 |
+
}
|
470 |
+
|
471 |
+
return occupancy_factors
|
472 |
+
|
473 |
+
def get_material_by_type(self, material_type, material_id):
|
474 |
+
"""
|
475 |
+
Get material properties by type and ID.
|
476 |
+
|
477 |
+
Args:
|
478 |
+
material_type (str): Type of material ('walls', 'roofs', 'floors')
|
479 |
+
material_id (str): ID of the material
|
480 |
+
|
481 |
+
Returns:
|
482 |
+
dict: Material properties
|
483 |
+
"""
|
484 |
+
if material_type in self.materials and material_id in self.materials[material_type]:
|
485 |
+
return self.materials[material_type][material_id]
|
486 |
+
return None
|
487 |
+
|
488 |
+
def get_location_data(self, location_id):
|
489 |
+
"""
|
490 |
+
Get climate data for a location.
|
491 |
+
|
492 |
+
Args:
|
493 |
+
location_id (str): ID of the location
|
494 |
+
|
495 |
+
Returns:
|
496 |
+
dict: Location climate data
|
497 |
+
"""
|
498 |
+
if location_id in self.locations:
|
499 |
+
return self.locations[location_id]
|
500 |
+
return None
|
501 |
+
|
502 |
+
def get_glass_type(self, glass_id):
|
503 |
+
"""
|
504 |
+
Get glass type properties.
|
505 |
+
|
506 |
+
Args:
|
507 |
+
glass_id (str): ID of the glass type
|
508 |
+
|
509 |
+
Returns:
|
510 |
+
dict: Glass type properties
|
511 |
+
"""
|
512 |
+
if glass_id in self.glass_types:
|
513 |
+
return self.glass_types[glass_id]
|
514 |
+
return None
|
515 |
+
|
516 |
+
def get_shading_factor(self, shading_id):
|
517 |
+
"""
|
518 |
+
Get shading factor.
|
519 |
+
|
520 |
+
Args:
|
521 |
+
shading_id (str): ID of the shading type
|
522 |
+
|
523 |
+
Returns:
|
524 |
+
dict: Shading factor data
|
525 |
+
"""
|
526 |
+
if shading_id in self.shading_factors:
|
527 |
+
return self.shading_factors[shading_id]
|
528 |
+
return None
|
529 |
+
|
530 |
+
def get_internal_load(self, load_type, load_id):
|
531 |
+
"""
|
532 |
+
Get internal load data.
|
533 |
+
|
534 |
+
Args:
|
535 |
+
load_type (str): Type of internal load ('people', 'lighting', 'appliances')
|
536 |
+
load_id (str): ID of the internal load
|
537 |
+
|
538 |
+
Returns:
|
539 |
+
dict: Internal load data
|
540 |
+
"""
|
541 |
+
if load_type in self.internal_loads and load_id in self.internal_loads[load_type]:
|
542 |
+
return self.internal_loads[load_type][load_id]
|
543 |
+
return None
|
544 |
+
|
545 |
+
def get_occupancy_factor(self, occupancy_id):
|
546 |
+
"""
|
547 |
+
Get occupancy correction factor.
|
548 |
+
|
549 |
+
Args:
|
550 |
+
occupancy_id (str): ID of the occupancy type
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
dict: Occupancy correction factor data
|
554 |
+
"""
|
555 |
+
if occupancy_id in self.occupancy_factors:
|
556 |
+
return self.occupancy_factors[occupancy_id]
|
557 |
+
return None
|
558 |
+
|
559 |
+
def export_to_json(self, output_dir):
|
560 |
+
"""
|
561 |
+
Export all reference data to JSON files.
