File size: 43,503 Bytes
b65930c
 
 
 
 
 
 
 
 
 
 
 
 
c32f190
 
dc8d70e
 
 
5ef7e81
c32f190
 
 
 
 
 
 
5ef7e81
c32f190
 
 
 
dc8d70e
 
c32f190
 
 
 
 
dc8d70e
5ef7e81
dc8d70e
5ef7e81
dc8d70e
 
 
 
 
 
 
 
 
 
 
 
5ef7e81
dc8d70e
5ef7e81
dc8d70e
 
5ef7e81
dc8d70e
 
5ef7e81
 
 
dc8d70e
 
5ef7e81
 
 
dc8d70e
 
 
5ef7e81
dc8d70e
5ef7e81
dc8d70e
 
5ef7e81
dc8d70e
5ef7e81
dc8d70e
 
 
 
 
5ef7e81
 
 
 
 
 
 
 
 
 
dc8d70e
 
 
 
 
 
 
5ef7e81
 
 
dc8d70e
 
 
 
 
 
 
 
 
 
 
 
 
 
5ef7e81
 
 
 
 
 
dc8d70e
 
 
 
 
5ef7e81
dc8d70e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ef7e81
dc8d70e
5ef7e81
dc8d70e
 
5ef7e81
 
dc8d70e
 
5ef7e81
dc8d70e
5ef7e81
 
 
 
dc8d70e
 
 
 
 
 
 
 
 
 
 
 
 
 
5ef7e81
dc8d70e
5ef7e81
dc8d70e
 
 
 
 
 
 
 
 
 
 
 
 
 
5ef7e81
dc8d70e
5ef7e81
 
dc8d70e
5ef7e81
dc8d70e
 
5ef7e81
 
dc8d70e
 
5ef7e81
 
 
dc8d70e
 
 
5ef7e81
dc8d70e
 
 
5ef7e81
dc8d70e
 
5ef7e81
dc8d70e
 
 
 
c32f190
b65930c
c32f190
b65930c
c32f190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b65930c
c32f190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc8d70e
c32f190
 
 
 
 
 
b65930c
c32f190
 
 
 
 
 
 
 
 
 
 
 
 
dc8d70e
c32f190
 
 
 
 
 
b65930c
dc8d70e
 
b65930c
dc8d70e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ef7e81
 
 
b65930c
dc8d70e
 
c32f190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc8d70e
 
 
 
 
 
 
 
 
 
 
 
5ef7e81
c32f190
 
 
 
 
 
 
b65930c
c32f190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b65930c
c32f190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b65930c
c32f190
dc8d70e
 
 
 
 
 
 
 
 
 
5ef7e81
dc8d70e
c32f190
 
dc8d70e
 
 
 
c32f190
dc8d70e
c32f190
 
5ef7e81
 
c32f190
 
 
 
 
dc8d70e
 
 
 
 
 
 
 
 
 
 
5ef7e81
 
b65930c
 
 
dc8d70e
 
 
 
b65930c
dc8d70e
b65930c
 
c32f190
 
 
b65930c
 
c32f190
 
 
 
 
b65930c
 
c32f190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b65930c
c32f190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ef7e81
 
 
 
 
 
 
 
 
 
 
c32f190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b65930c
c32f190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b65930c
 
 
c32f190
 
b65930c
 
 
c32f190
 
 
 
 
 
 
b65930c
c32f190
 
 
 
 
 
 
 
 
 
 
dc8d70e
c32f190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc8d70e
c32f190
 
 
 
 
 
 
 
 
 
dc8d70e
c32f190
 
 
 
 
dc8d70e
c32f190
dc8d70e
c32f190
 
 
 
dc8d70e
c32f190
 
 
 
 
 
 
 
 
dc8d70e
c32f190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc8d70e
c32f190
 
dc8d70e
5ef7e81
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
# Copyright 2024 ConsisID Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import glob
import json
import math
import os
from typing import Any, List, Dict, Optional, Tuple, Union

import torch
from torch import nn

from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import PeftAdapterMixin
from diffusers.models.attention import Attention, FeedForward
from diffusers.models.attention_processor import AttentionProcessor, CogVideoXAttnProcessor2_0
from diffusers.models.embeddings import CogVideoXPatchEmbed, TimestepEmbedding, Timesteps
from diffusers.models.modeling_outputs import Transformer2DModelOutput
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.normalization import AdaLayerNorm, CogVideoXLayerNormZero
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
from diffusers.utils.torch_utils import maybe_allow_in_graph


