File size: 43,503 Bytes
b65930c c32f190 dc8d70e 5ef7e81 c32f190 5ef7e81 c32f190 dc8d70e c32f190 dc8d70e 5ef7e81 dc8d70e 5ef7e81 dc8d70e 5ef7e81 dc8d70e 5ef7e81 dc8d70e 5ef7e81 dc8d70e 5ef7e81 dc8d70e 5ef7e81 dc8d70e 5ef7e81 dc8d70e 5ef7e81 dc8d70e 5ef7e81 dc8d70e 5ef7e81 dc8d70e 5ef7e81 dc8d70e 5ef7e81 dc8d70e 5ef7e81 dc8d70e 5ef7e81 dc8d70e 5ef7e81 dc8d70e 5ef7e81 dc8d70e 5ef7e81 dc8d70e 5ef7e81 dc8d70e 5ef7e81 dc8d70e 5ef7e81 dc8d70e 5ef7e81 dc8d70e 5ef7e81 dc8d70e 5ef7e81 dc8d70e 5ef7e81 dc8d70e 5ef7e81 dc8d70e 5ef7e81 dc8d70e 5ef7e81 dc8d70e 5ef7e81 dc8d70e 5ef7e81 dc8d70e c32f190 b65930c c32f190 b65930c c32f190 b65930c c32f190 dc8d70e c32f190 b65930c c32f190 dc8d70e c32f190 b65930c dc8d70e b65930c dc8d70e 5ef7e81 b65930c dc8d70e c32f190 dc8d70e 5ef7e81 c32f190 b65930c c32f190 b65930c c32f190 b65930c c32f190 dc8d70e 5ef7e81 dc8d70e c32f190 dc8d70e c32f190 dc8d70e c32f190 5ef7e81 c32f190 dc8d70e 5ef7e81 b65930c dc8d70e b65930c dc8d70e b65930c c32f190 b65930c c32f190 b65930c c32f190 b65930c c32f190 5ef7e81 c32f190 b65930c c32f190 b65930c c32f190 b65930c c32f190 b65930c c32f190 dc8d70e c32f190 dc8d70e c32f190 dc8d70e c32f190 dc8d70e c32f190 dc8d70e c32f190 dc8d70e c32f190 dc8d70e c32f190 dc8d70e c32f190 dc8d70e 5ef7e81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 |
# Copyright 2024 ConsisID Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import glob
import json
import math
import os
from typing import Any, List, Dict, Optional, Tuple, Union
import torch
from torch import nn
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import PeftAdapterMixin
from diffusers.models.attention import Attention, FeedForward
from diffusers.models.attention_processor import AttentionProcessor, CogVideoXAttnProcessor2_0
from diffusers.models.embeddings import CogVideoXPatchEmbed, TimestepEmbedding, Timesteps
from diffusers.models.modeling_outputs import Transformer2DModelOutput
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.normalization import AdaLayerNorm, CogVideoXLayerNormZero
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
from diffusers.utils.torch_utils import maybe_allow_in_graph
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class PerceiverAttention(nn.Module):
def __init__(self, dim: int, dim_head: int = 64, heads: int = 8, kv_dim: Optional[int] = None):
super().__init__()
self.scale = dim_head**-0.5
self.dim_head = dim_head
self.heads = heads
inner_dim = dim_head * heads
self.norm1 = nn.LayerNorm(dim if kv_dim is None else kv_dim)
self.norm2 = nn.LayerNorm(dim)
self.to_q = nn.Linear(dim, inner_dim, bias=False)
self.to_kv = nn.Linear(dim if kv_dim is None else kv_dim, inner_dim * 2, bias=False)
self.to_out = nn.Linear(inner_dim, dim, bias=False)
def forward(self, image_embeds: torch.Tensor, latents: torch.Tensor) -> torch.Tensor:
# Apply normalization
image_embeds = self.norm1(image_embeds)
latents = self.norm2(latents)
batch_size, seq_len, _ = latents.shape # Get batch size and sequence length
# Compute query, key, and value matrices
query = self.to_q(latents)
kv_input = torch.cat((image_embeds, latents), dim=-2)
key, value = self.to_kv(kv_input).chunk(2, dim=-1)
# Reshape the tensors for multi-head attention
query = query.reshape(query.size(0), -1, self.heads, self.dim_head).transpose(1, 2)
key = key.reshape(key.size(0), -1, self.heads, self.dim_head).transpose(1, 2)
value = value.reshape(value.size(0), -1, self.heads, self.dim_head).transpose(1, 2)
# attention
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
weight = (query * scale) @ (key * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
output = weight @ value
# Reshape and return the final output
output = output.permute(0, 2, 1, 3).reshape(batch_size, seq_len, -1)
return self.to_out(output)
class LocalFacialExtractor(nn.Module):
def __init__(
self,
id_dim: int = 1280,
vit_dim: int = 1024,
depth: int = 10,
dim_head: int = 64,
heads: int = 16,
num_id_token: int = 5,
num_queries: int = 32,
output_dim: int = 2048,
ff_mult: int = 4,
num_scale: int = 5,
):
super().__init__()
