Spaces:
Running
on
L40S
Running
on
L40S
BestWishYsh
commited on
Commit
·
dc8d70e
1
Parent(s):
e27c7fb
fix code
Browse files- app.py +24 -27
- models/{utils.py → consisid_utils.py} +402 -201
- models/eva_clip/__init__.py +0 -11
- models/eva_clip/bpe_simple_vocab_16e6.txt.gz +0 -3
- models/eva_clip/constants.py +0 -2
- models/eva_clip/eva_vit_model.py +0 -548
- models/eva_clip/factory.py +0 -517
- models/eva_clip/hf_configs.py +0 -57
- models/eva_clip/hf_model.py +0 -248
- models/eva_clip/loss.py +0 -138
- models/eva_clip/model.py +0 -439
- models/eva_clip/model_configs/EVA01-CLIP-B-16.json +0 -19
- models/eva_clip/model_configs/EVA01-CLIP-g-14-plus.json +0 -24
- models/eva_clip/model_configs/EVA01-CLIP-g-14.json +0 -24
- models/eva_clip/model_configs/EVA02-CLIP-B-16.json +0 -29
- models/eva_clip/model_configs/EVA02-CLIP-L-14-336.json +0 -29
- models/eva_clip/model_configs/EVA02-CLIP-L-14.json +0 -29
- models/eva_clip/model_configs/EVA02-CLIP-bigE-14-plus.json +0 -25
- models/eva_clip/model_configs/EVA02-CLIP-bigE-14.json +0 -25
- models/eva_clip/modified_resnet.py +0 -188
- models/eva_clip/openai.py +0 -144
- models/eva_clip/pretrained.py +0 -332
- models/eva_clip/rope.py +0 -137
- models/eva_clip/timm_model.py +0 -122
- models/eva_clip/tokenizer.py +0 -201
- models/eva_clip/transform.py +0 -103
- models/eva_clip/transformer.py +0 -737
- models/eva_clip/utils.py +0 -326
- models/eva_clip/utils_qformer.py +0 -166
- models/local_facial_extractor.py +0 -309
- models/pipeline_cogvideox.py +0 -748
- models/pipeline_consisid.py +81 -52
- models/transformer_consisid.py +422 -65
app.py
CHANGED
@@ -1,23 +1,23 @@
|
|
1 |
-
import os
|
2 |
import math
|
3 |
-
import
|
4 |
-
import spaces
|
5 |
import random
|
6 |
import threading
|
7 |
-
import
|
8 |
-
from moviepy import VideoFileClip
|
9 |
from datetime import datetime, timedelta
|
10 |
-
from huggingface_hub import hf_hub_download, snapshot_download
|
11 |
|
|
|
|
|
12 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
from diffusers.image_processor import VaeImageProcessor
|
14 |
from diffusers.training_utils import free_memory
|
15 |
|
16 |
-
from util.utils import *
|
17 |
-
from util.rife_model import load_rife_model, rife_inference_with_latents
|
18 |
-
from models.utils import process_face_embeddings_infer, prepare_face_models
|
19 |
-
from models.pipeline_consisid import ConsisIDPipeline
|
20 |
-
|
21 |
|
22 |
# 0. Pre config
|
23 |
model_path = "ckpts"
|
@@ -28,13 +28,13 @@ dtype = torch.bfloat16
|
|
28 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
29 |
|
30 |
if not os.path.exists(model_path) or not os.path.exists(f"{model_path}/model_real_esran") or not os.path.exists(f"{model_path}/model_rife"):
|
31 |
-
print(
|
32 |
hf_hub_download(repo_id="ai-forever/Real-ESRGAN", filename="RealESRGAN_x4.pth", local_dir=f"{model_path}/model_real_esran")
|
33 |
snapshot_download(repo_id="AlexWortega/RIFE", local_dir=f"{model_path}/model_rife")
|
34 |
snapshot_download(repo_id="BestWishYsh/ConsisID-preview", local_dir=f"{model_path}")
|
35 |
else:
|
36 |
print(f"Model already exists in {model_path}, skipping download.")
|
37 |
-
|
38 |
|
39 |
# 1. Prepare all the face models
|
40 |
face_helper_1, face_helper_2, face_clip_model, face_main_model, eva_transform_mean, eva_transform_std = prepare_face_models(model_path, device, dtype)
|
@@ -79,18 +79,15 @@ def generate(
|
|
79 |
seed = random.randint(0, 2**8 - 1)
|
80 |
|
81 |
# 4. Prepare model input
|
82 |
-
id_cond, id_vit_hidden, image, face_kps = process_face_embeddings_infer(face_helper_1, face_clip_model, face_helper_2,
|
83 |
-
eva_transform_mean, eva_transform_std,
|
84 |
-
face_main_model, device, dtype,
|
85 |
image_input, is_align_face=True)
|
86 |
|
87 |
-
is_kps = getattr(pipe.transformer.config, 'is_kps', False)
|
88 |
-
kps_cond = face_kps if is_kps else None
|
89 |
-
|
90 |
prompt = prompt.strip('"')
|
91 |
if negative_prompt:
|
92 |
negative_prompt = negative_prompt.strip('"')
|
93 |
-
|
94 |
# 5. Generate Identity-Preserving Video
|
95 |
generator = torch.Generator(device).manual_seed(seed) if seed else None
|
96 |
video_pt = pipe(
|
@@ -105,12 +102,12 @@ def generate(
|
|
105 |
generator=generator,
|
106 |
id_vit_hidden=id_vit_hidden,
|
107 |
id_cond=id_cond,
|
108 |
-
kps_cond=
|
109 |
output_type="pt",
|
110 |
).frames
|
111 |
-
|
112 |
free_memory()
|
113 |
-
|
114 |
if scale_status:
|
115 |
video_pt = upscale_batch_and_concatenate(upscale_model, video_pt, device)
|
116 |
if rife_status:
|
@@ -302,7 +299,7 @@ with gr.Blocks() as demo:
|
|
302 |
seed=seed_value,
|
303 |
scale_status=scale_status,
|
304 |
rife_status=rife_status,
|
305 |
-
)
|
306 |
|
307 |
video_path = save_video(batch_video_frames[0], fps=math.ceil((len(batch_video_frames[0]) - 1) / 6))
|
308 |
video_update = gr.update(visible=True, value=video_path)
|
@@ -311,14 +308,14 @@ with gr.Blocks() as demo:
|
|
311 |
seed_update = gr.update(visible=True, value=seed)
|
312 |
|
313 |
return video_path, video_update, gif_update, seed_update
|
314 |
-
|
315 |
generate_button.click(
|
316 |
fn=run,
|
317 |
inputs=[prompt, negative_prompt, image_input, seed_param, enable_scale, enable_rife],
|
318 |
outputs=[video_output, download_video_button, download_gif_button, seed_text],
|
319 |
)
|
320 |
-
|
321 |
|
322 |
if __name__ == "__main__":
|
323 |
demo.queue(max_size=15)
|
324 |
-
demo.launch()
|
|
|
|
|
1 |
import math
|
2 |
+
import os
|
|
|
3 |
import random
|
4 |
import threading
|
5 |
+
import time
|
|
|
6 |
from datetime import datetime, timedelta
|
|
|
7 |
|
8 |
+
import gradio as gr
|
9 |
+
import spaces
|
10 |
import torch
|
11 |
+
from huggingface_hub import hf_hub_download, snapshot_download
|
12 |
+
from models.consisid_utils import prepare_face_models, process_face_embeddings_infer
|
13 |
+
from models.pipeline_consisid import ConsisIDPipeline
|
14 |
+
from moviepy import VideoFileClip
|
15 |
+
from util.rife_model import load_rife_model, rife_inference_with_latents
|
16 |
+
from util.utils import load_sd_upscale, save_video, upscale_batch_and_concatenate
|
17 |
+
|
18 |
from diffusers.image_processor import VaeImageProcessor
|
19 |
from diffusers.training_utils import free_memory
|
20 |
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
# 0. Pre config
|
23 |
model_path = "ckpts"
|
|
|
28 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
29 |
|
30 |
if not os.path.exists(model_path) or not os.path.exists(f"{model_path}/model_real_esran") or not os.path.exists(f"{model_path}/model_rife"):
|
31 |
+
print("Model not found, downloading from Hugging Face...")
|
32 |
hf_hub_download(repo_id="ai-forever/Real-ESRGAN", filename="RealESRGAN_x4.pth", local_dir=f"{model_path}/model_real_esran")
|
33 |
snapshot_download(repo_id="AlexWortega/RIFE", local_dir=f"{model_path}/model_rife")
|
34 |
snapshot_download(repo_id="BestWishYsh/ConsisID-preview", local_dir=f"{model_path}")
|
35 |
else:
|
36 |
print(f"Model already exists in {model_path}, skipping download.")
