Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,41 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
59 |
)
|
60 |
|
|
|
61 |
|
62 |
if __name__ == "__main__":
|
63 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import (
|
4 |
+
AutomaticSpeechRecognitionPipeline,
|
5 |
+
WhisperForConditionalGeneration,
|
6 |
+
WhisperTokenizer,
|
7 |
+
WhisperProcessor,
|
8 |
+
)
|
9 |
+
from peft import PeftModel, PeftConfig
|
10 |
+
peft_model_id = "Boadiwaa/LORA-colab-Whisper-medium"
|
11 |
+
task = "transcribe"
|
12 |
+
peft_config = PeftConfig.from_pretrained(peft_model_id)
|
13 |
+
model = WhisperForConditionalGeneration.from_pretrained(
|
14 |
+
peft_config.base_model_name_or_path, load_in_8bit=True, device_map="auto"
|
15 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
model = PeftModel.from_pretrained(model, peft_model_id)
|
18 |
+
tokenizer = WhisperTokenizer.from_pretrained(peft_config.base_model_name_or_path,task=task)
|
19 |
+
processor = WhisperProcessor.from_pretrained(peft_config.base_model_name_or_path,task=task)
|
20 |
+
feature_extractor = processor.feature_extractor
|
21 |
+
#forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task=task)
|
22 |
+
pipe = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor)
|
23 |
+
|
24 |
+
|
25 |
+
def transcribe(audio):
|
26 |
+
with torch.cuda.amp.autocast():
|
27 |
+
text = pipe(audio,max_new_tokens=255)["text"]
|
28 |
+
return text
|
29 |
+
|
30 |
+
demo = gr.Interface(
|
31 |
+
fn=transcribe,
|
32 |
+
inputs=gr.Audio(sources=["microphone"], type="filepath"),
|
33 |
+
outputs="text",
|
34 |
+
title="PEFT LoRA + INT8 Whisper Large V2 Ghanaian accent",
|
35 |
+
description="Realtime demo for Ghanaian-accented speech recognition using `PEFT-LoRA+INT8` fine-tuned Whisper Large V2 model.",
|
36 |
)
|
37 |
|
38 |
+
demo.launch(share=True)
|
39 |
|
40 |
if __name__ == "__main__":
|
41 |
demo.launch()
|