# Storing identity token and query information
self.num_id_token = num_id_token
self.vit_dim = vit_dim
self.num_queries = num_queries
assert depth % num_scale == 0
self.depth = depth // num_scale
self.num_scale = num_scale
scale = vit_dim**-0.5
# Learnable latent query embeddings
self.latents = nn.Parameter(torch.randn(1, num_queries, vit_dim) * scale)
# Projection layer to map the latent output to the desired dimension
self.proj_out = nn.Parameter(scale * torch.randn(vit_dim, output_dim))
# Attention and ConsisIDFeedForward layer stack
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(
nn.ModuleList(
[
PerceiverAttention(dim=vit_dim, dim_head=dim_head, heads=heads), # Perceiver Attention layer
nn.Sequential(
nn.LayerNorm(vit_dim),
nn.Linear(vit_dim, vit_dim * ff_mult, bias=False),
nn.GELU(),
nn.Linear(vit_dim * ff_mult, vit_dim, bias=False),
), # ConsisIDFeedForward layer
]
)
)
# Mappings for each of the 5 different ViT features
for i in range(num_scale):
setattr(
self,
f"mapping_{i}",
nn.Sequential(
nn.Linear(vit_dim, vit_dim),
nn.LayerNorm(vit_dim),
nn.LeakyReLU(),
nn.Linear(vit_dim, vit_dim),
nn.LayerNorm(vit_dim),
nn.LeakyReLU(),
nn.Linear(vit_dim, vit_dim),
),
)
# Mapping for identity embedding vectors
self.id_embedding_mapping = nn.Sequential(
nn.Linear(id_dim, vit_dim),
nn.LayerNorm(vit_dim),
nn.LeakyReLU(),
nn.Linear(vit_dim, vit_dim),
nn.LayerNorm(vit_dim),
nn.LeakyReLU(),
nn.Linear(vit_dim, vit_dim * num_id_token),
)
def forward(self, id_embeds: torch.Tensor, vit_hidden_states: List[torch.Tensor]) -> torch.Tensor:
# Repeat latent queries for the batch size
latents = self.latents.repeat(id_embeds.size(0), 1, 1)
# Map the identity embedding to tokens
id_embeds = self.id_embedding_mapping(id_embeds)
id_embeds = id_embeds.reshape(-1, self.num_id_token, self.vit_dim)
# Concatenate identity tokens with the latent queries
latents = torch.cat((latents, id_embeds), dim=1)
# Process each of the num_scale visual feature inputs
for i in range(self.num_scale):
vit_feature = getattr(self, f"mapping_{i}")(vit_hidden_states[i])
ctx_feature = torch.cat((id_embeds, vit_feature), dim=1)
# Pass through the PerceiverAttention and ConsisIDFeedForward layers
for attn, ff in self.layers[i * self.depth : (i + 1) * self.depth]:
latents = attn(ctx_feature, latents) + latents
latents = ff(latents) + latents
# Retain only the query latents
latents = latents[:, : self.num_queries]
# Project the latents to the output dimension
latents = latents @ self.proj_out
return latents
class PerceiverCrossAttention(nn.Module):
def __init__(self, dim: int = 3072, dim_head: int = 128, heads: int = 16, kv_dim: int = 2048):
super().__init__()
self.scale = dim_head**-0.5
self.dim_head = dim_head
self.heads = heads
inner_dim = dim_head * heads
# Layer normalization to stabilize training
self.norm1 = nn.LayerNorm(dim if kv_dim is None else kv_dim)
self.norm2 = nn.LayerNorm(dim)
# Linear transformations to produce queries, keys, and values
self.to_q = nn.Linear(dim, inner_dim, bias=False)
self.to_kv = nn.Linear(dim if kv_dim is None else kv_dim, inner_dim * 2, bias=False)
self.to_out = nn.Linear(inner_dim, dim, bias=False)
def forward(self, image_embeds: torch.Tensor, hidden_states: torch.Tensor) -> torch.Tensor:
# Apply layer normalization to the input image and latent features
image_embeds = self.norm1(image_embeds)
hidden_states = self.norm2(hidden_states)
batch_size, seq_len, _ = hidden_states.shape
# Compute queries, keys, and values
query = self.to_q(hidden_states)
key, value = self.to_kv(image_embeds).chunk(2, dim=-1)
# Reshape tensors to split into attention heads
query = query.reshape(query.size(0), -1, self.heads, self.dim_head).transpose(1, 2)
key = key.reshape(key.size(0), -1, self.heads, self.dim_head).transpose(1, 2)
value = value.reshape(value.size(0), -1, self.heads, self.dim_head).transpose(1, 2)
# Compute attention weights
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
weight = (query * scale) @ (key * scale).transpose(-2, -1) # More stable scaling than post-division
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