|
37 |
+
|
38 |
|
39 |
# 1. Prepare all the face models
|
40 |
face_helper_1, face_helper_2, face_clip_model, face_main_model, eva_transform_mean, eva_transform_std = prepare_face_models(model_path, device, dtype)
|
|
|
79 |
seed = random.randint(0, 2**8 - 1)
|
80 |
|
81 |
# 4. Prepare model input
|
82 |
+
id_cond, id_vit_hidden, image, face_kps = process_face_embeddings_infer(face_helper_1, face_clip_model, face_helper_2,
|
83 |
+
eva_transform_mean, eva_transform_std,
|
84 |
+
face_main_model, device, dtype,
|
85 |
image_input, is_align_face=True)
|
86 |
|
|
|
|
|
|
|
87 |
prompt = prompt.strip('"')
|
88 |
if negative_prompt:
|
89 |
negative_prompt = negative_prompt.strip('"')
|
90 |
+
|
91 |
# 5. Generate Identity-Preserving Video
|
92 |
generator = torch.Generator(device).manual_seed(seed) if seed else None
|
93 |
video_pt = pipe(
|
|
|
102 |
generator=generator,
|
103 |
id_vit_hidden=id_vit_hidden,
|
104 |
id_cond=id_cond,
|
105 |
+
kps_cond=face_kps,
|
106 |
output_type="pt",
|
107 |
).frames
|
108 |
+
|
109 |
free_memory()
|
110 |
+
|
111 |
if scale_status:
|
112 |
video_pt = upscale_batch_and_concatenate(upscale_model, video_pt, device)
|
113 |
if rife_status:
|
|
|
299 |
seed=seed_value,
|
300 |
scale_status=scale_status,
|
301 |
rife_status=rife_status,
|
302 |
+
)
|
303 |
|
304 |
video_path = save_video(batch_video_frames[0], fps=math.ceil((len(batch_video_frames[0]) - 1) / 6))
|
305 |
video_update = gr.update(visible=True, value=video_path)
|
|
|
308 |
seed_update = gr.update(visible=True, value=seed)
|
309 |
|
310 |
return video_path, video_update, gif_update, seed_update
|
311 |
+
|
312 |
generate_button.click(
|
313 |
fn=run,
|
314 |
inputs=[prompt, negative_prompt, image_input, seed_param, enable_scale, enable_rife],
|
315 |
outputs=[video_output, download_video_button, download_gif_button, seed_text],
|
316 |
)
|
317 |
+
|
318 |
|
319 |
if __name__ == "__main__":
|
320 |
demo.queue(max_size=15)
|
321 |
+
demo.launch()
|
models/{utils.py → consisid_utils.py}
RENAMED
@@ -1,154 +1,47 @@
|
|
1 |
import os
|
|
|
|
|
2 |
import cv2
|
3 |
-
import
|
4 |
import numpy as np
|
5 |
-
from PIL import Image, ImageOps
|
6 |
-
|
7 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
from torchvision.transforms import InterpolationMode
|
9 |
from torchvision.transforms.functional import normalize, resize
|
10 |
from transformers import T5EncoderModel, T5Tokenizer
|
11 |
-
|
12 |
from diffusers.models.embeddings import get_3d_rotary_pos_embed
|
13 |
from diffusers.pipelines.cogvideo.pipeline_cogvideox import get_resize_crop_region_for_grid
|
14 |
from diffusers.utils import load_image
|
15 |
|
16 |
-
import insightface
|
17 |
-
from insightface.app import FaceAnalysis
|
18 |
-
from facexlib.parsing import init_parsing_model
|
19 |
-
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
|
20 |
-
|
21 |
-
from models.eva_clip import create_model_and_transforms
|
22 |
-
from models.eva_clip.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
|
23 |
-
from models.eva_clip.utils_qformer import resize_numpy_image_long
|
24 |
-
|
25 |
-
def tensor_to_pil(src_img_tensor):
|
26 |
-
img = src_img_tensor.clone().detach()
|
27 |
-
if img.dtype == torch.bfloat16:
|
28 |
-
img = img.to(torch.float32)
|
29 |
-
img = img.cpu().numpy()
|
30 |
-
img = np.transpose(img, (1, 2, 0))
|
31 |
-
img = img.astype(np.uint8)
|
32 |
-
pil_image = Image.fromarray(img)
|
33 |
-
return pil_image
|
34 |
-
|
35 |
-
|
36 |
-
def _get_t5_prompt_embeds(
|
37 |
-
tokenizer: T5Tokenizer,
|
38 |
-
text_encoder: T5EncoderModel,
|
39 |
-
prompt: Union[str, List[str]],
|
40 |
-
num_videos_per_prompt: int = 1,
|
41 |
-
max_sequence_length: int = 226,
|
42 |
-
device: Optional[torch.device] = None,
|
43 |
-
dtype: Optional[torch.dtype] = None,
|
44 |
-
text_input_ids=None,
|
45 |
-
):
|
46 |
-
prompt = [prompt] if isinstance(prompt, str) else prompt
|
47 |
-
batch_size = len(prompt)
|
48 |
-
|
49 |
-
if tokenizer is not None:
|
50 |
-
text_inputs = tokenizer(
|
51 |
-
prompt,
|
52 |
-
padding="max_length",
|
53 |
-
max_length=max_sequence_length,
|
54 |
-
truncation=True,
|
55 |
-
add_special_tokens=True,
|
56 |
-
return_tensors="pt",
|
57 |
-
)
|
58 |
-
text_input_ids = text_inputs.input_ids
|
59 |
-
else:
|
60 |
-
if text_input_ids is None:
|
61 |
-
raise ValueError("`text_input_ids` must be provided when the tokenizer is not specified.")
|
62 |
-
|
63 |
-
prompt_embeds = text_encoder(text_input_ids.to(device))[0]
|
64 |
-
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
65 |
-
|
66 |
-
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
67 |
-
_, seq_len, _ = prompt_embeds.shape
|
68 |
-
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
|
69 |
-
prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
|
70 |
-
|
71 |
-
return prompt_embeds
|
72 |
-
|
73 |
-
|
74 |
-
def encode_prompt(
|
75 |
-
tokenizer: T5Tokenizer,
|
76 |
-
text_encoder: T5EncoderModel,
|
77 |
-
prompt: Union[str, List[str]],
|
78 |
-
num_videos_per_prompt: int = 1,
|
79 |
-
max_sequence_length: int = 226,
|
80 |
-
device: Optional[torch.device] = None,
|
81 |
-
dtype: Optional[torch.dtype] = None,
|
82 |
-
text_input_ids=None,
|
83 |
-
):
|
84 |
-
prompt = [prompt] if isinstance(prompt, str) else prompt
|
85 |
-
prompt_embeds = _get_t5_prompt_embeds(
|
86 |
-
tokenizer,
|
87 |
-
text_encoder,
|
88 |
-
prompt=prompt,
|
89 |
-
num_videos_per_prompt=num_videos_per_prompt,
|
90 |
-
max_sequence_length=max_sequence_length,
|
91 |
-
device=device,
|
92 |
-
dtype=dtype,
|
93 |
-
text_input_ids=text_input_ids,
|
94 |
-
)
|
95 |
-
return prompt_embeds
|
96 |
-
|
97 |
-
|
98 |
-
def compute_prompt_embeddings(
|
99 |
-
tokenizer, text_encoder, prompt, max_sequence_length, device, dtype, requires_grad: bool = False
|
100 |
-
):
|
101 |
-
if requires_grad:
|
102 |
-
prompt_embeds = encode_prompt(
|
103 |
-
tokenizer,
|
104 |
-
text_encoder,
|
105 |
-
prompt,
|
106 |
-
num_videos_per_prompt=1,
|
107 |
-
max_sequence_length=max_sequence_length,
|
108 |
-
device=device,
|
109 |
-
dtype=dtype,
|
110 |
-
)
|
111 |
-
else:
|
112 |
-
with torch.no_grad():
|
113 |
-
prompt_embeds = encode_prompt(
|
114 |
-
tokenizer,
|
115 |
-
text_encoder,
|
116 |
-
prompt,
|
117 |
-
num_videos_per_prompt=1,
|
118 |
-
max_sequence_length=max_sequence_length,
|
119 |
-
device=device,
|
120 |
-
dtype=dtype,
|
121 |
-
)
|
122 |
-
return prompt_embeds
|
123 |
|
|
|
|
|
|
|
|
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
num_frames: int,
|
129 |
-
vae_scale_factor_spatial: int = 8,
|
130 |
-
patch_size: int = 2,
|
131 |
-
attention_head_dim: int = 64,
|
132 |
-
device: Optional[torch.device] = None,
|
133 |
-
base_height: int = 480,
|
134 |
-
base_width: int = 720,
|
135 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
136 |
-
grid_height = height // (vae_scale_factor_spatial * patch_size)
|
137 |
-
grid_width = width // (vae_scale_factor_spatial * patch_size)
|
138 |
-
base_size_width = base_width // (vae_scale_factor_spatial * patch_size)
|
139 |
-
base_size_height = base_height // (vae_scale_factor_spatial * patch_size)
|
140 |
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
grid_size=(grid_height, grid_width),
|
146 |
-
temporal_size=num_frames,
|
147 |
-
)
|
148 |
|
149 |
-
|
150 |
-
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
152 |
|
153 |
|
154 |
def img2tensor(imgs, bgr2rgb=True, float32=True):
|
@@ -166,8 +59,8 @@ def img2tensor(imgs, bgr2rgb=True, float32=True):
|
|
166 |
|
167 |
def _totensor(img, bgr2rgb, float32):
|
168 |
if img.shape[2] == 3 and bgr2rgb:
|
169 |
-
if img.dtype ==
|
170 |
-
img = img.astype(
|
171 |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
172 |
img = torch.from_numpy(img.transpose(2, 0, 1))
|
173 |
if float32:
|
@@ -180,55 +73,70 @@ def img2tensor(imgs, bgr2rgb=True, float32=True):
|
|
180 |
|
181 |
|
182 |
def to_gray(img):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
x = 0.299 * img[:, 0:1] + 0.587 * img[:, 1:2] + 0.114 * img[:, 2:3]
|
184 |
x = x.repeat(1, 3, 1, 1)
|
185 |
return x
|
186 |
|
187 |
|
188 |
-
def
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
y = kps[index][:, 1]
|
202 |
-
length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
|
203 |
-
angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))
|
204 |
-
polygon = cv2.ellipse2Poly((int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
|
205 |
-
out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
|
206 |
-
out_img = (out_img * 0.6).astype(np.uint8)
|
207 |
-
|
208 |
-
for idx_kp, kp in enumerate(kps):
|
209 |
-
color = color_list[idx_kp]
|
210 |
-
x, y = kp
|
211 |
-
out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)
|
212 |
-
|
213 |
-
out_img_pil = Image.fromarray(out_img.astype(np.uint8))
|
214 |
-
return out_img_pil
|
215 |
-
|
216 |
-
|
217 |
-
def process_face_embeddings(face_helper_1, clip_vision_model, face_helper_2, eva_transform_mean, eva_transform_std, app, device, weight_dtype, image, original_id_image=None, is_align_face=True):
|
218 |
"""
|
|
|
|
|
|
|
219 |
Args:
|
220 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
"""
|
|
|
222 |
face_helper_1.clean_all()
|
223 |
-
image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
224 |
# get antelopev2 embedding
|
225 |
face_info = app.get(image_bgr)
|
226 |
if len(face_info) > 0:
|
227 |
-
face_info = sorted(face_info, key=lambda x: (x[
|
228 |
-1
|
229 |
] # only use the maximum face
|
230 |
-
id_ante_embedding = face_info[
|
231 |
-
face_kps = face_info[
|
232 |
else:
|
233 |
id_ante_embedding = None
|
234 |
face_kps = None
|
@@ -240,12 +148,12 @@ def process_face_embeddings(face_helper_1, clip_vision_model, face_helper_2, eva
|
|
240 |
face_kps = face_helper_1.all_landmarks_5[0]
|
241 |
face_helper_1.align_warp_face()
|
242 |
if len(face_helper_1.cropped_faces) == 0:
|
243 |
-
raise RuntimeError(
|
244 |
align_face = face_helper_1.cropped_faces[0] # (512, 512, 3) # RGB
|
245 |
|
246 |
# incase insightface didn't detect face
|
247 |
if id_ante_embedding is None:
|
248 |
-
print(
|
249 |
id_ante_embedding = face_helper_2.get_feat(align_face)
|
250 |
|
251 |
id_ante_embedding = torch.from_numpy(id_ante_embedding).to(device, weight_dtype) # torch.Size([512])
|
@@ -271,33 +179,90 @@ def process_face_embeddings(face_helper_1, clip_vision_model, face_helper_2, eva
|
|
271 |
return_face_features_image = return_face_features_image_2 = input
|
272 |
|
273 |
# transform img before sending to eva-clip-vit
|
274 |
-
face_features_image = resize(
|
275 |
-
|
|
|
276 |
face_features_image = normalize(face_features_image, eva_transform_mean, eva_transform_std)
|
277 |
-
id_cond_vit, id_vit_hidden = clip_vision_model(
|
|
|
|
|
278 |
id_cond_vit_norm = torch.norm(id_cond_vit, 2, 1, True)
|
279 |
id_cond_vit = torch.div(id_cond_vit, id_cond_vit_norm)
|
280 |
|
281 |
-
id_cond = torch.cat(
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
287 |
"""
|
|
|
|
|
|
|
288 |
Args:
|
289 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
290 |
"""
|
|
|
|
|
291 |
if isinstance(img_file_path, str):
|
292 |
image = np.array(load_image(image=img_file_path).convert("RGB"))
|
293 |
-
else:
|
294 |
image = np.array(ImageOps.exif_transpose(Image.fromarray(img_file_path)).convert("RGB"))
|
295 |
-
|
|
|
296 |
image = resize_numpy_image_long(image, 1024)
|
297 |
original_id_image = image
|
298 |
|
299 |
-
|
300 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
301 |
tensor = align_crop_face_image.cpu().detach()
|
302 |
tensor = tensor.squeeze()
|
303 |
tensor = tensor.permute(1, 2, 0)
|
@@ -307,6 +272,7 @@ def process_face_embeddings_infer(face_helper_1, clip_vision_model, face_helper_
|
|
307 |
|
308 |
return id_cond, id_vit_hidden, image, face_kps
|
309 |
|
|
|
310 |
def prepare_face_models(model_path, device, dtype):
|
311 |
"""
|
312 |
Prepare all face models for the facial recognition task.
