Boadiwaa commited on
Commit
ad78e1d
1 Parent(s): b1420c8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +34 -56
app.py CHANGED
@@ -1,63 +1,41 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
 
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
 
 
59
  )
60
 
 
61
 
62
  if __name__ == "__main__":
63
  demo.launch()
 
1
  import gradio as gr
2
+ import torch
3
+ from transformers import (
4
+ AutomaticSpeechRecognitionPipeline,
5
+ WhisperForConditionalGeneration,
6
+ WhisperTokenizer,
7
+ WhisperProcessor,
8
+ )
9
+ from peft import PeftModel, PeftConfig
10
+ peft_model_id = "Boadiwaa/LORA-colab-Whisper-medium"
11
+ task = "transcribe"
12
+ peft_config = PeftConfig.from_pretrained(peft_model_id)
13
+ model = WhisperForConditionalGeneration.from_pretrained(
14
+ peft_config.base_model_name_or_path, load_in_8bit=True, device_map="auto"
15
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
+ model = PeftModel.from_pretrained(model, peft_model_id)
18
+ tokenizer = WhisperTokenizer.from_pretrained(peft_config.base_model_name_or_path,task=task)
19
+ processor = WhisperProcessor.from_pretrained(peft_config.base_model_name_or_path,task=task)
20
+ feature_extractor = processor.feature_extractor
21
+ #forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task=task)
22
+ pipe = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor)
23
+
24
+
25
+ def transcribe(audio):
26
+ with torch.cuda.amp.autocast():
27
+ text = pipe(audio,max_new_tokens=255)["text"]
28
+ return text
29
+
30
+ demo = gr.Interface(
31
+ fn=transcribe,
32
+ inputs=gr.Audio(sources=["microphone"], type="filepath"),
33
+ outputs="text",
34
+ title="PEFT LoRA + INT8 Whisper Large V2 Ghanaian accent",
35
+ description="Realtime demo for Ghanaian-accented speech recognition using `PEFT-LoRA+INT8` fine-tuned Whisper Large V2 model.",
36
  )
37
 
38
+ demo.launch(share=True)
39
 
40
  if __name__ == "__main__":
41
  demo.launch()