# Compute the output via weighted combination of values
out = weight @ value
# Reshape and permute to prepare for final linear transformation
out = out.permute(0, 2, 1, 3).reshape(batch_size, seq_len, -1)
return self.to_out(out)
@maybe_allow_in_graph
class ConsisIDBlock(nn.Module):
r"""
Transformer block used in [ConsisID](https://github.com/PKU-YuanGroup/ConsisID) model.
Parameters:
dim (`int`):
The number of channels in the input and output.
num_attention_heads (`int`):
The number of heads to use for multi-head attention.
attention_head_dim (`int`):
The number of channels in each head.
time_embed_dim (`int`):
The number of channels in timestep embedding.
dropout (`float`, defaults to `0.0`):
The dropout probability to use.
activation_fn (`str`, defaults to `"gelu-approximate"`):
Activation function to be used in feed-forward.
attention_bias (`bool`, defaults to `False`):
Whether or not to use bias in attention projection layers.
qk_norm (`bool`, defaults to `True`):
Whether or not to use normalization after query and key projections in Attention.
norm_elementwise_affine (`bool`, defaults to `True`):
Whether to use learnable elementwise affine parameters for normalization.
norm_eps (`float`, defaults to `1e-5`):
Epsilon value for normalization layers.
final_dropout (`bool` defaults to `False`):
Whether to apply a final dropout after the last feed-forward layer.
ff_inner_dim (`int`, *optional*, defaults to `None`):
Custom hidden dimension of Feed-forward layer. If not provided, `4 * dim` is used.
ff_bias (`bool`, defaults to `True`):
Whether or not to use bias in Feed-forward layer.
attention_out_bias (`bool`, defaults to `True`):
Whether or not to use bias in Attention output projection layer.
"""
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
time_embed_dim: int,
dropout: float = 0.0,
activation_fn: str = "gelu-approximate",
attention_bias: bool = False,
qk_norm: bool = True,
norm_elementwise_affine: bool = True,
norm_eps: float = 1e-5,
final_dropout: bool = True,
ff_inner_dim: Optional[int] = None,
ff_bias: bool = True,
attention_out_bias: bool = True,
):
super().__init__()
# 1. Self Attention
self.norm1 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True)
self.attn1 = Attention(
query_dim=dim,
dim_head=attention_head_dim,
heads=num_attention_heads,
qk_norm="layer_norm" if qk_norm else None,
eps=1e-6,
bias=attention_bias,
out_bias=attention_out_bias,
processor=CogVideoXAttnProcessor2_0(),
)
# 2. Feed Forward
self.norm2 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True)
self.ff = FeedForward(
dim,
dropout=dropout,
activation_fn=activation_fn,
final_dropout=final_dropout,
inner_dim=ff_inner_dim,
bias=ff_bias,
)
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
temb: torch.Tensor,
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
) -> torch.Tensor:
text_seq_length = encoder_hidden_states.size(1)
# norm & modulate
norm_hidden_states, norm_encoder_hidden_states, gate_msa, enc_gate_msa = self.norm1(
hidden_states, encoder_hidden_states, temb
)
# attention
attn_hidden_states, attn_encoder_hidden_states = self.attn1(
hidden_states=norm_hidden_states,
encoder_hidden_states=norm_encoder_hidden_states,
image_rotary_emb=image_rotary_emb,
)
hidden_states = hidden_states + gate_msa * attn_hidden_states
encoder_hidden_states = encoder_hidden_states + enc_gate_msa * attn_encoder_hidden_states
# norm & modulate
norm_hidden_states, norm_encoder_hidden_states, gate_ff, enc_gate_ff = self.norm2(
hidden_states, encoder_hidden_states, temb
)
# feed-forward
norm_hidden_states = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1)
ff_output = self.ff(norm_hidden_states)
hidden_states = hidden_states + gate_ff * ff_output[:, text_seq_length:]
encoder_hidden_states = encoder_hidden_states + enc_gate_ff * ff_output[:, :text_seq_length]
return hidden_states, encoder_hidden_states
class ConsisIDTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
"""
A Transformer model for video-like data in [ConsisID](https://github.com/PKU-YuanGroup/ConsisID).