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


class PerceiverAttention(nn.Module):
    def __init__(self, dim: int, dim_head: int = 64, heads: int = 8, kv_dim: Optional[int] = None):
        super().__init__()

        self.scale = dim_head**-0.5
        self.dim_head = dim_head
        self.heads = heads
        inner_dim = dim_head * heads

        self.norm1 = nn.LayerNorm(dim if kv_dim is None else kv_dim)
        self.norm2 = nn.LayerNorm(dim)

        self.to_q = nn.Linear(dim, inner_dim, bias=False)
        self.to_kv = nn.Linear(dim if kv_dim is None else kv_dim, inner_dim * 2, bias=False)
        self.to_out = nn.Linear(inner_dim, dim, bias=False)

    def forward(self, image_embeds: torch.Tensor, latents: torch.Tensor) -> torch.Tensor:
        # Apply normalization
        image_embeds = self.norm1(image_embeds)
        latents = self.norm2(latents)

        batch_size, seq_len, _ = latents.shape  # Get batch size and sequence length

        # Compute query, key, and value matrices
        query = self.to_q(latents)
        kv_input = torch.cat((image_embeds, latents), dim=-2)
        key, value = self.to_kv(kv_input).chunk(2, dim=-1)

        # Reshape the tensors for multi-head attention
        query = query.reshape(query.size(0), -1, self.heads, self.dim_head).transpose(1, 2)
        key = key.reshape(key.size(0), -1, self.heads, self.dim_head).transpose(1, 2)
        value = value.reshape(value.size(0), -1, self.heads, self.dim_head).transpose(1, 2)

        # attention
        scale = 1 / math.sqrt(math.sqrt(self.dim_head))
        weight = (query * scale) @ (key * scale).transpose(-2, -1)  # More stable with f16 than dividing afterwards
        weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
        output = weight @ value

        # Reshape and return the final output
        output = output.permute(0, 2, 1, 3).reshape(batch_size, seq_len, -1)

        return self.to_out(output)


class LocalFacialExtractor(nn.Module):
    def __init__(
        self,
        id_dim: int = 1280,
        vit_dim: int = 1024,
        depth: int = 10,
        dim_head: int = 64,
        heads: int = 16,
        num_id_token: int = 5,
        num_queries: int = 32,
        output_dim: int = 2048,
        ff_mult: int = 4,
        num_scale: int = 5,
    ):
        super().__init__()

        # Storing identity token and query information
        self.num_id_token = num_id_token
        self.vit_dim = vit_dim
        self.num_queries = num_queries
        assert depth % num_scale == 0
        self.depth = depth // num_scale
        self.num_scale = num_scale
        scale = vit_dim**-0.5

        # Learnable latent query embeddings
        self.latents = nn.Parameter(torch.randn(1, num_queries, vit_dim) * scale)
        # Projection layer to map the latent output to the desired dimension
        self.proj_out = nn.Parameter(scale * torch.randn(vit_dim, output_dim))

        # Attention and ConsisIDFeedForward layer stack
        self.layers = nn.ModuleList([])
        for _ in range(depth):
            self.layers.append(
                nn.ModuleList(
                    [
                        PerceiverAttention(dim=vit_dim, dim_head=dim_head, heads=heads),  # Perceiver Attention layer
                        nn.Sequential(
                            nn.LayerNorm(vit_dim),
                            nn.Linear(vit_dim, vit_dim * ff_mult, bias=False),
                            nn.GELU(),
                            nn.Linear(vit_dim * ff_mult, vit_dim, bias=False),
                        ),  # ConsisIDFeedForward layer
                    ]
                )
            )

        # Mappings for each of the 5 different ViT features
        for i in range(num_scale):
            setattr(
                self,
                f"mapping_{i}",
                nn.Sequential(
                    nn.Linear(vit_dim, vit_dim),
                    nn.LayerNorm(vit_dim),
                    nn.LeakyReLU(),
                    nn.Linear(vit_dim, vit_dim),
                    nn.LayerNorm(vit_dim),
                    nn.LeakyReLU(),
                    nn.Linear(vit_dim, vit_dim),
                ),
            )

        # Mapping for identity embedding vectors
        self.id_embedding_mapping = nn.Sequential(
            nn.Linear(id_dim, vit_dim),
            nn.LayerNorm(vit_dim),
            nn.LeakyReLU(),
            nn.Linear(vit_dim, vit_dim),
            nn.LayerNorm(vit_dim),
            nn.LeakyReLU(),
            nn.Linear(vit_dim, vit_dim * num_id_token),
        )

    def forward(self, id_embeds: torch.Tensor, vit_hidden_states: List[torch.Tensor]) -> torch.Tensor:
        # Repeat latent queries for the batch size
        latents = self.latents.repeat(id_embeds.size(0), 1, 1)

        # Map the identity embedding to tokens
        id_embeds = self.id_embedding_mapping(id_embeds)
        id_embeds = id_embeds.reshape(-1, self.num_id_token, self.vit_dim)

        # Concatenate identity tokens with the latent queries
        latents = torch.cat((latents, id_embeds), dim=1)

        # Process each of the num_scale visual feature inputs
        for i in range(self.num_scale):
            vit_feature = getattr(self, f"mapping_{i}")(vit_hidden_states[i])
            ctx_feature = torch.cat((id_embeds, vit_feature), dim=1)

            # Pass through the PerceiverAttention and ConsisIDFeedForward layers
            for attn, ff in self.layers[i * self.depth : (i + 1) * self.depth]:
                latents = attn(ctx_feature, latents) + latents
                latents = ff(latents) + latents