|
@@ -329,21 +295,29 @@ def prepare_face_models(model_path, device, dtype):
|
|
329 |
upscale_factor=1,
|
330 |
face_size=512,
|
331 |
crop_ratio=(1, 1),
|
332 |
-
det_model=
|
333 |
-
save_ext=
|
334 |
device=device,
|
335 |
-
model_rootpath=os.path.join(model_path, "face_encoder")
|
336 |
)
|
337 |
face_helper_1.face_parse = None
|
338 |
-
face_helper_1.face_parse = init_parsing_model(
|
339 |
-
|
|
|
|
|
|
|
|
|
340 |
face_helper_2.prepare(ctx_id=0)
|
341 |
|
342 |
# get local facial extractor part 1
|
343 |
-
model, _, _ = create_model_and_transforms(
|
|
|
|
|
|
|
|
|
344 |
face_clip_model = model.visual
|
345 |
-
eva_transform_mean = getattr(face_clip_model,
|
346 |
-
eva_transform_std = getattr(face_clip_model,
|
347 |
if not isinstance(eva_transform_mean, (list, tuple)):
|
348 |
eva_transform_mean = (eva_transform_mean,) * 3
|
349 |
if not isinstance(eva_transform_std, (list, tuple)):
|
@@ -352,9 +326,11 @@ def prepare_face_models(model_path, device, dtype):
|
|
352 |
eva_transform_std = eva_transform_std
|
353 |
|
354 |
# get local facial extractor part 2
|
355 |
-
face_main_model = FaceAnalysis(
|
|
|
|
|
356 |
face_main_model.prepare(ctx_id=0, det_size=(640, 640))
|
357 |
-
|
358 |
# move face models to device
|
359 |
face_helper_1.face_det.eval()
|
360 |
face_helper_1.face_parse.eval()
|
@@ -362,5 +338,230 @@ def prepare_face_models(model_path, device, dtype):
|
|
362 |
face_helper_1.face_det.to(device)
|
363 |
face_helper_1.face_parse.to(device)
|
364 |
face_clip_model.to(device, dtype=dtype)
|
365 |
-
|
366 |
-
return face_helper_1, face_helper_2, face_clip_model, face_main_model, eva_transform_mean, eva_transform_std
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
from typing import List, Optional, Tuple, Union
|
3 |
+
|
4 |
import cv2
|
5 |
+
import insightface
|
6 |
import numpy as np
|
|
|
|
|
7 |
import torch
|
8 |
+
from consisid_eva_clip import create_model_and_transforms
|
9 |
+
from consisid_eva_clip.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
|
10 |
+
from facexlib.parsing import init_parsing_model
|
11 |
+
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
|
12 |
+
from insightface.app import FaceAnalysis
|
13 |
+
from PIL import Image, ImageOps
|
14 |
from torchvision.transforms import InterpolationMode
|
15 |
from torchvision.transforms.functional import normalize, resize
|
16 |
from transformers import T5EncoderModel, T5Tokenizer
|
17 |
+
|
18 |
from diffusers.models.embeddings import get_3d_rotary_pos_embed
|
19 |
from diffusers.pipelines.cogvideo.pipeline_cogvideox import get_resize_crop_region_for_grid
|
20 |
from diffusers.utils import load_image
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
###### pipeline ###
|
24 |
+
def resize_numpy_image_long(image, resize_long_edge=768):
|
25 |
+
"""
|
26 |
+
Resize the input image to a specified long edge while maintaining aspect ratio.
|
27 |
|
28 |
+
Args:
|
29 |
+
image (numpy.ndarray): Input image (H x W x C or H x W).
|
30 |
+
resize_long_edge (int): The target size for the long edge of the image. Default is 768.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
Returns:
|
33 |
+
numpy.ndarray: Resized image with the long edge matching `resize_long_edge`, while maintaining the aspect
|
34 |
+
ratio.
|
35 |
+
"""
|
|
|
|
|
|
|
36 |
|
37 |
+
h, w = image.shape[:2]
|
38 |
+
if max(h, w) <= resize_long_edge:
|
39 |
+
return image
|
40 |
+
k = resize_long_edge / max(h, w)
|
41 |
+
h = int(h * k)
|
42 |
+
w = int(w * k)
|
43 |
+
image = cv2.resize(image, (w, h), interpolation=cv2.INTER_LANCZOS4)
|
44 |
+
return image
|
45 |
|
46 |
|
47 |
def img2tensor(imgs, bgr2rgb=True, float32=True):
|
|
|
59 |
|
60 |
def _totensor(img, bgr2rgb, float32):
|
61 |
if img.shape[2] == 3 and bgr2rgb:
|
62 |
+
if img.dtype == "float64":
|
63 |
+
img = img.astype("float32")
|
64 |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
65 |
img = torch.from_numpy(img.transpose(2, 0, 1))
|
66 |
if float32:
|
|
|
73 |
|
74 |
|
75 |
def to_gray(img):
|
76 |
+
"""
|
77 |
+
Converts an RGB image to grayscale by applying the standard luminosity formula.
|
78 |
+
|
79 |
+
Args:
|
80 |
+
img (torch.Tensor): The input image tensor with shape (batch_size, channels, height, width).
|
81 |
+
The image is expected to be in RGB format (3 channels).
|
82 |
+
|
83 |
+
Returns:
|
84 |
+
torch.Tensor: The grayscale image tensor with shape (batch_size, 3, height, width).
|
85 |
+
The grayscale values are replicated across all three channels.
|
86 |
+
"""
|
87 |
x = 0.299 * img[:, 0:1] + 0.587 * img[:, 1:2] + 0.114 * img[:, 2:3]
|
88 |
x = x.repeat(1, 3, 1, 1)
|
89 |
return x
|
90 |
|
91 |
|
92 |
+
def process_face_embeddings(
|
93 |
+
face_helper_1,
|
94 |
+
clip_vision_model,
|
95 |
+
face_helper_2,
|
96 |
+
eva_transform_mean,
|
97 |
+
eva_transform_std,
|
98 |
+
app,
|
99 |
+
device,
|
100 |
+
weight_dtype,
|
101 |
+
image,
|
102 |
+
original_id_image=None,
|
103 |
+
is_align_face=True,
|
104 |
+
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
"""
|
106 |
+
Process face embeddings from an image, extracting relevant features such as face embeddings, landmarks, and parsed
|
107 |
+
face features using a series of face detection and alignment tools.
|
108 |
+
|
109 |
Args:
|
110 |
+
face_helper_1: Face helper object (first helper) for alignment and landmark detection.
|
111 |
+
clip_vision_model: Pre-trained CLIP vision model used for feature extraction.
|
112 |
+
face_helper_2: Face helper object (second helper) for embedding extraction.
|
113 |
+
eva_transform_mean: Mean values for image normalization before passing to EVA model.
|
114 |
+
eva_transform_std: Standard deviation values for image normalization before passing to EVA model.
|
115 |
+
app: Application instance used for face detection.
|
116 |
+
device: Device (CPU or GPU) where the computations will be performed.
|
117 |
+
weight_dtype: Data type of the weights for precision (e.g., `torch.float32`).
|
118 |
+
image: Input image in RGB format with pixel values in the range [0, 255].
|
119 |
+
original_id_image: (Optional) Original image for feature extraction if `is_align_face` is False.
|
120 |
+
is_align_face: Boolean flag indicating whether face alignment should be performed.