Parameters:
num_attention_heads (`int`, defaults to `30`):
The number of heads to use for multi-head attention.
attention_head_dim (`int`, defaults to `64`):
The number of channels in each head.
in_channels (`int`, defaults to `16`):
The number of channels in the input.
out_channels (`int`, *optional*, defaults to `16`):
The number of channels in the output.
flip_sin_to_cos (`bool`, defaults to `True`):
Whether to flip the sin to cos in the time embedding.
time_embed_dim (`int`, defaults to `512`):
Output dimension of timestep embeddings.
text_embed_dim (`int`, defaults to `4096`):
Input dimension of text embeddings from the text encoder.
num_layers (`int`, defaults to `30`):
The number of layers of Transformer blocks to use.
dropout (`float`, defaults to `0.0`):
The dropout probability to use.
attention_bias (`bool`, defaults to `True`):
Whether to use bias in the attention projection layers.
sample_width (`int`, defaults to `90`):
The width of the input latents.
sample_height (`int`, defaults to `60`):
The height of the input latents.
sample_frames (`int`, defaults to `49`):
The number of frames in the input latents. Note that this parameter was incorrectly initialized to 49
instead of 13 because ConsisID processed 13 latent frames at once in its default and recommended settings,
but cannot be changed to the correct value to ensure backwards compatibility. To create a transformer with
K latent frames, the correct value to pass here would be: ((K - 1) * temporal_compression_ratio + 1).
patch_size (`int`, defaults to `2`):
The size of the patches to use in the patch embedding layer.
temporal_compression_ratio (`int`, defaults to `4`):
The compression ratio across the temporal dimension. See documentation for `sample_frames`.
max_text_seq_length (`int`, defaults to `226`):
The maximum sequence length of the input text embeddings.
activation_fn (`str`, defaults to `"gelu-approximate"`):
Activation function to use in feed-forward.
timestep_activation_fn (`str`, defaults to `"silu"`):
Activation function to use when generating the timestep embeddings.
norm_elementwise_affine (`bool`, defaults to `True`):
Whether to use elementwise affine in normalization layers.
norm_eps (`float`, defaults to `1e-5`):
The epsilon value to use in normalization layers.
spatial_interpolation_scale (`float`, defaults to `1.875`):
Scaling factor to apply in 3D positional embeddings across spatial dimensions.
temporal_interpolation_scale (`float`, defaults to `1.0`):
Scaling factor to apply in 3D positional embeddings across temporal dimensions.
is_train_face (`bool`, defaults to `False`):
Whether to use enable the identity-preserving module during the training process. When set to `True`, the
model will focus on identity-preserving tasks.
is_kps (`bool`, defaults to `False`):
Whether to enable keypoint for global facial extractor. If `True`, keypoints will be in the model.
cross_attn_interval (`int`, defaults to `2`):
The interval between cross-attention layers in the Transformer architecture. A larger value may reduce the
frequency of cross-attention computations, which can help reduce computational overhead.
cross_attn_dim_head (`int`, optional, defaults to `128`):
The dimensionality of each attention head in the cross-attention layers of the Transformer architecture. A
larger value increases the capacity to attend to more complex patterns, but also increases memory and
computation costs.
cross_attn_num_heads (`int`, optional, defaults to `16`):
The number of attention heads in the cross-attention layers. More heads allow for more parallel attention
mechanisms, capturing diverse relationships between different components of the input, but can also
increase computational requirements.
LFE_id_dim (`int`, optional, defaults to `1280`):
The dimensionality of the identity vector used in the Local Facial Extractor (LFE). This vector represents
the identity features of a face, which are important for tasks like face recognition and identity
preservation across different frames.