|
562 |
+
|
563 |
+
Args:
|
564 |
+
output_dir (str): Directory to save JSON files
|
565 |
+
|
566 |
+
Returns:
|
567 |
+
bool: True if successful, False otherwise
|
568 |
+
"""
|
569 |
+
try:
|
570 |
+
output_path = Path(output_dir)
|
571 |
+
output_path.mkdir(parents=True, exist_ok=True)
|
572 |
+
|
573 |
+
# Export materials
|
574 |
+
with open(output_path / "materials.json", "w") as f:
|
575 |
+
json.dump(self.materials, f, indent=2)
|
576 |
+
|
577 |
+
# Export locations
|
578 |
+
with open(output_path / "locations.json", "w") as f:
|
579 |
+
json.dump(self.locations, f, indent=2)
|
580 |
+
|
581 |
+
# Export glass types
|
582 |
+
with open(output_path / "glass_types.json", "w") as f:
|
583 |
+
json.dump(self.glass_types, f, indent=2)
|
584 |
+
|
585 |
+
# Export shading factors
|
586 |
+
with open(output_path / "shading_factors.json", "w") as f:
|
587 |
+
json.dump(self.shading_factors, f, indent=2)
|
588 |
+
|
589 |
+
# Export internal loads
|
590 |
+
with open(output_path / "internal_loads.json", "w") as f:
|
591 |
+
json.dump(self.internal_loads, f, indent=2)
|
592 |
+
|
593 |
+
# Export occupancy factors
|
594 |
+
with open(output_path / "occupancy_factors.json", "w") as f:
|
595 |
+
json.dump(self.occupancy_factors, f, indent=2)
|
596 |
+
|
597 |
+
return True
|
598 |
+
except Exception as e:
|
599 |
+
print(f"Error exporting reference data: {e}")
|
600 |
+
return False
|
601 |
+
|
602 |
+
|
603 |
+
# Example usage
|
604 |
+
if __name__ == "__main__":
|
605 |
+
ref_data = ReferenceData()
|
606 |
+
|
607 |
+
# Example: Get wall material properties
|
608 |
+
brick_veneer = ref_data.get_material_by_type("walls", "brick_veneer")
|
609 |
+
print("Brick Veneer Wall Properties:", brick_veneer)
|
610 |
+
|
611 |
+
# Example: Get location climate data
|
612 |
+
sydney_data = ref_data.get_location_data("sydney")
|
613 |
+
print("Sydney Climate Data:", sydney_data)
|
614 |
+
|
615 |
+
# Example: Export all data to JSON
|
616 |
+
ref_data.export_to_json("reference_data")
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas==2.0.0
|
2 |
+
streamlit==1.32.0
|
3 |
+
plotly==5.18.0
|
4 |
+
numpy==1.24.3
|
runtime.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
[build]
|
2 |
+
python_version = "3.10"
|
utils/export.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Export utilities for HVAC Load Calculator
|
3 |
+
|
4 |
+
This module provides functions for exporting data from the HVAC Load Calculator.
|
5 |
+
"""
|
6 |
+
|
7 |
+
import json
|
8 |
+
import csv
|
9 |
+
import io
|
10 |
+
import pandas as pd
|
11 |
+
from datetime import datetime
|
12 |
+
|
13 |
+
|
14 |
+
def export_data(form_data, results, format='json'):
|
15 |
+
"""
|
16 |
+
Export form data and calculation results.
|
17 |
+
|
18 |
+
Args:
|
19 |
+
form_data (dict): Form input data
|
20 |
+
results (dict): Calculation results
|
21 |
+
format (str): Export format ('json' or 'csv')
|
22 |
+
|
23 |
+
Returns:
|
24 |
+
str: Exported data as string
|
25 |
+
"""
|
26 |
+
if format == 'json':
|
27 |
+
return export_as_json(form_data, results)
|
28 |
+
elif format == 'csv':
|
29 |
+
return export_as_csv(form_data, results)
|
30 |
+
else:
|
31 |
+
raise ValueError(f"Unsupported export format: {format}")
|
32 |
+
|
33 |
+
|
34 |
+
def export_as_json(form_data, results):
|
35 |
+
"""
|
36 |
+
Export data as JSON.