        # Retain only the query latents
        latents = latents[:, : self.num_queries]
        # Project the latents to the output dimension
        latents = latents @ self.proj_out
        return latents


class PerceiverCrossAttention(nn.Module):
    def __init__(self, dim: int = 3072, dim_head: int = 128, heads: int = 16, kv_dim: int = 2048):
        super().__init__()

        self.scale = dim_head**-0.5
        self.dim_head = dim_head
        self.heads = heads
        inner_dim = dim_head * heads

        # Layer normalization to stabilize training
        self.norm1 = nn.LayerNorm(dim if kv_dim is None else kv_dim)
        self.norm2 = nn.LayerNorm(dim)

        # Linear transformations to produce queries, keys, and values
        self.to_q = nn.Linear(dim, inner_dim, bias=False)
        self.to_kv = nn.Linear(dim if kv_dim is None else kv_dim, inner_dim * 2, bias=False)
        self.to_out = nn.Linear(inner_dim, dim, bias=False)

    def forward(self, image_embeds: torch.Tensor, hidden_states: torch.Tensor) -> torch.Tensor:
        # Apply layer normalization to the input image and latent features
        image_embeds = self.norm1(image_embeds)
        hidden_states = self.norm2(hidden_states)

        batch_size, seq_len, _ = hidden_states.shape

        # Compute queries, keys, and values
        query = self.to_q(hidden_states)
        key, value = self.to_kv(image_embeds).chunk(2, dim=-1)

        # Reshape tensors to split into attention heads
        query = query.reshape(query.size(0), -1, self.heads, self.dim_head).transpose(1, 2)
        key = key.reshape(key.size(0), -1, self.heads, self.dim_head).transpose(1, 2)
        value = value.reshape(value.size(0), -1, self.heads, self.dim_head).transpose(1, 2)

        # Compute attention weights
        scale = 1 / math.sqrt(math.sqrt(self.dim_head))
        weight = (query * scale) @ (key * scale).transpose(-2, -1)  # More stable scaling than post-division
        weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)

        # Compute the output via weighted combination of values
        out = weight @ value

        # Reshape and permute to prepare for final linear transformation
        out = out.permute(0, 2, 1, 3).reshape(batch_size, seq_len, -1)

        return self.to_out(out)


@maybe_allow_in_graph
class ConsisIDBlock(nn.Module):
    r"""
    Transformer block used in [ConsisID](https://github.com/PKU-YuanGroup/ConsisID) model.

    Parameters:
        dim (`int`):
            The number of channels in the input and output.
        num_attention_heads (`int`):
            The number of heads to use for multi-head attention.
        attention_head_dim (`int`):
            The number of channels in each head.
        time_embed_dim (`int`):
            The number of channels in timestep embedding.
        dropout (`float`, defaults to `0.0`):
            The dropout probability to use.
        activation_fn (`str`, defaults to `"gelu-approximate"`):
            Activation function to be used in feed-forward.
        attention_bias (`bool`, defaults to `False`):
            Whether or not to use bias in attention projection layers.
        qk_norm (`bool`, defaults to `True`):
            Whether or not to use normalization after query and key projections in Attention.
        norm_elementwise_affine (`bool`, defaults to `True`):
            Whether to use learnable elementwise affine parameters for normalization.
        norm_eps (`float`, defaults to `1e-5`):
            Epsilon value for normalization layers.
        final_dropout (`bool` defaults to `False`):
            Whether to apply a final dropout after the last feed-forward layer.
        ff_inner_dim (`int`, *optional*, defaults to `None`):
            Custom hidden dimension of Feed-forward layer. If not provided, `4 * dim` is used.
        ff_bias (`bool`, defaults to `True`):
            Whether or not to use bias in Feed-forward layer.
        attention_out_bias (`bool`, defaults to `True`):
            Whether or not to use bias in Attention output projection layer.
    """

    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        time_embed_dim: int,
        dropout: float = 0.0,
        activation_fn: str = "gelu-approximate",
        attention_bias: bool = False,
        qk_norm: bool = True,
        norm_elementwise_affine: bool = True,
        norm_eps: float = 1e-5,
        final_dropout: bool = True,
        ff_inner_dim: Optional[int] = None,
        ff_bias: bool = True,
        attention_out_bias: bool = True,
    ):
        super().__init__()

        # 1. Self Attention
        self.norm1 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True)

        self.attn1 = Attention(
            query_dim=dim,
            dim_head=attention_head_dim,
            heads=num_attention_heads,
            qk_norm="layer_norm" if qk_norm else None,
            eps=1e-6,
            bias=attention_bias,
            out_bias=attention_out_bias,
            processor=CogVideoXAttnProcessor2_0(),
        )

        # 2. Feed Forward
        self.norm2 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True)

        self.ff = FeedForward(
            dim,
            dropout=dropout,
            activation_fn=activation_fn,
            final_dropout=final_dropout,
            inner_dim=ff_inner_dim,
            bias=ff_bias,
        )