LFE_vit_dim (`int`, optional, defaults to `1024`):
The dimension of the vision transformer (ViT) output used in the Local Facial Extractor (LFE). This value
dictates the size of the transformer-generated feature vectors that will be processed for facial feature
extraction.
LFE_depth (`int`, optional, defaults to `10`):
The number of layers in the Local Facial Extractor (LFE). Increasing the depth allows the model to capture
more complex representations of facial features, but also increases the computational load.
LFE_dim_head (`int`, optional, defaults to `64`):
The dimensionality of each attention head in the Local Facial Extractor (LFE). This parameter affects how
finely the model can process and focus on different parts of the facial features during the extraction
process.
LFE_num_heads (`int`, optional, defaults to `16`):
The number of attention heads in the Local Facial Extractor (LFE). More heads can improve the model's
ability to capture diverse facial features, but at the cost of increased computational complexity.
LFE_num_id_token (`int`, optional, defaults to `5`):
The number of identity tokens used in the Local Facial Extractor (LFE). This defines how many
identity-related tokens the model will process to ensure face identity preservation during feature
extraction.
LFE_num_querie (`int`, optional, defaults to `32`):
The number of query tokens used in the Local Facial Extractor (LFE). These tokens are used to capture
high-frequency face-related information that aids in accurate facial feature extraction.
LFE_output_dim (`int`, optional, defaults to `2048`):
The output dimension of the Local Facial Extractor (LFE). This dimension determines the size of the feature
vectors produced by the LFE module, which will be used for subsequent tasks such as face recognition or
tracking.
LFE_ff_mult (`int`, optional, defaults to `4`):
The multiplication factor applied to the feed-forward network's hidden layer size in the Local Facial
Extractor (LFE). A higher value increases the model's capacity to learn more complex facial feature
transformations, but also increases the computation and memory requirements.
LFE_num_scale (`int`, optional, defaults to `5`):
The number of different scales visual feature. A higher value increases the model's capacity to learn more
complex facial feature transformations, but also increases the computation and memory requirements.
local_face_scale (`float`, defaults to `1.0`):
A scaling factor used to adjust the importance of local facial features in the model. This can influence
how strongly the model focuses on high frequency face-related content.
"""
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
num_attention_heads: int = 30,
attention_head_dim: int = 64,
in_channels: int = 16,
out_channels: Optional[int] = 16,
flip_sin_to_cos: bool = True,
freq_shift: int = 0,
time_embed_dim: int = 512,
text_embed_dim: int = 4096,
num_layers: int = 30,
dropout: float = 0.0,
attention_bias: bool = True,
sample_width: int = 90,
sample_height: int = 60,
sample_frames: int = 49,
patch_size: int = 2,
temporal_compression_ratio: int = 4,
max_text_seq_length: int = 226,
activation_fn: str = "gelu-approximate",
timestep_activation_fn: str = "silu",
norm_elementwise_affine: bool = True,
norm_eps: float = 1e-5,
spatial_interpolation_scale: float = 1.875,
temporal_interpolation_scale: float = 1.0,
use_rotary_positional_embeddings: bool = False,
use_learned_positional_embeddings: bool = False,
is_train_face: bool = False,
is_kps: bool = False,
cross_attn_interval: int = 2,
cross_attn_dim_head: int = 128,
cross_attn_num_heads: int = 16,
LFE_id_dim: int = 1280,
LFE_vit_dim: int = 1024,
LFE_depth: int = 10,
LFE_dim_head: int = 64,
LFE_num_heads: int = 16,
LFE_num_id_token: int = 5,
LFE_num_querie: int = 32,
LFE_output_dim: int = 2048,
LFE_ff_mult: int = 4,
LFE_num_scale: int = 5,
local_face_scale: float = 1.0,
):
super().__init__()
inner_dim = num_attention_heads * attention_head_dim
if not use_rotary_positional_embeddings and use_learned_positional_embeddings:
raise ValueError(
"There are no ConsisID checkpoints available with disable rotary embeddings and learned positional "
"embeddings. If you're using a custom model and/or believe this should be supported, please open an "
"issue at https://github.com/huggingface/diffusers/issues."