|
37 |
+
|
38 |
+
Args:
|
39 |
+
form_data (dict): Form input data
|
40 |
+
results (dict): Calculation results
|
41 |
+
|
42 |
+
Returns:
|
43 |
+
str: JSON string
|
44 |
+
"""
|
45 |
+
# Combine form data and results
|
46 |
+
export_data = {
|
47 |
+
'form_data': form_data,
|
48 |
+
'results': results,
|
49 |
+
'export_timestamp': datetime.now().isoformat()
|
50 |
+
}
|
51 |
+
|
52 |
+
# Convert to JSON string
|
53 |
+
return json.dumps(export_data, indent=2)
|
54 |
+
|
55 |
+
|
56 |
+
def export_as_csv(form_data, results):
|
57 |
+
"""
|
58 |
+
Export data as CSV.
|
59 |
+
|
60 |
+
Args:
|
61 |
+
form_data (dict): Form input data
|
62 |
+
results (dict): Calculation results
|
63 |
+
|
64 |
+
Returns:
|
65 |
+
str: CSV string
|
66 |
+
"""
|
67 |
+
# Create a buffer for CSV data
|
68 |
+
output = io.StringIO()
|
69 |
+
writer = csv.writer(output)
|
70 |
+
|
71 |
+
# Write header
|
72 |
+
writer.writerow(['HVAC Load Calculator Results', datetime.now().isoformat()])
|
73 |
+
writer.writerow([])
|
74 |
+
|
75 |
+
# Write building information
|
76 |
+
writer.writerow(['Building Information'])
|
77 |
+
building_info = form_data.get('building_info', {})
|
78 |
+
for key, value in building_info.items():
|
79 |
+
writer.writerow([key, value])
|
80 |
+
writer.writerow([])
|
81 |
+
|
82 |
+
# Write calculation results
|
83 |
+
writer.writerow(['Calculation Results'])
|
84 |
+
for key, value in results.items():
|
85 |
+
if key not in ['building_info', 'timestamp'] and not isinstance(value, dict):
|
86 |
+
writer.writerow([key, value])
|
87 |
+
writer.writerow([])
|
88 |
+
|
89 |
+
# Write load components
|
90 |
+
writer.writerow(['Load Components'])
|
91 |
+
writer.writerow(['Component', 'Load (W)', 'Percentage (%)'])
|
92 |
+
|
93 |
+
# Calculate percentages
|
94 |
+
sensible_load = results.get('sensible_load', 1) # Avoid division by zero
|
95 |
+
|
96 |
+
components = {
|
97 |
+
'Conduction (Opaque Surfaces)': results.get('conduction_gain', 0),
|
98 |
+
'Conduction (Windows)': results.get('window_conduction_gain', 0),
|
99 |
+
'Solar Radiation (Windows)': results.get('window_solar_gain', 0),
|
100 |
+
'Infiltration & Ventilation': results.get('infiltration_gain', 0),
|
101 |
+
'Internal Gains': results.get('internal_gain', 0)
|
102 |
+
}
|
103 |
+
|
104 |
+
for component, load in components.items():
|
105 |
+
percentage = (load / sensible_load) * 100 if sensible_load > 0 else 0
|
106 |
+
writer.writerow([component, f"{load:.2f}", f"{percentage:.2f}"])
|
107 |
+
|
108 |
+
# Get CSV content
|
109 |
+
return output.getvalue()
|
110 |
+
|
111 |
+
|
112 |
+
def generate_report(form_data, results, calculation_type='cooling'):
|
113 |
+
"""
|
114 |
+
Generate a formatted report of calculation results.
