Spaces:
Sleeping
Sleeping
File size: 1,433 Bytes
e8e951f ad78e1d b4749c5 ad78e1d e8e951f ad78e1d b4749c5 e8e951f ad78e1d e8e951f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
import gradio as gr
import torch
from transformers import (
AutomaticSpeechRecognitionPipeline,
WhisperForConditionalGeneration,
WhisperTokenizer,
WhisperProcessor,
)
from peft import PeftModel, PeftConfig
peft_model_id = "Boadiwaa/LORA-colab-Whisper-medium"
task = "transcribe"
peft_config = PeftConfig.from_pretrained(peft_model_id)
model = WhisperForConditionalGeneration.from_pretrained(
peft_config.base_model_name_or_path,device_map="auto"
)
model = PeftModel.from_pretrained(model, peft_model_id)
tokenizer = WhisperTokenizer.from_pretrained(peft_config.base_model_name_or_path,task=task)
processor = WhisperProcessor.from_pretrained(peft_config.base_model_name_or_path,task=task)
feature_extractor = processor.feature_extractor
#forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task=task)
pipe = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor)
def transcribe(audio):
with torch.cuda.amp.autocast():
text = pipe(audio,max_new_tokens=255)["text"]
return text
demo = gr.Interface(
fn=transcribe,
inputs=gr.Audio(sources=["microphone"], type="filepath"),
outputs="text",
title="Transcriber for Ghanaian-accented speech (English)",
description="Realtime demo for Ghanaian-accented speech recognition (in English).",
)
demo.launch(share=True)
if __name__ == "__main__":
demo.launch() |