)
# 1. Patch embedding
self.patch_embed = CogVideoXPatchEmbed(
patch_size=patch_size,
in_channels=in_channels,
embed_dim=inner_dim,
text_embed_dim=text_embed_dim,
bias=True,
sample_width=sample_width,
sample_height=sample_height,
sample_frames=sample_frames,
temporal_compression_ratio=temporal_compression_ratio,
max_text_seq_length=max_text_seq_length,
spatial_interpolation_scale=spatial_interpolation_scale,
temporal_interpolation_scale=temporal_interpolation_scale,
use_positional_embeddings=not use_rotary_positional_embeddings,
use_learned_positional_embeddings=use_learned_positional_embeddings,
)
self.embedding_dropout = nn.Dropout(dropout)
# 2. Time embeddings
self.time_proj = Timesteps(inner_dim, flip_sin_to_cos, freq_shift)
self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, timestep_activation_fn)
# 3. Define spatio-temporal transformers blocks
self.transformer_blocks = nn.ModuleList(
[
ConsisIDBlock(
dim=inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
time_embed_dim=time_embed_dim,
dropout=dropout,
activation_fn=activation_fn,
attention_bias=attention_bias,
norm_elementwise_affine=norm_elementwise_affine,
norm_eps=norm_eps,
)
for _ in range(num_layers)
]
)
self.norm_final = nn.LayerNorm(inner_dim, norm_eps, norm_elementwise_affine)
# 4. Output blocks
self.norm_out = AdaLayerNorm(
embedding_dim=time_embed_dim,
output_dim=2 * inner_dim,
norm_elementwise_affine=norm_elementwise_affine,
norm_eps=norm_eps,
chunk_dim=1,
)
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * out_channels)
self.is_train_face = is_train_face
self.is_kps = is_kps
# 5. Define identity-preserving config
if is_train_face:
# LFE configs
self.LFE_id_dim = LFE_id_dim
self.LFE_vit_dim = LFE_vit_dim
self.LFE_depth = LFE_depth
self.LFE_dim_head = LFE_dim_head
self.LFE_num_heads = LFE_num_heads
self.LFE_num_id_token = LFE_num_id_token
self.LFE_num_querie = LFE_num_querie
self.LFE_output_dim = LFE_output_dim
self.LFE_ff_mult = LFE_ff_mult
self.LFE_num_scale = LFE_num_scale
# cross configs
self.inner_dim = inner_dim
self.cross_attn_interval = cross_attn_interval
self.num_cross_attn = num_layers // cross_attn_interval
self.cross_attn_dim_head = cross_attn_dim_head
self.cross_attn_num_heads = cross_attn_num_heads
self.cross_attn_kv_dim = int(self.inner_dim / 3 * 2)
self.local_face_scale = local_face_scale
# face modules
self._init_face_inputs()
self.gradient_checkpointing = False
def _set_gradient_checkpointing(self, module, value=False):
self.gradient_checkpointing = value
def _init_face_inputs(self):
device = self.device
weight_dtype = self.dtype
self.local_facial_extractor = LocalFacialExtractor(
id_dim=self.LFE_id_dim,
vit_dim=self.LFE_vit_dim,
depth=self.LFE_depth,
dim_head=self.LFE_dim_head,
heads=self.LFE_num_heads,
num_id_token=self.LFE_num_id_token,
num_queries=self.LFE_num_querie,
output_dim=self.LFE_output_dim,
ff_mult=self.LFE_ff_mult,
num_scale=self.LFE_num_scale,
).to(device, dtype=weight_dtype)
self.perceiver_cross_attention = nn.ModuleList(
[
PerceiverCrossAttention(
dim=self.inner_dim,
dim_head=self.cross_attn_dim_head,
heads=self.cross_attn_num_heads,
kv_dim=self.cross_attn_kv_dim,
).to(device, dtype=weight_dtype)
for _ in range(self.num_cross_attn)
]
)
def save_face_modules(self, path: str):
save_dict = {
"local_facial_extractor": self.local_facial_extractor.state_dict(),
"perceiver_cross_attention": [ca.state_dict() for ca in self.perceiver_cross_attention],
}
torch.save(save_dict, path)
def load_face_modules(self, path: str):
checkpoint = torch.load(path, map_location=self.device)
self.local_facial_extractor.load_state_dict(checkpoint["local_facial_extractor"])
for ca, state_dict in zip(self.perceiver_cross_attention, checkpoint["perceiver_cross_attention"]):