|
115 |
+
|
116 |
+
Args:
|
117 |
+
form_data (dict): Form input data
|
118 |
+
results (dict): Calculation results
|
119 |
+
calculation_type (str): Type of calculation ('cooling' or 'heating')
|
120 |
+
|
121 |
+
Returns:
|
122 |
+
str: Formatted report as HTML
|
123 |
+
"""
|
124 |
+
# Create a DataFrame for the report
|
125 |
+
report_data = []
|
126 |
+
|
127 |
+
# Add building information
|
128 |
+
building_info = form_data.get('building_info', {})
|
129 |
+
report_data.append({
|
130 |
+
'Section': 'Building Information',
|
131 |
+
'Item': 'Building Name',
|
132 |
+
'Value': building_info.get('building_name', 'N/A')
|
133 |
+
})
|
134 |
+
report_data.append({
|
135 |
+
'Section': 'Building Information',
|
136 |
+
'Item': 'Location',
|
137 |
+
'Value': building_info.get('location_name', 'N/A')
|
138 |
+
})
|
139 |
+
report_data.append({
|
140 |
+
'Section': 'Building Information',
|
141 |
+
'Item': 'Floor Area',
|
142 |
+
'Value': f"{building_info.get('floor_area', 0):.2f} m²"
|
143 |
+
})
|
144 |
+
report_data.append({
|
145 |
+
'Section': 'Building Information',
|
146 |
+
'Item': 'Volume',
|
147 |
+
'Value': f"{building_info.get('volume', 0):.2f} m³"
|
148 |
+
})
|
149 |
+
|
150 |
+
# Add calculation results
|
151 |
+
if calculation_type == 'cooling':
|
152 |
+
report_data.append({
|
153 |
+
'Section': 'Results',
|
154 |
+
'Item': 'Sensible Cooling Load',
|
155 |
+
'Value': f"{results.get('sensible_load', 0):.2f} W"
|
156 |
+
})
|
157 |
+
report_data.append({
|
158 |
+
'Section': 'Results',
|
159 |
+
'Item': 'Latent Cooling Load',
|
160 |
+
'Value': f"{results.get('latent_load', 0):.2f} W"
|
161 |
+
})
|
162 |
+
report_data.append({
|
163 |
+
'Section': 'Results',
|
164 |
+
'Item': 'Total Cooling Load',
|
165 |
+
'Value': f"{results.get('total_load', 0):.2f} W"
|
166 |
+
})
|
167 |
+
report_data.append({
|
168 |
+
'Section': 'Results',
|
169 |
+
'Item': 'Cooling Load per Area',
|
170 |
+
'Value': f"{results.get('total_load', 0) / building_info.get('floor_area', 1):.2f} W/m²"
|
171 |
+
})
|
172 |
+
else: # heating
|
173 |
+
report_data.append({
|
174 |
+
'Section': 'Results',
|
175 |
+
'Item': 'Total Heating Load',
|
176 |
+
'Value': f"{results.get('total_load', 0):.2f} W"
|
177 |
+
})
|
178 |
+
report_data.append({
|
179 |
+
'Section': 'Results',
|
180 |
+
'Item': 'Heating Load per Area',
|
181 |
+
'Value': f"{results.get('total_load', 0) / building_info.get('floor_area', 1):.2f} W/m²"
|
182 |
+
})
|
183 |
+
if 'annual_energy_kwh' in results:
|
184 |
+
report_data.append({
|
185 |
+
'Section': 'Results',
|
186 |
+
'Item': 'Annual Heating Energy',
|
187 |
+
'Value': f"{results.get('annual_energy_kwh', 0):.2f} kWh"
|
188 |
+
})
|
189 |
+
|
190 |
+
# Create DataFrame
|
191 |
+
df = pd.DataFrame(report_data)
|
192 |
+
|
193 |
+
# Convert to HTML
|
194 |
+
html = df.to_html(index=False)
|
195 |
+
|
196 |
+
return html
|
utils/validation.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Validation utilities for HVAC Load Calculator
|
3 |
+
|
4 |
+
This module provides validation functions for input data in the HVAC Load Calculator.