|
121 |
+
|
122 |
+
Returns:
|
123 |
+
Tuple:
|
124 |
+
- id_cond: Concatenated tensor of Ante face embedding and CLIP vision embedding
|
125 |
+
- id_vit_hidden: Hidden state of the CLIP vision model, a list of tensors.
|
126 |
+
- return_face_features_image_2: Processed face features image after normalization and parsing.
|
127 |
+
- face_kps: Keypoints of the face detected in the image.
|
128 |
"""
|
129 |
+
|
130 |
face_helper_1.clean_all()
|
131 |
+
image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
132 |
# get antelopev2 embedding
|
133 |
face_info = app.get(image_bgr)
|
134 |
if len(face_info) > 0:
|
135 |
+
face_info = sorted(face_info, key=lambda x: (x["bbox"][2] - x["bbox"][0]) * (x["bbox"][3] - x["bbox"][1]))[
|
136 |
-1
|
137 |
] # only use the maximum face
|
138 |
+
id_ante_embedding = face_info["embedding"] # (512,)
|
139 |
+
face_kps = face_info["kps"]
|
140 |
else:
|
141 |
id_ante_embedding = None
|
142 |
face_kps = None
|
|
|
148 |
face_kps = face_helper_1.all_landmarks_5[0]
|
149 |
face_helper_1.align_warp_face()
|
150 |
if len(face_helper_1.cropped_faces) == 0:
|
151 |
+
raise RuntimeError("facexlib align face fail")
|
152 |
align_face = face_helper_1.cropped_faces[0] # (512, 512, 3) # RGB
|
153 |
|
154 |
# incase insightface didn't detect face
|
155 |
if id_ante_embedding is None:
|
156 |
+
print("fail to detect face using insightface, extract embedding on align face")
|
157 |
id_ante_embedding = face_helper_2.get_feat(align_face)
|
158 |
|
159 |
id_ante_embedding = torch.from_numpy(id_ante_embedding).to(device, weight_dtype) # torch.Size([512])
|
|
|
179 |
return_face_features_image = return_face_features_image_2 = input
|
180 |
|
181 |
# transform img before sending to eva-clip-vit
|
182 |
+
face_features_image = resize(
|
183 |
+
return_face_features_image, clip_vision_model.image_size, InterpolationMode.BICUBIC
|
184 |
+
) # torch.Size([1, 3, 336, 336])
|
185 |
face_features_image = normalize(face_features_image, eva_transform_mean, eva_transform_std)
|
186 |
+
id_cond_vit, id_vit_hidden = clip_vision_model(
|
187 |
+
face_features_image.to(weight_dtype), return_all_features=False, return_hidden=True, shuffle=False
|
188 |
+
) # torch.Size([1, 768]), list(torch.Size([1, 577, 1024]))
|
189 |
id_cond_vit_norm = torch.norm(id_cond_vit, 2, 1, True)
|
190 |
id_cond_vit = torch.div(id_cond_vit, id_cond_vit_norm)
|
191 |
|
192 |
+
id_cond = torch.cat(
|
193 |
+
[id_ante_embedding, id_cond_vit], dim=-1
|
194 |
+
) # torch.Size([1, 512]), torch.Size([1, 768]) -> torch.Size([1, 1280])
|
195 |
+
|
196 |
+
return (
|
197 |
+
id_cond,
|
198 |
+
id_vit_hidden,
|
199 |
+
return_face_features_image_2,
|
200 |
+
face_kps,
|
201 |
+
) # torch.Size([1, 1280]), list(torch.Size([1, 577, 1024]))
|
202 |
+
|
203 |
+
|
204 |
+
def process_face_embeddings_infer(
|
205 |
+
face_helper_1,
|
206 |
+
clip_vision_model,
|
207 |
+
face_helper_2,
|
208 |
+
eva_transform_mean,
|
209 |
+
eva_transform_std,
|
210 |
+
app,
|
211 |
+
device,
|
212 |
+
weight_dtype,
|
213 |
+
img_file_path,
|
214 |
+
is_align_face=True,
|
215 |
+
):
|
216 |
"""
|
217 |
+
Process face embeddings from an input image for inference, including alignment, feature extraction, and embedding
|
218 |
+
concatenation.
|
219 |
+
|
220 |
Args:
|
221 |
+
face_helper_1: Face helper object (first helper) for alignment and landmark detection.
|
222 |
+
clip_vision_model: Pre-trained CLIP vision model used for feature extraction.
|
223 |
+
face_helper_2: Face helper object (second helper) for embedding extraction.
|
224 |
+
eva_transform_mean: Mean values for image normalization before passing to EVA model.
|
225 |
+
eva_transform_std: Standard deviation values for image normalization before passing to EVA model.
|
226 |
+
app: Application instance used for face detection.
|
227 |
+
device: Device (CPU or GPU) where the computations will be performed.
|
228 |
+
weight_dtype: Data type of the weights for precision (e.g., `torch.float32`).
|
229 |
+
img_file_path: Path to the input image file (string) or a numpy array representing an image.
|
230 |
+
is_align_face: Boolean flag indicating whether face alignment should be performed (default: True).
|
231 |
+
|
232 |
+
Returns:
|
233 |
+
Tuple:
|
234 |
+
- id_cond: Concatenated tensor of Ante face embedding and CLIP vision embedding.
|
235 |
+
- id_vit_hidden: Hidden state of the CLIP vision model, a list of tensors.
|
236 |
+
- image: Processed face image after feature extraction and alignment.
|
237 |
+
- face_kps: Keypoints of the face detected in the image.
|
238 |
"""
|
239 |
+
|
240 |
+
# Load and preprocess the input image
|
241 |
if isinstance(img_file_path, str):
|
242 |
image = np.array(load_image(image=img_file_path).convert("RGB"))
|
243 |
+
else:
|
244 |
image = np.array(ImageOps.exif_transpose(Image.fromarray(img_file_path)).convert("RGB"))
|
245 |
+
|
246 |
+
# Resize image to ensure the longer side is 1024 pixels
|
247 |
image = resize_numpy_image_long(image, 1024)
|
248 |
original_id_image = image
|
249 |
|
250 |
+
# Process the image to extract face embeddings and related features
|
251 |
+
id_cond, id_vit_hidden, align_crop_face_image, face_kps = process_face_embeddings(
|
252 |
+
face_helper_1,
|
253 |
+
clip_vision_model,
|
254 |
+
face_helper_2,
|
255 |
+
eva_transform_mean,
|
256 |
+
eva_transform_std,
|
257 |
+
app,
|
258 |
+
device,
|
259 |
+
weight_dtype,
|
260 |
+
image,
|
261 |
+
original_id_image,
|
262 |
+
is_align_face,
|
263 |
+
)
|
264 |
+
|
265 |
+
# Convert the aligned cropped face image (torch tensor) to a numpy array
|
266 |
tensor = align_crop_face_image.cpu().detach()
|
267 |
tensor = tensor.squeeze()
|
268 |
tensor = tensor.permute(1, 2, 0)
|
|
|
272 |
|
273 |
return id_cond, id_vit_hidden, image, face_kps
|
274 |
|
275 |
+
|
276 |
def prepare_face_models(model_path, device, dtype):
|
277 |
"""
|
278 |
Prepare all face models for the facial recognition task.
|
|
|
295 |
upscale_factor=1,
|
296 |
face_size=512,
|
297 |
crop_ratio=(1, 1),
|
298 |
+
det_model="retinaface_resnet50",
|
299 |
+
save_ext="png",
|
300 |
device=device,
|
301 |
+
model_rootpath=os.path.join(model_path, "face_encoder"),
|
302 |
)
|
303 |
face_helper_1.face_parse = None
|
304 |
+
face_helper_1.face_parse = init_parsing_model(
|
305 |
+
model_name="bisenet", device=device, model_rootpath=os.path.join(model_path, "face_encoder")
|
306 |
+
)
|
307 |
+
face_helper_2 = insightface.model_zoo.get_model(
|
308 |
+
f"{model_path}/face_encoder/models/antelopev2/glintr100.onnx", providers=["CUDAExecutionProvider"]
|
309 |
+
)
|
310 |
face_helper_2.prepare(ctx_id=0)
|
311 |
|
312 |
# get local facial extractor part 1
|
313 |
+
model, _, _ = create_model_and_transforms(
|
314 |
+
"EVA02-CLIP-L-14-336",
|
315 |
+
os.path.join(model_path, "face_encoder", "EVA02_CLIP_L_336_psz14_s6B.pt"),
|
316 |
+
force_custom_clip=True,
|
317 |
+
)
|
318 |
face_clip_model = model.visual
|
319 |
+
eva_transform_mean = getattr(face_clip_model, "image_mean", OPENAI_DATASET_MEAN)
|
320 |
+
eva_transform_std = getattr(face_clip_model, "image_std", OPENAI_DATASET_STD)
|
321 |
if not isinstance(eva_transform_mean, (list, tuple)):
|
322 |
eva_transform_mean = (eva_transform_mean,) * 3
|
323 |
if not isinstance(eva_transform_std, (list, tuple)):
|
|
|
326 |
eva_transform_std = eva_transform_std
|
327 |
|
328 |
# get local facial extractor part 2
|
329 |
+
face_main_model = FaceAnalysis(
|
330 |
+
name="antelopev2", root=os.path.join(model_path, "face_encoder"), providers=["CUDAExecutionProvider"]
|
331 |
+
)
|
332 |
face_main_model.prepare(ctx_id=0, det_size=(640, 640))
|
333 |
+
|
334 |
# move face models to device
|
335 |
face_helper_1.face_det.eval()
|
336 |
face_helper_1.face_parse.eval()
|
|
|
338 |
face_helper_1.face_det.to(device)
|
339 |
face_helper_1.face_parse.to(device)
|
340 |
face_clip_model.to(device, dtype=dtype)
|
341 |
+
|
342 |
+
return face_helper_1, face_helper_2, face_clip_model, face_main_model, eva_transform_mean, eva_transform_std
|
343 |
+
|
344 |
+
|
345 |
+
|
346 |
+
###### train ###
|
347 |
+
def _get_t5_prompt_embeds(
|
348 |
+
tokenizer: T5Tokenizer,
|
349 |
+
text_encoder: T5EncoderModel,
|
350 |
+
prompt: Union[str, List[str]],
|
351 |
+
num_videos_per_prompt: int = 1,
|
352 |
+
max_sequence_length: int = 226,
|
353 |
+
device: Optional[torch.device] = None,
|
354 |
+
dtype: Optional[torch.dtype] = None,
|
355 |
+
text_input_ids=None,
|
356 |
+
):
|
357 |
+
"""
|
358 |
+
Generate prompt embeddings using the T5 model for a given prompt or list of prompts.