    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor,
        temb: torch.Tensor,
        image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
    ) -> torch.Tensor:
        text_seq_length = encoder_hidden_states.size(1)

        # norm & modulate
        norm_hidden_states, norm_encoder_hidden_states, gate_msa, enc_gate_msa = self.norm1(
            hidden_states, encoder_hidden_states, temb
        )

        # attention
        attn_hidden_states, attn_encoder_hidden_states = self.attn1(
            hidden_states=norm_hidden_states,
            encoder_hidden_states=norm_encoder_hidden_states,
            image_rotary_emb=image_rotary_emb,
        )

        hidden_states = hidden_states + gate_msa * attn_hidden_states
        encoder_hidden_states = encoder_hidden_states + enc_gate_msa * attn_encoder_hidden_states

        # norm & modulate
        norm_hidden_states, norm_encoder_hidden_states, gate_ff, enc_gate_ff = self.norm2(
            hidden_states, encoder_hidden_states, temb
        )

        # feed-forward
        norm_hidden_states = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1)
        ff_output = self.ff(norm_hidden_states)

        hidden_states = hidden_states + gate_ff * ff_output[:, text_seq_length:]
        encoder_hidden_states = encoder_hidden_states + enc_gate_ff * ff_output[:, :text_seq_length]

        return hidden_states, encoder_hidden_states


class ConsisIDTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
    """
    A Transformer model for video-like data in [ConsisID](https://github.com/PKU-YuanGroup/ConsisID).

    Parameters:
        num_attention_heads (`int`, defaults to `30`):
            The number of heads to use for multi-head attention.
        attention_head_dim (`int`, defaults to `64`):
            The number of channels in each head.
        in_channels (`int`, defaults to `16`):
            The number of channels in the input.
        out_channels (`int`, *optional*, defaults to `16`):
            The number of channels in the output.
        flip_sin_to_cos (`bool`, defaults to `True`):
            Whether to flip the sin to cos in the time embedding.
        time_embed_dim (`int`, defaults to `512`):
            Output dimension of timestep embeddings.
        text_embed_dim (`int`, defaults to `4096`):
            Input dimension of text embeddings from the text encoder.
        num_layers (`int`, defaults to `30`):
            The number of layers of Transformer blocks to use.
        dropout (`float`, defaults to `0.0`):
            The dropout probability to use.
        attention_bias (`bool`, defaults to `True`):
            Whether to use bias in the attention projection layers.
        sample_width (`int`, defaults to `90`):
            The width of the input latents.
        sample_height (`int`, defaults to `60`):
            The height of the input latents.
        sample_frames (`int`, defaults to `49`):
            The number of frames in the input latents. Note that this parameter was incorrectly initialized to 49
            instead of 13 because ConsisID processed 13 latent frames at once in its default and recommended settings,
            but cannot be changed to the correct value to ensure backwards compatibility. To create a transformer with
            K latent frames, the correct value to pass here would be: ((K - 1) * temporal_compression_ratio + 1).
        patch_size (`int`, defaults to `2`):
            The size of the patches to use in the patch embedding layer.
        temporal_compression_ratio (`int`, defaults to `4`):
            The compression ratio across the temporal dimension. See documentation for `sample_frames`.
        max_text_seq_length (`int`, defaults to `226`):
            The maximum sequence length of the input text embeddings.
        activation_fn (`str`, defaults to `"gelu-approximate"`):
            Activation function to use in feed-forward.
        timestep_activation_fn (`str`, defaults to `"silu"`):
            Activation function to use when generating the timestep embeddings.
        norm_elementwise_affine (`bool`, defaults to `True`):
            Whether to use elementwise affine in normalization layers.
        norm_eps (`float`, defaults to `1e-5`):
            The epsilon value to use in normalization layers.
        spatial_interpolation_scale (`float`, defaults to `1.875`):
            Scaling factor to apply in 3D positional embeddings across spatial dimensions.
        temporal_interpolation_scale (`float`, defaults to `1.0`):
            Scaling factor to apply in 3D positional embeddings across temporal dimensions.
        is_train_face (`bool`, defaults to `False`):
            Whether to use enable the identity-preserving module during the training process. When set to `True`, the
            model will focus on identity-preserving tasks.
        is_kps (`bool`, defaults to `False`):
            Whether to enable keypoint for global facial extractor. If `True`, keypoints will be in the model.
        cross_attn_interval (`int`, defaults to `2`):
            The interval between cross-attention layers in the Transformer architecture. A larger value may reduce the
            frequency of cross-attention computations, which can help reduce computational overhead.
        cross_attn_dim_head (`int`, optional, defaults to `128`):
            The dimensionality of each attention head in the cross-attention layers of the Transformer architecture. A
            larger value increases the capacity to attend to more complex patterns, but also increases memory and
            computation costs.
        cross_attn_num_heads (`int`, optional, defaults to `16`):
            The number of attention heads in the cross-attention layers. More heads allow for more parallel attention
            mechanisms, capturing diverse relationships between different components of the input, but can also
            increase computational requirements.
        LFE_id_dim (`int`, optional, defaults to `1280`):
            The dimensionality of the identity vector used in the Local Facial Extractor (LFE). This vector represents
            the identity features of a face, which are important for tasks like face recognition and identity
            preservation across different frames.
        LFE_vit_dim (`int`, optional, defaults to `1024`):
            The dimension of the vision transformer (ViT) output used in the Local Facial Extractor (LFE). This value
            dictates the size of the transformer-generated feature vectors that will be processed for facial feature
            extraction.
        LFE_depth (`int`, optional, defaults to `10`):
            The number of layers in the Local Facial Extractor (LFE). Increasing the depth allows the model to capture
            more complex representations of facial features, but also increases the computational load.
        LFE_dim_head (`int`, optional, defaults to `64`):
            The dimensionality of each attention head in the Local Facial Extractor (LFE). This parameter affects how
            finely the model can process and focus on different parts of the facial features during the extraction
            process.
        LFE_num_heads (`int`, optional, defaults to `16`):
            The number of attention heads in the Local Facial Extractor (LFE). More heads can improve the model's
            ability to capture diverse facial features, but at the cost of increased computational complexity.
        LFE_num_id_token (`int`, optional, defaults to `5`):
            The number of identity tokens used in the Local Facial Extractor (LFE). This defines how many
            identity-related tokens the model will process to ensure face identity preservation during feature
            extraction.
        LFE_num_querie (`int`, optional, defaults to `32`):
            The number of query tokens used in the Local Facial Extractor (LFE). These tokens are used to capture
            high-frequency face-related information that aids in accurate facial feature extraction.
        LFE_output_dim (`int`, optional, defaults to `2048`):
            The output dimension of the Local Facial Extractor (LFE). This dimension determines the size of the feature
            vectors produced by the LFE module, which will be used for subsequent tasks such as face recognition or
            tracking.
        LFE_ff_mult (`int`, optional, defaults to `4`):
            The multiplication factor applied to the feed-forward network's hidden layer size in the Local Facial
            Extractor (LFE). A higher value increases the model's capacity to learn more complex facial feature
            transformations, but also increases the computation and memory requirements.
        LFE_num_scale (`int`, optional, defaults to `5`):
            The number of different scales visual feature. A higher value increases the model's capacity to learn more
            complex facial feature transformations, but also increases the computation and memory requirements.
        local_face_scale (`float`, defaults to `1.0`):
            A scaling factor used to adjust the importance of local facial features in the model. This can influence
            how strongly the model focuses on high frequency face-related content.
    """