ca.load_state_dict(state_dict)
@property
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
if hasattr(module, "get_processor"):
processors[f"{name}.processor"] = module.get_processor()
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
timestep: Union[int, float, torch.LongTensor],
timestep_cond: Optional[torch.Tensor] = None,
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
attention_kwargs: Optional[Dict[str, Any]] = None,
id_cond: Optional[torch.Tensor] = None,
id_vit_hidden: Optional[torch.Tensor] = None,
return_dict: bool = True,
):
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
)
# fuse clip and insightface
valid_face_emb = None
if self.is_train_face:
id_cond = id_cond.to(device=hidden_states.device, dtype=hidden_states.dtype)
id_vit_hidden = [
tensor.to(device=hidden_states.device, dtype=hidden_states.dtype) for tensor in id_vit_hidden
]
valid_face_emb = self.local_facial_extractor(
id_cond, id_vit_hidden
) # torch.Size([1, 1280]), list[5](torch.Size([1, 577, 1024])) -> torch.Size([1, 32, 2048])
batch_size, num_frames, channels, height, width = hidden_states.shape
# 1. Time embedding
timesteps = timestep
t_emb = self.time_proj(timesteps)
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
t_emb = t_emb.to(dtype=hidden_states.dtype)
emb = self.time_embedding(t_emb, timestep_cond)
# 2. Patch embedding
# torch.Size([1, 226, 4096]) torch.Size([1, 13, 32, 60, 90])
hidden_states = self.patch_embed(encoder_hidden_states, hidden_states) # torch.Size([1, 17776, 3072])
hidden_states = self.embedding_dropout(hidden_states) # torch.Size([1, 17776, 3072])
text_seq_length = encoder_hidden_states.shape[1]
encoder_hidden_states = hidden_states[:, :text_seq_length] # torch.Size([1, 226, 3072])
hidden_states = hidden_states[:, text_seq_length:] # torch.Size([1, 17550, 3072])
# 3. Transformer blocks
ca_idx = 0
for i, block in enumerate(self.transformer_blocks):
if self.training and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
encoder_hidden_states,
emb,
image_rotary_emb,
**ckpt_kwargs,
)
else:
hidden_states, encoder_hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
temb=emb,
image_rotary_emb=image_rotary_emb,
)
if self.is_train_face:
if i % self.cross_attn_interval == 0 and valid_face_emb is not None:
hidden_states = hidden_states + self.local_face_scale * self.perceiver_cross_attention[ca_idx](
valid_face_emb, hidden_states
) # torch.Size([2, 32, 2048]) torch.Size([2, 17550, 3072])
ca_idx += 1
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
hidden_states = self.norm_final(hidden_states)
hidden_states = hidden_states[:, text_seq_length:]
# 4. Final block
hidden_states = self.norm_out(hidden_states, temb=emb)
hidden_states = self.proj_out(hidden_states)
# 5. Unpatchify
# Note: we use `-1` instead of `channels`:
# - It is okay to `channels` use for ConsisID (number of input channels is equal to output channels)
p = self.config.patch_size
output = hidden_states.reshape(batch_size, num_frames, height // p, width // p, -1, p, p)
output = output.permute(0, 1, 4, 2, 5, 3, 6).flatten(5, 6).flatten(3, 4)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)
@classmethod
def from_pretrained_cus(cls, pretrained_model_path, subfolder=None, config_path=None, transformer_additional_kwargs={}):
if subfolder:
config_path = config_path or pretrained_model_path
config_file = os.path.join(config_path, subfolder, 'config.json')
pretrained_model_path = os.path.join(pretrained_model_path, subfolder)
else:
config_file = os.path.join(config_path or pretrained_model_path, 'config.json')
print(f"Loading 3D transformer's pretrained weights from {pretrained_model_path} ...")