|
5 |
+
"""
|
6 |
+
|
7 |
+
class ValidationWarning:
|
8 |
+
"""
|
9 |
+
A class to represent validation warnings.
|
10 |
+
"""
|
11 |
+
|
12 |
+
def __init__(self, message, suggestion, is_critical=False):
|
13 |
+
"""
|
14 |
+
Initialize a validation warning.
|
15 |
+
|
16 |
+
Args:
|
17 |
+
message (str): Warning message
|
18 |
+
suggestion (str): Suggestion for fixing the warning
|
19 |
+
is_critical (bool): Whether the warning is critical (prevents proceeding)
|
20 |
+
"""
|
21 |
+
self.message = message
|
22 |
+
self.suggestion = suggestion
|
23 |
+
self.is_critical = is_critical
|
24 |
+
|
25 |
+
|
26 |
+
def validate_input(input_value, validation_type, min_value=None, max_value=None, required=False):
|
27 |
+
"""
|
28 |
+
Validate an input value.
|
29 |
+
|
30 |
+
Args:
|
31 |
+
input_value: Value to validate
|
32 |
+
validation_type (str): Type of validation ('number', 'text', etc.)
|
33 |
+
min_value: Minimum allowed value (for numeric inputs)
|
34 |
+
max_value: Maximum allowed value (for numeric inputs)
|
35 |
+
required (bool): Whether the input is required
|
36 |
+
|
37 |
+
Returns:
|
38 |
+
tuple: (is_valid, warnings)
|
39 |
+
"""
|
40 |
+
warnings = []
|
41 |
+
is_valid = True
|
42 |
+
|
43 |
+
# Check if required
|
44 |
+
if required and (input_value is None or input_value == "" or (isinstance(input_value, (int, float)) and input_value == 0)):
|
45 |
+
warnings.append(ValidationWarning(
|
46 |
+
"Required field is empty",
|
47 |
+
"Please provide a value for this field",
|
48 |
+
is_critical=True
|
49 |
+
))
|
50 |
+
is_valid = False
|
51 |
+
|
52 |
+
# Skip further validation if value is empty and not required
|
53 |
+
if input_value is None or input_value == "":
|
54 |
+
return is_valid, warnings
|
55 |
+
|
56 |
+
# Validate based on type
|
57 |
+
if validation_type == 'number':
|
58 |
+
try:
|
59 |
+
# Convert to float if it's a string
|
60 |
+
if isinstance(input_value, str):
|
61 |
+
input_value = float(input_value)
|
62 |
+
|
63 |
+
# Check min value
|
64 |
+
if min_value is not None and input_value < min_value:
|
65 |
+
warnings.append(ValidationWarning(
|
66 |
+
f"Value is below minimum ({min_value})",
|
67 |
+
f"Please enter a value greater than or equal to {min_value}",
|
68 |
+
is_critical=True
|
69 |
+
))
|
70 |
+
is_valid = False
|
71 |
+
|
72 |
+
# Check max value
|
73 |
+
if max_value is not None and input_value > max_value:
|
74 |
+
warnings.append(ValidationWarning(
|
75 |
+
f"Value exceeds maximum ({max_value})",
|
76 |
+
f"Please enter a value less than or equal to {max_value}",
|
77 |
+
is_critical=True
|
78 |
+
))
|
79 |
+
is_valid = False
|
80 |
+
|
81 |
+
except ValueError:
|
82 |
+
warnings.append(ValidationWarning(
|
83 |
+
"Invalid number format",
|
84 |
+
"Please enter a valid number",
|
85 |
+
is_critical=True
|
86 |
+
))
|
87 |
+
is_valid = False
|
88 |
+
|
89 |
+
elif validation_type == 'text':
|
90 |
+
# Add text validation if needed
|
91 |
+
pass
|
92 |
+
|
93 |
+
return is_valid, warnings
|