    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(
        self,
        num_attention_heads: int = 30,
        attention_head_dim: int = 64,
        in_channels: int = 16,
        out_channels: Optional[int] = 16,
        flip_sin_to_cos: bool = True,
        freq_shift: int = 0,
        time_embed_dim: int = 512,
        text_embed_dim: int = 4096,
        num_layers: int = 30,
        dropout: float = 0.0,
        attention_bias: bool = True,
        sample_width: int = 90,
        sample_height: int = 60,
        sample_frames: int = 49,
        patch_size: int = 2,
        temporal_compression_ratio: int = 4,
        max_text_seq_length: int = 226,
        activation_fn: str = "gelu-approximate",
        timestep_activation_fn: str = "silu",
        norm_elementwise_affine: bool = True,
        norm_eps: float = 1e-5,
        spatial_interpolation_scale: float = 1.875,
        temporal_interpolation_scale: float = 1.0,
        use_rotary_positional_embeddings: bool = False,
        use_learned_positional_embeddings: bool = False,
        is_train_face: bool = False,
        is_kps: bool = False,
        cross_attn_interval: int = 2,
        cross_attn_dim_head: int = 128,
        cross_attn_num_heads: int = 16,
        LFE_id_dim: int = 1280,
        LFE_vit_dim: int = 1024,
        LFE_depth: int = 10,
        LFE_dim_head: int = 64,
        LFE_num_heads: int = 16,
        LFE_num_id_token: int = 5,
        LFE_num_querie: int = 32,
        LFE_output_dim: int = 2048,
        LFE_ff_mult: int = 4,
        LFE_num_scale: int = 5,
        local_face_scale: float = 1.0,
    ):
        super().__init__()
        inner_dim = num_attention_heads * attention_head_dim

        if not use_rotary_positional_embeddings and use_learned_positional_embeddings:
            raise ValueError(
                "There are no ConsisID checkpoints available with disable rotary embeddings and learned positional "
                "embeddings. If you're using a custom model and/or believe this should be supported, please open an "
                "issue at https://github.com/huggingface/diffusers/issues."
            )