|
359 |
+
|
360 |
+
Args:
|
361 |
+
tokenizer (T5Tokenizer): Tokenizer used to encode the text prompt(s).
|
362 |
+
text_encoder (T5EncoderModel): Pretrained T5 encoder model to generate embeddings.
|
363 |
+
prompt (Union[str, List[str]]): Single prompt or list of prompts to encode.
|
364 |
+
num_videos_per_prompt (int, optional): Number of video embeddings to generate per prompt. Defaults to 1.
|
365 |
+
max_sequence_length (int, optional): Maximum length for the tokenized prompt. Defaults to 226.
|
366 |
+
device (Optional[torch.device], optional): The device on which to run the model (e.g., "cuda", "cpu").
|
367 |
+
dtype (Optional[torch.dtype], optional): The data type for the embeddings (e.g., torch.float32).
|
368 |
+
text_input_ids (optional): Pre-tokenized input IDs. If not provided, tokenizer is used to encode the prompt.
|
369 |
+
|
370 |
+
Returns:
|
371 |
+
torch.Tensor: The generated prompt embeddings reshaped for the specified number of video generations per prompt.
|
372 |
+
"""
|
373 |
+
|
374 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
375 |
+
batch_size = len(prompt)
|
376 |
+
|
377 |
+
if tokenizer is not None:
|
378 |
+
text_inputs = tokenizer(
|
379 |
+
prompt,
|
380 |
+
padding="max_length",
|
381 |
+
max_length=max_sequence_length,
|
382 |
+
truncation=True,
|
383 |
+
add_special_tokens=True,
|
384 |
+
return_tensors="pt",
|
385 |
+
)
|
386 |
+
text_input_ids = text_inputs.input_ids
|
387 |
+
else:
|
388 |
+
if text_input_ids is None:
|
389 |
+
raise ValueError("`text_input_ids` must be provided when the tokenizer is not specified.")
|
390 |
+
|
391 |
+
prompt_embeds = text_encoder(text_input_ids.to(device))[0]
|
392 |
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
393 |
+
|
394 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
395 |
+
_, seq_len, _ = prompt_embeds.shape
|
396 |
+
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
|
397 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
|
398 |
+
|
399 |
+
return prompt_embeds
|
400 |
+
|
401 |
+
|
402 |
+
def encode_prompt(
|
403 |
+
tokenizer: T5Tokenizer,
|
404 |
+
text_encoder: T5EncoderModel,
|
405 |
+
prompt: Union[str, List[str]],
|
406 |
+
num_videos_per_prompt: int = 1,
|
407 |
+
max_sequence_length: int = 226,
|
408 |
+
device: Optional[torch.device] = None,
|
409 |
+
dtype: Optional[torch.dtype] = None,
|
410 |
+
text_input_ids=None,
|
411 |
+
):
|
412 |
+
"""
|
413 |
+
Encode the given prompt(s) into embeddings using the T5 model.
|
414 |
+
|
415 |
+
This function wraps the _get_t5_prompt_embeds function to generate prompt embeddings
|
416 |
+
for a given prompt or list of prompts. It allows for generating multiple embeddings
|
417 |
+
per prompt, useful for tasks like video generation.
|
418 |
+
|
419 |
+
Args:
|
420 |
+
tokenizer (T5Tokenizer): Tokenizer used to encode the text prompt(s).
|
421 |
+
text_encoder (T5EncoderModel): Pretrained T5 encoder model to generate embeddings.
|
422 |
+
prompt (Union[str, List[str]]): Single prompt or list of prompts to encode.
|
423 |
+
num_videos_per_prompt (int, optional): Number of video embeddings to generate per prompt. Defaults to 1.
|
424 |
+
max_sequence_length (int, optional): Maximum length for the tokenized prompt. Defaults to 226.
|
425 |
+
device (Optional[torch.device], optional): The device on which to run the model (e.g., "cuda", "cpu").
|
426 |
+
dtype (Optional[torch.dtype], optional): The data type for the embeddings (e.g., torch.float32).
|
427 |
+
text_input_ids (optional): Pre-tokenized input IDs. If not provided, tokenizer is used to encode the prompt.
|
428 |
+
|
429 |
+
Returns:
|
430 |
+
torch.Tensor: The generated prompt embeddings reshaped for the specified number of video generations per prompt.
|
431 |
+
"""
|
432 |
+
|
433 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
434 |
+
prompt_embeds = _get_t5_prompt_embeds(
|
435 |
+
tokenizer,
|
436 |
+
text_encoder,
|
437 |
+
prompt=prompt,
|
438 |
+
num_videos_per_prompt=num_videos_per_prompt,
|
439 |
+
max_sequence_length=max_sequence_length,
|
440 |
+
device=device,
|
441 |
+
dtype=dtype,
|
442 |
+
text_input_ids=text_input_ids,
|
443 |
+
)
|
444 |
+
return prompt_embeds
|
445 |
+
|
446 |
+
|
447 |
+
def compute_prompt_embeddings(
|
448 |
+
tokenizer, text_encoder, prompt, max_sequence_length, device, dtype, requires_grad: bool = False
|
449 |
+
):
|
450 |
+
"""
|
451 |
+
Compute the prompt embeddings based on whether gradient computation is required.
|
452 |
+
|
453 |
+
This function generates embeddings for a given prompt or list of prompts, either
|
454 |
+
with or without gradient tracking, depending on the `requires_grad` argument. It
|
455 |
+
uses the `encode_prompt` function to generate embeddings for the provided prompt(s).
|
456 |
+
|
457 |
+
Args:
|
458 |
+
tokenizer (T5Tokenizer): Tokenizer used to encode the text prompt(s).
|
459 |
+
text_encoder (T5EncoderModel): Pretrained T5 encoder model to generate embeddings.
|
460 |
+
prompt (Union[str, List[str]]): Single prompt or list of prompts to encode.
|
461 |
+
max_sequence_length (int): Maximum length for the tokenized prompt.
|
462 |
+
device (torch.device): The device on which to run the model (e.g., "cuda", "cpu").
|
463 |
+
dtype (torch.dtype): The data type for the embeddings (e.g., torch.float32).
|
464 |
+
requires_grad (bool, optional): Whether the embeddings should require gradient computation. Defaults to False.
|
465 |
+
|
466 |
+
Returns:
|
467 |
+
torch.Tensor: The generated prompt embeddings.
|
468 |
+
"""
|
469 |
+
|
470 |
+
if requires_grad:
|
471 |
+
prompt_embeds = encode_prompt(
|
472 |
+
tokenizer,
|
473 |
+
text_encoder,
|
474 |
+
prompt,
|
475 |
+
num_videos_per_prompt=1,
|
476 |
+
max_sequence_length=max_sequence_length,
|
477 |
+
device=device,
|
478 |
+
dtype=dtype,
|
479 |
+
)
|
480 |
+
else:
|
481 |
+
with torch.no_grad():
|
482 |
+
prompt_embeds = encode_prompt(
|
483 |
+
tokenizer,
|
484 |
+
text_encoder,
|
485 |
+
prompt,
|
486 |
+
num_videos_per_prompt=1,
|
487 |
+
max_sequence_length=max_sequence_length,
|
488 |
+
device=device,
|
489 |
+
dtype=dtype,
|
490 |
+
)
|
491 |
+
return prompt_embeds
|
492 |
+
|
493 |
+
|
494 |
+
def prepare_rotary_positional_embeddings(
|
495 |
+
height: int,
|
496 |
+
width: int,
|
497 |
+
num_frames: int,
|
498 |
+
vae_scale_factor_spatial: int = 8,
|
499 |
+
patch_size: int = 2,
|
500 |
+
attention_head_dim: int = 64,
|
501 |
+
device: Optional[torch.device] = None,
|
502 |
+
base_height: int = 480,
|
503 |
+
base_width: int = 720,
|
504 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
505 |
+
"""
|
506 |
+
Prepare rotary positional embeddings for a given input grid size and number of frames.
|
507 |
+
|
508 |
+
This function computes the rotary positional embeddings for both spatial and temporal dimensions
|
509 |
+
given the grid size (height, width) and the number of frames. It also takes into account the scaling
|
510 |
+
factors for the spatial resolution, as well as the patch size for the input.
|
511 |
+
|
512 |
+
Args:
|
513 |
+
height (int): Height of the input grid.
|
514 |
+
width (int): Width of the input grid.
|
515 |
+
num_frames (int): Number of frames in the temporal dimension.
|
516 |
+
vae_scale_factor_spatial (int, optional): Scaling factor for the spatial resolution. Defaults to 8.
|
517 |
+
patch_size (int, optional): The patch size used for the grid. Defaults to 2.
|
518 |
+
attention_head_dim (int, optional): The dimensionality of the attention head. Defaults to 64.
|
519 |
+
device (Optional[torch.device], optional): The device to which the tensors should be moved (e.g., "cuda", "cpu").
|
520 |
+
base_height (int, optional): Base height for the image, typically the full resolution height. Defaults to 480.
|
521 |
+
base_width (int, optional): Base width for the image, typically the full resolution width. Defaults to 720.
|
522 |
+
|
523 |
+
Returns:
|
524 |
+
Tuple[torch.Tensor, torch.Tensor]: Cosine and sine components of the rotary positional embeddings.
|
525 |
+
"""
|
526 |
+
grid_height = height // (vae_scale_factor_spatial * patch_size)
|
527 |
+
grid_width = width // (vae_scale_factor_spatial * patch_size)
|
528 |
+
base_size_width = base_width // (vae_scale_factor_spatial * patch_size)
|
529 |
+
base_size_height = base_height // (vae_scale_factor_spatial * patch_size)
|
530 |
+
|
531 |
+
grid_crops_coords = get_resize_crop_region_for_grid((grid_height, grid_width), base_size_width, base_size_height)
|
532 |
+
freqs_cos, freqs_sin = get_3d_rotary_pos_embed(
|
533 |
+
embed_dim=attention_head_dim,
|
534 |
+
crops_coords=grid_crops_coords,
|
535 |
+
grid_size=(grid_height, grid_width),
|
536 |
+
temporal_size=num_frames,
|
537 |
+
)
|
538 |
+
|
539 |
+
freqs_cos = freqs_cos.to(device=device)
|
540 |
+
freqs_sin = freqs_sin.to(device=device)
|
541 |
+
return freqs_cos, freqs_sin
|
542 |
+
|
543 |
+
|
544 |
+
def tensor_to_pil(src_img_tensor):
|
545 |
+
"""
|
546 |
+
Converts a tensor image to a PIL image.