# Check if config file exists
if not os.path.isfile(config_file):
raise RuntimeError(f"Configuration file '{config_file}' does not exist")
# Load the configuration
with open(config_file, "r") as f:
config = json.load(f)
from diffusers.utils import WEIGHTS_NAME
model = cls.from_config(config, **transformer_additional_kwargs)
model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME)
model_file_safetensors = model_file.replace(".bin", ".safetensors")
if os.path.exists(model_file):
state_dict = torch.load(model_file, map_location="cpu")
elif os.path.exists(model_file_safetensors):
from safetensors.torch import load_file
state_dict = load_file(model_file_safetensors)
else:
from safetensors.torch import load_file
model_files_safetensors = glob.glob(os.path.join(pretrained_model_path, "*.safetensors"))
state_dict = {}
for model_file_safetensors in model_files_safetensors:
_state_dict = load_file(model_file_safetensors)
for key in _state_dict:
state_dict[key] = _state_dict[key]
if model.state_dict()['patch_embed.proj.weight'].size() != state_dict['patch_embed.proj.weight'].size():
new_shape = model.state_dict()['patch_embed.proj.weight'].size()
if len(new_shape) == 5:
state_dict['patch_embed.proj.weight'] = state_dict['patch_embed.proj.weight'].unsqueeze(2).expand(new_shape).clone()
state_dict['patch_embed.proj.weight'][:, :, :-1] = 0
else:
if model.state_dict()['patch_embed.proj.weight'].size()[1] > state_dict['patch_embed.proj.weight'].size()[1]:
model.state_dict()['patch_embed.proj.weight'][:, :state_dict['patch_embed.proj.weight'].size()[1], :, :] = state_dict['patch_embed.proj.weight']
model.state_dict()['patch_embed.proj.weight'][:, state_dict['patch_embed.proj.weight'].size()[1]:, :, :] = 0
state_dict['patch_embed.proj.weight'] = model.state_dict()['patch_embed.proj.weight']
else:
model.state_dict()['patch_embed.proj.weight'][:, :, :, :] = state_dict['patch_embed.proj.weight'][:, :model.state_dict()['patch_embed.proj.weight'].size()[1], :, :]
state_dict['patch_embed.proj.weight'] = model.state_dict()['patch_embed.proj.weight']
tmp_state_dict = {}
for key in state_dict:
if key in model.state_dict().keys() and model.state_dict()[key].size() == state_dict[key].size():
tmp_state_dict[key] = state_dict[key]
else:
print(key, "Size don't match, skip")
state_dict = tmp_state_dict
m, u = model.load_state_dict(state_dict, strict=False)
print(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};")
print(m)
params = [p.numel() if "mamba" in n else 0 for n, p in model.named_parameters()]
print(f"### Mamba Parameters: {sum(params) / 1e6} M")
params = [p.numel() if "attn1." in n else 0 for n, p in model.named_parameters()]
print(f"### attn1 Parameters: {sum(params) / 1e6} M")
return model
if __name__ == '__main__':
device = "cuda:0"
weight_dtype = torch.bfloat16
pretrained_model_name_or_path = "BestWishYsh/ConsisID-preview"
transformer_additional_kwargs={
'torch_dtype': weight_dtype,
'revision': None,
'variant': None,
'is_train_face': True,
'is_kps': False,
'LFE_num_tokens': 32,
'LFE_output_dim': 768,
'LFE_heads': 12,
'cross_attn_interval': 2,
}
transformer = ConsisIDTransformer3DModel.from_pretrained_cus(
pretrained_model_name_or_path,
subfolder="transformer",
transformer_additional_kwargs=transformer_additional_kwargs,
)
transformer.to(device, dtype=weight_dtype)
for param in transformer.parameters():
param.requires_grad = False
transformer.eval()
b = 1
dim = 32
pixel_values = torch.ones(b, 49, 3, 480, 720).to(device, dtype=weight_dtype)
noisy_latents = torch.ones(b, 13, dim, 60, 90).to(device, dtype=weight_dtype)
target = torch.ones(b, 13, dim, 60, 90).to(device, dtype=weight_dtype)
latents = torch.ones(b, 13, dim, 60, 90).to(device, dtype=weight_dtype)
prompt_embeds = torch.ones(b, 226, 4096).to(device, dtype=weight_dtype)
image_rotary_emb = (torch.ones(17550, 64).to(device, dtype=weight_dtype), torch.ones(17550, 64).to(device, dtype=weight_dtype))
timesteps = torch.tensor([311]).to(device, dtype=weight_dtype)
id_vit_hidden = [torch.ones([1, 577, 1024]).to(device, dtype=weight_dtype)] * 5
id_cond = torch.ones(b, 1280).to(device, dtype=weight_dtype)
assert len(timesteps) == b
model_output = transformer(
hidden_states=noisy_latents,
encoder_hidden_states=prompt_embeds,
timestep=timesteps,
image_rotary_emb=image_rotary_emb,
return_dict=False,
id_vit_hidden=id_vit_hidden if id_vit_hidden is not None else None,
id_cond=id_cond if id_cond is not None else None,
)[0]
print(model_output) |