        # 1. Patch embedding
        self.patch_embed = CogVideoXPatchEmbed(
            patch_size=patch_size,
            in_channels=in_channels,
            embed_dim=inner_dim,
            text_embed_dim=text_embed_dim,
            bias=True,
            sample_width=sample_width,
            sample_height=sample_height,
            sample_frames=sample_frames,
            temporal_compression_ratio=temporal_compression_ratio,
            max_text_seq_length=max_text_seq_length,
            spatial_interpolation_scale=spatial_interpolation_scale,
            temporal_interpolation_scale=temporal_interpolation_scale,
            use_positional_embeddings=not use_rotary_positional_embeddings,
            use_learned_positional_embeddings=use_learned_positional_embeddings,
        )
        self.embedding_dropout = nn.Dropout(dropout)

        # 2. Time embeddings
        self.time_proj = Timesteps(inner_dim, flip_sin_to_cos, freq_shift)
        self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, timestep_activation_fn)

        # 3. Define spatio-temporal transformers blocks
        self.transformer_blocks = nn.ModuleList(
            [
                ConsisIDBlock(
                    dim=inner_dim,
                    num_attention_heads=num_attention_heads,
                    attention_head_dim=attention_head_dim,
                    time_embed_dim=time_embed_dim,
                    dropout=dropout,
                    activation_fn=activation_fn,
                    attention_bias=attention_bias,
                    norm_elementwise_affine=norm_elementwise_affine,
                    norm_eps=norm_eps,
                )
                for _ in range(num_layers)
            ]
        )
        self.norm_final = nn.LayerNorm(inner_dim, norm_eps, norm_elementwise_affine)

        # 4. Output blocks
        self.norm_out = AdaLayerNorm(
            embedding_dim=time_embed_dim,
            output_dim=2 * inner_dim,
            norm_elementwise_affine=norm_elementwise_affine,
            norm_eps=norm_eps,
            chunk_dim=1,
        )
        self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * out_channels)

        self.is_train_face = is_train_face
        self.is_kps = is_kps

        # 5. Define identity-preserving config
        if is_train_face:
            # LFE configs
            self.LFE_id_dim = LFE_id_dim
            self.LFE_vit_dim = LFE_vit_dim
            self.LFE_depth = LFE_depth
            self.LFE_dim_head = LFE_dim_head
            self.LFE_num_heads = LFE_num_heads
            self.LFE_num_id_token = LFE_num_id_token
            self.LFE_num_querie = LFE_num_querie
            self.LFE_output_dim = LFE_output_dim
            self.LFE_ff_mult = LFE_ff_mult
            self.LFE_num_scale = LFE_num_scale
            # cross configs
            self.inner_dim = inner_dim
            self.cross_attn_interval = cross_attn_interval
            self.num_cross_attn = num_layers // cross_attn_interval
            self.cross_attn_dim_head = cross_attn_dim_head
            self.cross_attn_num_heads = cross_attn_num_heads
            self.cross_attn_kv_dim = int(self.inner_dim / 3 * 2)
            self.local_face_scale = local_face_scale
            # face modules
            self._init_face_inputs()

        self.gradient_checkpointing = False

    def _set_gradient_checkpointing(self, module, value=False):
        self.gradient_checkpointing = value

    def _init_face_inputs(self):
        device = self.device
        weight_dtype = self.dtype
        self.local_facial_extractor = LocalFacialExtractor(
            id_dim=self.LFE_id_dim,
            vit_dim=self.LFE_vit_dim,
            depth=self.LFE_depth,
            dim_head=self.LFE_dim_head,
            heads=self.LFE_num_heads,
            num_id_token=self.LFE_num_id_token,
            num_queries=self.LFE_num_querie,
            output_dim=self.LFE_output_dim,
            ff_mult=self.LFE_ff_mult,
            num_scale=self.LFE_num_scale,
        ).to(device, dtype=weight_dtype)
        self.perceiver_cross_attention = nn.ModuleList(
            [
                PerceiverCrossAttention(
                    dim=self.inner_dim,
                    dim_head=self.cross_attn_dim_head,
                    heads=self.cross_attn_num_heads,
                    kv_dim=self.cross_attn_kv_dim,
                ).to(device, dtype=weight_dtype)
                for _ in range(self.num_cross_attn)
            ]
        )

    def save_face_modules(self, path: str):
        save_dict = {
            "local_facial_extractor": self.local_facial_extractor.state_dict(),
            "perceiver_cross_attention": [ca.state_dict() for ca in self.perceiver_cross_attention],
        }
        torch.save(save_dict, path)

    def load_face_modules(self, path: str):
        checkpoint = torch.load(path, map_location=self.device)
        self.local_facial_extractor.load_state_dict(checkpoint["local_facial_extractor"])
        for ca, state_dict in zip(self.perceiver_cross_attention, checkpoint["perceiver_cross_attention"]):
            ca.load_state_dict(state_dict)

    @property
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
            if hasattr(module, "get_processor"):
                processors[f"{name}.processor"] = module.get_processor()

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
        r"""
        Sets the attention processor to use to compute attention.