|
547 |
+
|
548 |
+
This function takes an input tensor with the shape (C, H, W) and converts it
|
549 |
+
into a PIL Image format. It ensures that the tensor is in the correct data
|
550 |
+
type and moves it to CPU if necessary.
|
551 |
+
|
552 |
+
Parameters:
|
553 |
+
src_img_tensor (torch.Tensor): Input image tensor with shape (C, H, W),
|
554 |
+
where C is the number of channels, H is the height, and W is the width.
|
555 |
+
|
556 |
+
Returns:
|
557 |
+
PIL.Image: The converted image in PIL format.
|
558 |
+
"""
|
559 |
+
|
560 |
+
img = src_img_tensor.clone().detach()
|
561 |
+
if img.dtype == torch.bfloat16:
|
562 |
+
img = img.to(torch.float32)
|
563 |
+
img = img.cpu().numpy()
|
564 |
+
img = np.transpose(img, (1, 2, 0))
|
565 |
+
img = img.astype(np.uint8)
|
566 |
+
pil_image = Image.fromarray(img)
|
567 |
+
return pil_image
|
models/eva_clip/__init__.py
DELETED
@@ -1,11 +0,0 @@
|
|
1 |
-
from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
|
2 |
-
from .factory import create_model, create_model_and_transforms, create_model_from_pretrained, get_tokenizer, create_transforms
|
3 |
-
from .factory import list_models, add_model_config, get_model_config, load_checkpoint
|
4 |
-
from .loss import ClipLoss
|
5 |
-
from .model import CLIP, CustomCLIP, CLIPTextCfg, CLIPVisionCfg,\
|
6 |
-
convert_weights_to_lp, convert_weights_to_fp16, trace_model, get_cast_dtype
|
7 |
-
from .openai import load_openai_model, list_openai_models
|
8 |
-
from .pretrained import list_pretrained, list_pretrained_models_by_tag, list_pretrained_tags_by_model,\
|
9 |
-
get_pretrained_url, download_pretrained_from_url, is_pretrained_cfg, get_pretrained_cfg, download_pretrained
|
10 |
-
from .tokenizer import SimpleTokenizer, tokenize
|
11 |
-
from .transform import image_transform
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/eva_clip/bpe_simple_vocab_16e6.txt.gz
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:924691ac288e54409236115652ad4aa250f48203de50a9e4722a6ecd48d6804a
|
3 |
-
size 1356917
|
|
|
|
|
|
|
|
models/eva_clip/constants.py
DELETED
@@ -1,2 +0,0 @@
|
|
1 |
-
OPENAI_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
|
2 |
-
OPENAI_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
|
|
|
|
|
|
models/eva_clip/eva_vit_model.py
DELETED
@@ -1,548 +0,0 @@
|
|
1 |
-
# --------------------------------------------------------
|
2 |
-
# Adapted from https://github.com/microsoft/unilm/tree/master/beit
|
3 |
-
# --------------------------------------------------------
|
4 |
-
import math
|
5 |
-
import os
|
6 |
-
from functools import partial
|
7 |
-
import torch
|
8 |
-
import torch.nn as nn
|
9 |
-
import torch.nn.functional as F
|
10 |
-
try:
|
11 |
-
from timm.models.layers import drop_path, to_2tuple, trunc_normal_
|
12 |
-
except:
|
13 |
-
from timm.layers import drop_path, to_2tuple, trunc_normal_
|
14 |
-
|
15 |
-
from .transformer import PatchDropout
|
16 |
-
from .rope import VisionRotaryEmbedding, VisionRotaryEmbeddingFast
|
17 |
-
|
18 |
-
if os.getenv('ENV_TYPE') == 'deepspeed':
|
19 |
-
try:
|
20 |
-
from deepspeed.runtime.activation_checkpointing.checkpointing import checkpoint
|
21 |
-
except:
|
22 |
-
from torch.utils.checkpoint import checkpoint
|
23 |
-
else:
|
24 |
-
from torch.utils.checkpoint import checkpoint
|
25 |
-
|
26 |
-
try:
|
27 |
-
import xformers
|
28 |
-
import xformers.ops as xops
|
29 |
-
XFORMERS_IS_AVAILBLE = True
|
30 |
-
except:
|
31 |
-
XFORMERS_IS_AVAILBLE = False
|
32 |
-
|
33 |
-
class DropPath(nn.Module):
|
34 |
-
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
35 |
-
"""
|
36 |
-
def __init__(self, drop_prob=None):
|
37 |
-
super(DropPath, self).__init__()
|
38 |
-
self.drop_prob = drop_prob
|
39 |
-
|
40 |
-
def forward(self, x):
|
41 |
-
return drop_path(x, self.drop_prob, self.training)
|
42 |
-
|
43 |
-
def extra_repr(self) -> str:
|
44 |
-
return 'p={}'.format(self.drop_prob)
|
45 |
-
|
46 |
-
|
47 |
-
class Mlp(nn.Module):
|
48 |
-
def __init__(
|
49 |
-
self,
|
50 |
-
in_features,
|
51 |
-
hidden_features=None,
|
52 |
-
out_features=None,
|
53 |
-
act_layer=nn.GELU,
|
54 |
-
norm_layer=nn.LayerNorm,
|
55 |
-
drop=0.,
|
56 |
-
subln=False,
|
57 |
-
|
58 |
-
):
|
59 |
-
super().__init__()
|
60 |
-
out_features = out_features or in_features
|
61 |
-
hidden_features = hidden_features or in_features
|
62 |
-
self.fc1 = nn.Linear(in_features, hidden_features)
|
63 |
-
self.act = act_layer()
|
64 |
-
|
65 |
-
self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity()
|
66 |
-
|
67 |
-
self.fc2 = nn.Linear(hidden_features, out_features)
|
68 |
-
self.drop = nn.Dropout(drop)
|
69 |
-
|
70 |
-
def forward(self, x):
|
71 |
-
x = self.fc1(x)
|
72 |
-
x = self.act(x)
|
73 |
-
# x = self.drop(x)
|
74 |
-
# commit this for the orignal BERT implement
|
75 |
-
x = self.ffn_ln(x)
|
76 |
-
|
77 |
-
x = self.fc2(x)
|
78 |
-
x = self.drop(x)
|
79 |
-
return x
|
80 |
-
|
81 |
-
class SwiGLU(nn.Module):
|
82 |
-
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0.,
|
83 |
-
norm_layer=nn.LayerNorm, subln=False):
|
84 |
-
super().__init__()
|
85 |
-
out_features = out_features or in_features
|
86 |
-
hidden_features = hidden_features or in_features
|
87 |
-
|
88 |
-
self.w1 = nn.Linear(in_features, hidden_features)
|
89 |
-
self.w2 = nn.Linear(in_features, hidden_features)
|
90 |
-
|
91 |
-
self.act = act_layer()
|
92 |
-
self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity()
|
93 |
-
self.w3 = nn.Linear(hidden_features, out_features)
|
94 |
-
|
95 |
-
self.drop = nn.Dropout(drop)
|
96 |
-
|
97 |
-
def forward(self, x):
|
98 |
-
x1 = self.w1(x)
|
99 |
-
x2 = self.w2(x)
|
100 |
-
hidden = self.act(x1) * x2
|
101 |
-
x = self.ffn_ln(hidden)
|
102 |
-
x = self.w3(x)
|
103 |
-
x = self.drop(x)
|
104 |
-
return x
|
105 |
-
|
106 |
-
class Attention(nn.Module):
|
107 |
-
def __init__(
|
108 |
-
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
|
109 |
-
proj_drop=0., window_size=None, attn_head_dim=None, xattn=False, rope=None, subln=False, norm_layer=nn.LayerNorm):
|
110 |
-
super().__init__()
|
111 |
-
self.num_heads = num_heads
|
112 |
-
head_dim = dim // num_heads
|
113 |
-
if attn_head_dim is not None:
|
114 |
-
head_dim = attn_head_dim
|
115 |
-
all_head_dim = head_dim * self.num_heads
|
116 |
-
self.scale = qk_scale or head_dim ** -0.5
|
117 |
-
|
118 |
-
self.subln = subln
|
119 |
-
if self.subln:
|
120 |
-
self.q_proj = nn.Linear(dim, all_head_dim, bias=False)
|
121 |
-
self.k_proj = nn.Linear(dim, all_head_dim, bias=False)
|
122 |
-
self.v_proj = nn.Linear(dim, all_head_dim, bias=False)
|
123 |
-
else:
|
124 |
-
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
|
125 |
-
|
126 |
-
if qkv_bias:
|
127 |
-
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
|
128 |
-
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
|
129 |
-
else:
|
130 |
-
self.q_bias = None
|
131 |
-
self.v_bias = None
|
132 |
-
|
133 |
-
if window_size:
|
134 |
-
self.window_size = window_size
|
135 |
-
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
|
136 |
-
self.relative_position_bias_table = nn.Parameter(
|
137 |
-
torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
138 |
-
# cls to token & token 2 cls & cls to cls
|
139 |
-
|
140 |
-
# get pair-wise relative position index for each token inside the window
|
141 |
-
coords_h = torch.arange(window_size[0])
|
142 |
-
coords_w = torch.arange(window_size[1])
|
143 |
-
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
144 |
-
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
145 |
-
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
146 |
-
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
147 |
-
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
|
148 |
-
relative_coords[:, :, 1] += window_size[1] - 1
|
149 |
-
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
|
150 |
-
relative_position_index = \
|
151 |
-
torch.zeros(size=(window_size[0] * window_size[1] + 1, ) * 2, dtype=relative_coords.dtype)
|
152 |
-
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
153 |
-
relative_position_index[0, 0:] = self.num_relative_distance - 3
|
154 |
-
relative_position_index[0:, 0] = self.num_relative_distance - 2
|
155 |
-
relative_position_index[0, 0] = self.num_relative_distance - 1
|
156 |
-
|
157 |
-
self.register_buffer("relative_position_index", relative_position_index)
|
158 |
-
else:
|
159 |
-
self.window_size = None
|
160 |
-
self.relative_position_bias_table = None
|
161 |
-
self.relative_position_index = None
|
162 |
-
|
163 |
-
self.attn_drop = nn.Dropout(attn_drop)
|
164 |
-
self.inner_attn_ln = norm_layer(all_head_dim) if subln else nn.Identity()
|
165 |
-
# self.proj = nn.Linear(all_head_dim, all_head_dim)
|