        Parameters:
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))

            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)

    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor,
        timestep: Union[int, float, torch.LongTensor],
        timestep_cond: Optional[torch.Tensor] = None,
        image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
        attention_kwargs: Optional[Dict[str, Any]] = None,
        id_cond: Optional[torch.Tensor] = None,
        id_vit_hidden: Optional[torch.Tensor] = None,
        return_dict: bool = True,
    ):
        if attention_kwargs is not None:
            attention_kwargs = attention_kwargs.copy()
            lora_scale = attention_kwargs.pop("scale", 1.0)
        else:
            lora_scale = 1.0

        if USE_PEFT_BACKEND:
            # weight the lora layers by setting `lora_scale` for each PEFT layer
            scale_lora_layers(self, lora_scale)
        else:
            if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
                logger.warning(
                    "Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
                )

        # fuse clip and insightface
        valid_face_emb = None
        if self.is_train_face:
            id_cond = id_cond.to(device=hidden_states.device, dtype=hidden_states.dtype)
            id_vit_hidden = [
                tensor.to(device=hidden_states.device, dtype=hidden_states.dtype) for tensor in id_vit_hidden
            ]
            valid_face_emb = self.local_facial_extractor(
                id_cond, id_vit_hidden
            )  # torch.Size([1, 1280]), list[5](torch.Size([1, 577, 1024]))  ->  torch.Size([1, 32, 2048])

        batch_size, num_frames, channels, height, width = hidden_states.shape

        # 1. Time embedding
        timesteps = timestep
        t_emb = self.time_proj(timesteps)

        # timesteps does not contain any weights and will always return f32 tensors
        # but time_embedding might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
        t_emb = t_emb.to(dtype=hidden_states.dtype)
        emb = self.time_embedding(t_emb, timestep_cond)

        # 2. Patch embedding
        # torch.Size([1, 226, 4096])   torch.Size([1, 13, 32, 60, 90])
        hidden_states = self.patch_embed(encoder_hidden_states, hidden_states)  # torch.Size([1, 17776, 3072])
        hidden_states = self.embedding_dropout(hidden_states)  # torch.Size([1, 17776, 3072])

        text_seq_length = encoder_hidden_states.shape[1]
        encoder_hidden_states = hidden_states[:, :text_seq_length]  # torch.Size([1, 226, 3072])
        hidden_states = hidden_states[:, text_seq_length:]  # torch.Size([1, 17550, 3072])

        # 3. Transformer blocks
        ca_idx = 0
        for i, block in enumerate(self.transformer_blocks):
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    encoder_hidden_states,
                    emb,
                    image_rotary_emb,
                    **ckpt_kwargs,
                )
            else:
                hidden_states, encoder_hidden_states = block(
                    hidden_states=hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    temb=emb,
                    image_rotary_emb=image_rotary_emb,
                )

            if self.is_train_face:
                if i % self.cross_attn_interval == 0 and valid_face_emb is not None:
                    hidden_states = hidden_states + self.local_face_scale * self.perceiver_cross_attention[ca_idx](
                        valid_face_emb, hidden_states
                    )  # torch.Size([2, 32, 2048])  torch.Size([2, 17550, 3072])
                    ca_idx += 1

        hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
        hidden_states = self.norm_final(hidden_states)
        hidden_states = hidden_states[:, text_seq_length:]

        # 4. Final block
        hidden_states = self.norm_out(hidden_states, temb=emb)
        hidden_states = self.proj_out(hidden_states)

        # 5. Unpatchify
        # Note: we use `-1` instead of `channels`:
        #   - It is okay to `channels` use for ConsisID (number of input channels is equal to output channels)
        p = self.config.patch_size
        output = hidden_states.reshape(batch_size, num_frames, height // p, width // p, -1, p, p)
        output = output.permute(0, 1, 4, 2, 5, 3, 6).flatten(5, 6).flatten(3, 4)

        if USE_PEFT_BACKEND:
            # remove `lora_scale` from each PEFT layer
            unscale_lora_layers(self, lora_scale)

        if not return_dict:
            return (output,)
        return Transformer2DModelOutput(sample=output)

    @classmethod
    def from_pretrained_cus(cls, pretrained_model_path, subfolder=None, config_path=None, transformer_additional_kwargs={}):
        if subfolder:
            config_path = config_path or pretrained_model_path
            config_file = os.path.join(config_path, subfolder, 'config.json')
            pretrained_model_path = os.path.join(pretrained_model_path, subfolder)
        else:
            config_file = os.path.join(config_path or pretrained_model_path, 'config.json')

        print(f"Loading 3D transformer's pretrained weights from {pretrained_model_path} ...")

        # Check if config file exists
        if not os.path.isfile(config_file):
            raise RuntimeError(f"Configuration file '{config_file}' does not exist")

        # Load the configuration
        with open(config_file, "r") as f:
            config = json.load(f)

        from diffusers.utils import WEIGHTS_NAME
        model = cls.from_config(config, **transformer_additional_kwargs)
        model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME)
        model_file_safetensors = model_file.replace(".bin", ".safetensors")
        if os.path.exists(model_file):
            state_dict = torch.load(model_file, map_location="cpu")
        elif os.path.exists(model_file_safetensors):
            from safetensors.torch import load_file
            state_dict = load_file(model_file_safetensors)
        else:
            from safetensors.torch import load_file
            model_files_safetensors = glob.glob(os.path.join(pretrained_model_path, "*.safetensors"))
            state_dict = {}
            for model_file_safetensors in model_files_safetensors:
                _state_dict = load_file(model_file_safetensors)
                for key in _state_dict:
                    state_dict[key] = _state_dict[key]

        if model.state_dict()['patch_embed.proj.weight'].size() != state_dict['patch_embed.proj.weight'].size():
            new_shape   = model.state_dict()['patch_embed.proj.weight'].size()
            if len(new_shape) == 5:
                state_dict['patch_embed.proj.weight'] = state_dict['patch_embed.proj.weight'].unsqueeze(2).expand(new_shape).clone()
                state_dict['patch_embed.proj.weight'][:, :, :-1] = 0
            else:
                if model.state_dict()['patch_embed.proj.weight'].size()[1] > state_dict['patch_embed.proj.weight'].size()[1]:
                    model.state_dict()['patch_embed.proj.weight'][:, :state_dict['patch_embed.proj.weight'].size()[1], :, :] = state_dict['patch_embed.proj.weight']
                    model.state_dict()['patch_embed.proj.weight'][:, state_dict['patch_embed.proj.weight'].size()[1]:, :, :] = 0
                    state_dict['patch_embed.proj.weight'] = model.state_dict()['patch_embed.proj.weight']
                else:
                    model.state_dict()['patch_embed.proj.weight'][:, :, :, :] = state_dict['patch_embed.proj.weight'][:, :model.state_dict()['patch_embed.proj.weight'].size()[1], :, :]
                    state_dict['patch_embed.proj.weight'] = model.state_dict()['patch_embed.proj.weight']

        tmp_state_dict = {}
        for key in state_dict:
            if key in model.state_dict().keys() and model.state_dict()[key].size() == state_dict[key].size():
                tmp_state_dict[key] = state_dict[key]
            else:
                print(key, "Size don't match, skip")
        state_dict = tmp_state_dict

        m, u = model.load_state_dict(state_dict, strict=False)
        print(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};")
        print(m)

        params = [p.numel() if "mamba" in n else 0 for n, p in model.named_parameters()]
        print(f"### Mamba Parameters: {sum(params) / 1e6} M")

        params = [p.numel() if "attn1." in n else 0 for n, p in model.named_parameters()]
        print(f"### attn1 Parameters: {sum(params) / 1e6} M")

        return model

if __name__ == '__main__':
    device = "cuda:0"
    weight_dtype = torch.bfloat16
    pretrained_model_name_or_path = "BestWishYsh/ConsisID-preview"

    transformer_additional_kwargs={
        'torch_dtype': weight_dtype,
        'revision': None,
        'variant': None,
        'is_train_face': True,
        'is_kps': False,
        'LFE_num_tokens': 32,
        'LFE_output_dim': 768,
        'LFE_heads': 12,
        'cross_attn_interval': 2,
    }

    transformer = ConsisIDTransformer3DModel.from_pretrained_cus(
        pretrained_model_name_or_path,
        subfolder="transformer",
        transformer_additional_kwargs=transformer_additional_kwargs,
    )

    transformer.to(device, dtype=weight_dtype)
    for param in transformer.parameters():
        param.requires_grad = False
    transformer.eval()

    b = 1
    dim = 32
    pixel_values     = torch.ones(b, 49, 3, 480, 720).to(device, dtype=weight_dtype)
    noisy_latents    = torch.ones(b, 13, dim, 60, 90).to(device, dtype=weight_dtype)
    target           = torch.ones(b, 13, dim, 60, 90).to(device, dtype=weight_dtype)
    latents          = torch.ones(b, 13, dim, 60, 90).to(device, dtype=weight_dtype)
    prompt_embeds    = torch.ones(b, 226, 4096).to(device, dtype=weight_dtype)
    image_rotary_emb = (torch.ones(17550, 64).to(device, dtype=weight_dtype), torch.ones(17550, 64).to(device, dtype=weight_dtype))
    timesteps        = torch.tensor([311]).to(device, dtype=weight_dtype)
    id_vit_hidden    = [torch.ones([1, 577, 1024]).to(device, dtype=weight_dtype)] * 5
    id_cond          = torch.ones(b, 1280).to(device, dtype=weight_dtype)
    assert len(timesteps) == b

    model_output = transformer(
                    hidden_states=noisy_latents,
                    encoder_hidden_states=prompt_embeds,
                    timestep=timesteps,
                    image_rotary_emb=image_rotary_emb,
                    return_dict=False,
                    id_vit_hidden=id_vit_hidden if id_vit_hidden is not None else None,
                    id_cond=id_cond if id_cond is not None else None,
                )[0]

    print(model_output)