166 |
-
self.proj = nn.Linear(all_head_dim, dim)
|
167 |
-
self.proj_drop = nn.Dropout(proj_drop)
|
168 |
-
self.xattn = xattn
|
169 |
-
self.xattn_drop = attn_drop
|
170 |
-
|
171 |
-
self.rope = rope
|
172 |
-
|
173 |
-
def forward(self, x, rel_pos_bias=None, attn_mask=None):
|
174 |
-
B, N, C = x.shape
|
175 |
-
if self.subln:
|
176 |
-
q = F.linear(input=x, weight=self.q_proj.weight, bias=self.q_bias)
|
177 |
-
k = F.linear(input=x, weight=self.k_proj.weight, bias=None)
|
178 |
-
v = F.linear(input=x, weight=self.v_proj.weight, bias=self.v_bias)
|
179 |
-
|
180 |
-
q = q.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) # B, num_heads, N, C
|
181 |
-
k = k.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3)
|
182 |
-
v = v.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3)
|
183 |
-
else:
|
184 |
-
|
185 |
-
qkv_bias = None
|
186 |
-
if self.q_bias is not None:
|
187 |
-
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
|
188 |
-
|
189 |
-
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
|
190 |
-
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) # 3, B, num_heads, N, C
|
191 |
-
q, k, v = qkv[0], qkv[1], qkv[2]
|
192 |
-
|
193 |
-
if self.rope:
|
194 |
-
# slightly fast impl
|
195 |
-
q_t = q[:, :, 1:, :]
|
196 |
-
ro_q_t = self.rope(q_t)
|
197 |
-
q = torch.cat((q[:, :, :1, :], ro_q_t), -2).type_as(v)
|
198 |
-
|
199 |
-
k_t = k[:, :, 1:, :]
|
200 |
-
ro_k_t = self.rope(k_t)
|
201 |
-
k = torch.cat((k[:, :, :1, :], ro_k_t), -2).type_as(v)
|
202 |
-
|
203 |
-
if self.xattn:
|
204 |
-
q = q.permute(0, 2, 1, 3) # B, num_heads, N, C -> B, N, num_heads, C
|
205 |
-
k = k.permute(0, 2, 1, 3)
|
206 |
-
v = v.permute(0, 2, 1, 3)
|
207 |
-
|
208 |
-
x = xops.memory_efficient_attention(
|
209 |
-
q, k, v,
|
210 |
-
p=self.xattn_drop,
|
211 |
-
scale=self.scale,
|
212 |
-
)
|
213 |
-
x = x.reshape(B, N, -1)
|
214 |
-
x = self.inner_attn_ln(x)
|
215 |
-
x = self.proj(x)
|
216 |
-
x = self.proj_drop(x)
|
217 |
-
else:
|
218 |
-
q = q * self.scale
|
219 |
-
attn = (q @ k.transpose(-2, -1))
|
220 |
-
|
221 |
-
if self.relative_position_bias_table is not None:
|
222 |
-
relative_position_bias = \
|
223 |
-
self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
224 |
-
self.window_size[0] * self.window_size[1] + 1,
|
225 |
-
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
|
226 |
-
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
227 |
-
attn = attn + relative_position_bias.unsqueeze(0).type_as(attn)
|
228 |
-
|
229 |
-
if rel_pos_bias is not None:
|
230 |
-
attn = attn + rel_pos_bias.type_as(attn)
|
231 |
-
|
232 |
-
if attn_mask is not None:
|
233 |
-
attn_mask = attn_mask.bool()
|
234 |
-
attn = attn.masked_fill(~attn_mask[:, None, None, :], float("-inf"))
|
235 |
-
|
236 |
-
attn = attn.softmax(dim=-1)
|
237 |
-
attn = self.attn_drop(attn)
|
238 |
-
|
239 |
-
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
|
240 |
-
x = self.inner_attn_ln(x)
|
241 |
-
x = self.proj(x)
|
242 |
-
x = self.proj_drop(x)
|
243 |
-
return x
|
244 |
-
|
245 |
-
|
246 |
-
class Block(nn.Module):
|
247 |
-
|
248 |
-
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
249 |
-
drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm,
|
250 |
-
window_size=None, attn_head_dim=None, xattn=False, rope=None, postnorm=False,
|
251 |
-
subln=False, naiveswiglu=False):
|
252 |
-
super().__init__()
|
253 |
-
self.norm1 = norm_layer(dim)
|
254 |
-
self.attn = Attention(
|
255 |
-
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
256 |
-
attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim,
|
257 |
-
xattn=xattn, rope=rope, subln=subln, norm_layer=norm_layer)
|
258 |
-
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
259 |
-
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
260 |
-
self.norm2 = norm_layer(dim)
|
261 |
-
mlp_hidden_dim = int(dim * mlp_ratio)
|
262 |
-
|
263 |
-
if naiveswiglu:
|
264 |
-
self.mlp = SwiGLU(
|
265 |
-
in_features=dim,
|
266 |
-
hidden_features=mlp_hidden_dim,
|
267 |
-
subln=subln,
|
268 |
-
norm_layer=norm_layer,
|
269 |
-
)
|
270 |
-
else:
|
271 |
-
self.mlp = Mlp(
|
272 |
-
in_features=dim,
|
273 |
-
hidden_features=mlp_hidden_dim,
|
274 |
-
act_layer=act_layer,
|
275 |
-
subln=subln,
|
276 |
-
drop=drop
|
277 |
-
)
|
278 |
-
|
279 |
-
if init_values is not None and init_values > 0:
|
280 |
-
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
|
281 |
-
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
|
282 |
-
else:
|
283 |
-
self.gamma_1, self.gamma_2 = None, None
|
284 |
-
|
285 |
-
self.postnorm = postnorm
|
286 |
-
|
287 |
-
def forward(self, x, rel_pos_bias=None, attn_mask=None):
|
288 |
-
if self.gamma_1 is None:
|
289 |
-
if self.postnorm:
|
290 |
-
x = x + self.drop_path(self.norm1(self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)))
|
291 |
-
x = x + self.drop_path(self.norm2(self.mlp(x)))
|
292 |
-
else:
|
293 |
-
x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask))
|
294 |
-
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
295 |
-
else:
|
296 |
-
if self.postnorm:
|
297 |
-
x = x + self.drop_path(self.gamma_1 * self.norm1(self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)))
|
298 |
-
x = x + self.drop_path(self.gamma_2 * self.norm2(self.mlp(x)))
|
299 |
-
else:
|
300 |
-
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask))
|
301 |
-
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
|
302 |
-
return x
|
303 |
-
|
304 |
-
|
305 |
-
class PatchEmbed(nn.Module):
|
306 |
-
""" Image to Patch Embedding
|
307 |
-
"""
|
308 |
-
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
|
309 |
-
super().__init__()
|
310 |
-
img_size = to_2tuple(img_size)
|
311 |
-
patch_size = to_2tuple(patch_size)
|
312 |
-
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
|
313 |
-
self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
|
314 |
-
self.img_size = img_size
|
315 |
-
self.patch_size = patch_size
|
316 |
-
self.num_patches = num_patches
|
317 |
-
|
318 |
-
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
319 |
-
|
320 |
-
def forward(self, x, **kwargs):
|
321 |
-
B, C, H, W = x.shape
|
322 |
-
# FIXME look at relaxing size constraints
|
323 |
-
assert H == self.img_size[0] and W == self.img_size[1], \
|
324 |
-
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
325 |
-
x = self.proj(x).flatten(2).transpose(1, 2)
|
326 |
-
return x
|
327 |
-
|
328 |
-
|
329 |
-
class RelativePositionBias(nn.Module):
|
330 |
-
|
331 |
-
def __init__(self, window_size, num_heads):
|
332 |
-
super().__init__()
|
333 |
-
self.window_size = window_size
|
334 |
-
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
|
335 |
-
self.relative_position_bias_table = nn.Parameter(
|
336 |
-
torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
337 |
-
# cls to token & token 2 cls & cls to cls
|
338 |
-
|
339 |
-
# get pair-wise relative position index for each token inside the window
|
340 |
-
coords_h = torch.arange(window_size[0])
|
341 |
-
coords_w = torch.arange(window_size[1])
|
342 |
-
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
343 |
-
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
344 |
-
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
345 |
-
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
346 |
-
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
|
347 |
-
relative_coords[:, :, 1] += window_size[1] - 1
|
348 |
-
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
|
349 |
-
relative_position_index = \
|
350 |
-
torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
|
351 |
-
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
352 |
-
relative_position_index[0, 0:] = self.num_relative_distance - 3
|
353 |
-
relative_position_index[0:, 0] = self.num_relative_distance - 2
|
354 |
-
relative_position_index[0, 0] = self.num_relative_distance - 1
|
355 |
-
|
356 |
-
self.register_buffer("relative_position_index", relative_position_index)
|
357 |
-
|
358 |
-
def forward(self):
|
359 |
-
relative_position_bias = \
|
360 |
-
self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
361 |
-
self.window_size[0] * self.window_size[1] + 1,
|
362 |
-
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
|
363 |
-
return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
364 |
-
|
365 |
-
|
366 |
-
class EVAVisionTransformer(nn.Module):
|
367 |
-
""" Vision Transformer with support for patch or hybrid CNN input stage
|
368 |
-
"""
|
369 |
-
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
|
370 |
-
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
|
371 |
-
drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None, patch_dropout=0.,
|
372 |
-
use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, rope=False,
|
373 |
-
use_mean_pooling=True, init_scale=0.001, grad_checkpointing=False, xattn=False, postnorm=False,
|
374 |
-
pt_hw_seq_len=16, intp_freq=False, naiveswiglu=False, subln=False):
|
375 |
-
super().__init__()
|
376 |
-
|
377 |
-
if not XFORMERS_IS_AVAILBLE:
|
378 |
-
xattn = False
|
379 |
-
|
380 |
-
self.image_size = img_size
|
381 |
-
self.num_classes = num_classes
|
382 |
-
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
383 |
-
|
384 |
-
self.patch_embed = PatchEmbed(
|
385 |
-
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
|
386 |
-
num_patches = self.patch_embed.num_patches
|
387 |
-
|
388 |
-
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
389 |
-
# self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
390 |
-
if use_abs_pos_emb:
|
391 |
-
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
|
392 |
-
else:
|
393 |
-
self.pos_embed = None
|
394 |
-
self.pos_drop = nn.Dropout(p=drop_rate)
|
395 |
-
|
396 |
-
if use_shared_rel_pos_bias:
|
397 |
-
self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads)
|
398 |
-
else:
|
399 |
-
self.rel_pos_bias = None
|
400 |
-
|
401 |
-
if rope:
|
402 |
-
half_head_dim = embed_dim // num_heads // 2
|
403 |
-
hw_seq_len = img_size // patch_size
|
404 |
-
self.rope = VisionRotaryEmbeddingFast(
|
405 |
-
dim=half_head_dim,
|
406 |
-
pt_seq_len=pt_hw_seq_len,
|
407 |
-
ft_seq_len=hw_seq_len if intp_freq else None,
|
408 |
-
# patch_dropout=patch_dropout
|
409 |
-
)
|
410 |
-
else:
|
411 |
-
self.rope = None
|
412 |
-
|
413 |
-
self.naiveswiglu = naiveswiglu
|
414 |
-
|
415 |
-
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
416 |
-
self.use_rel_pos_bias = use_rel_pos_bias
|
417 |
-
self.blocks = nn.ModuleList([
|
418 |
-
Block(
|
419 |
-
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
420 |
-
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
|
421 |
-
init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None,
|
422 |
-
xattn=xattn, rope=self.rope, postnorm=postnorm, subln=subln, naiveswiglu=naiveswiglu)
|
423 |
-
for i in range(depth)])
|
424 |
-
self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim)
|
425 |
-
self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None
|
426 |
-
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
427 |
-
|
428 |
-
if self.pos_embed is not None:
|
429 |
-
trunc_normal_(self.pos_embed, std=.02)
|
430 |
-
|
431 |
-
trunc_normal_(self.cls_token, std=.02)
|
432 |
-
# trunc_normal_(self.mask_token, std=.02)
|
433 |
-
|
434 |
-
self.apply(self._init_weights)
|
435 |
-
self.fix_init_weight()
|
436 |
-
|
437 |
-
if isinstance(self.head, nn.Linear):
|
438 |
-
trunc_normal_(self.head.weight, std=.02)
|
439 |
-
self.head.weight.data.mul_(init_scale)
|
440 |
-
self.head.bias.data.mul_(init_scale)
|
441 |
-
|
442 |
-
# setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn
|
443 |
-
self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0. else nn.Identity()
|
444 |
-
|
445 |
-
self.grad_checkpointing = grad_checkpointing
|
446 |
-
|
447 |
-
def fix_init_weight(self):
|
448 |
-
def rescale(param, layer_id):
|
449 |
-
param.div_(math.sqrt(2.0 * layer_id))
|
450 |
-
|
451 |
-
for layer_id, layer in enumerate(self.blocks):
|
452 |
-
rescale(layer.attn.proj.weight.data, layer_id + 1)
|
453 |
-
if self.naiveswiglu:
|
454 |
-
rescale(layer.mlp.w3.weight.data, layer_id + 1)
|
455 |
-
else:
|
456 |
-
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
|
457 |
-
|
458 |
-
def get_cast_dtype(self) -> torch.dtype:
|
459 |
-
return self.blocks[0].mlp.fc2.weight.dtype
|
460 |
-
|
461 |
-
def _init_weights(self, m):
|
462 |
-
if isinstance(m, nn.Linear):
|
463 |
-
trunc_normal_(m.weight, std=.02)
|
464 |
-
if m.bias is not None:
|
465 |
-
nn.init.constant_(m.bias, 0)
|
466 |
-
elif isinstance(m, nn.LayerNorm):
|
467 |
-
nn.init.constant_(m.bias, 0)
|
468 |
-
nn.init.constant_(m.weight, 1.0)
|
469 |
-
|
470 |
-
def get_num_layers(self):
|
471 |
-
return len(self.blocks)
|
472 |
-
|
473 |
-
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
|
474 |
-
assert unlocked_groups == 0, 'partial locking not currently supported for this model'
|
475 |
-
for param in self.parameters():
|
476 |
-
param.requires_grad = False
|
477 |
-
|
478 |
-
@torch.jit.ignore
|
479 |
-
def set_grad_checkpointing(self, enable=True):
|
480 |
-
self.grad_checkpointing = enable
|
481 |
-
|
482 |
-
@torch.jit.ignore
|
483 |
-
def no_weight_decay(self):
|
484 |
-
return {'pos_embed', 'cls_token'}
|
485 |
-
|
486 |
-
def get_classifier(self):
|
487 |
-
return self.head
|
488 |
-
|
489 |
-
def reset_classifier(self, num_classes, global_pool=''):
|
490 |
-
self.num_classes = num_classes
|
491 |
-
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
492 |
-
|
493 |
-
def forward_features(self, x, return_all_features=False, return_hidden=False, shuffle=False):
|
494 |
-
|
495 |
-
x = self.patch_embed(x)
|
496 |
-
batch_size, seq_len, _ = x.size()
|
497 |
-
|
498 |
-
if shuffle:
|
499 |
-
idx = torch.randperm(x.shape[1]) + 1
|
500 |
-
zero = torch.LongTensor([0, ])
|
501 |
-
idx = torch.cat([zero, idx])
|
502 |
-
pos_embed = self.pos_embed[:, idx]
|
503 |
-
|
504 |
-
cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
|
505 |
-
x = torch.cat((cls_tokens, x), dim=1)
|
506 |
-
if shuffle:
|
507 |
-
x = x + pos_embed
|
508 |
-
elif self.pos_embed is not None:
|
509 |
-
x = x + self.pos_embed
|
510 |
-
x = self.pos_drop(x)
|
511 |
-
|
512 |
-
# a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in
|
513 |
-
if os.getenv('RoPE') == '1':
|
514 |
-
if self.training and not isinstance(self.patch_dropout, nn.Identity):
|
515 |
-
x, patch_indices_keep = self.patch_dropout(x)
|
516 |
-
self.rope.forward = partial(self.rope.forward, patch_indices_keep=patch_indices_keep)
|
517 |
-
else:
|
518 |
-
self.rope.forward = partial(self.rope.forward, patch_indices_keep=None)
|
519 |
-
x = self.patch_dropout(x)
|
520 |
-
else:
|
521 |
-
x = self.patch_dropout(x)
|
522 |
-
|
523 |
-
rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
|
524 |
-
hidden_states = []
|
525 |
-
for idx, blk in enumerate(self.blocks):
|
526 |
-
if (0 < idx <= 20) and (idx % 4 == 0) and return_hidden:
|
527 |
-
hidden_states.append(x)
|
528 |
-
if self.grad_checkpointing:
|
529 |
-
x = checkpoint(blk, x, (rel_pos_bias,))
|
530 |
-
else:
|
531 |
-
x = blk(x, rel_pos_bias=rel_pos_bias)
|
532 |
-
|
533 |
-
if not return_all_features:
|
534 |
-
x = self.norm(x)
|
535 |
-
if self.fc_norm is not None:
|
536 |
-
return self.fc_norm(x.mean(1)), hidden_states
|
537 |
-
else:
|
538 |
-
return x[:, 0], hidden_states
|
539 |
-
return x
|
540 |
-
|
541 |
-
def forward(self, x, return_all_features=False, return_hidden=False, shuffle=False):
|
542 |
-
if return_all_features:
|
543 |
-
return self.forward_features(x, return_all_features, return_hidden, shuffle)
|
544 |
-
x, hidden_states = self.forward_features(x, return_all_features, return_hidden, shuffle)
|
545 |
-
x = self.head(x)
|
546 |
-
if return_hidden:
|
547 |
-
return x, hidden_states
|
548 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/eva_clip/factory.py
DELETED
@@ -1,517 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import logging
|
3 |
-
import os
|
4 |
-
import pathlib
|
5 |
-
import re
|
6 |
-
from copy import deepcopy
|
7 |
-
from pathlib import Path
|
8 |
-
from typing import Optional, Tuple, Union, Dict, Any
|
9 |
-
import torch
|
10 |
-
|
11 |
-
from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
|
12 |
-
from .model import CLIP, CustomCLIP, convert_weights_to_lp, convert_to_custom_text_state_dict,\
|
13 |
-
get_cast_dtype
|
14 |
-
from .openai import load_openai_model
|
15 |
-
from .pretrained import is_pretrained_cfg, get_pretrained_cfg, download_pretrained, list_pretrained_tags_by_model
|
16 |
-
from .transform import image_transform
|
17 |
-
from .tokenizer import HFTokenizer, tokenize
|
18 |
-
from .utils import resize_clip_pos_embed, resize_evaclip_pos_embed, resize_visual_pos_embed, resize_eva_pos_embed
|
19 |
-
|
20 |
-
|
21 |
-
_MODEL_CONFIG_PATHS = [Path(__file__).parent / f"model_configs/"]
|
22 |
-
_MODEL_CONFIGS = {} # directory (model_name: config) of model architecture configs
|
23 |
-
|
24 |
-
|
25 |
-
def _natural_key(string_):
|
26 |
-
return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())]
|
27 |
-
|
28 |
-
|
29 |
-
def _rescan_model_configs():
|
30 |
-
global _MODEL_CONFIGS
|
31 |
-
|
32 |
-
config_ext = ('.json',)
|
33 |
-
config_files = []
|
34 |
-
for config_path in _MODEL_CONFIG_PATHS:
|
35 |
-
if config_path.is_file() and config_path.suffix in config_ext:
|
36 |
-
config_files.append(config_path)
|
37 |
-
elif config_path.is_dir():
|
38 |
-
for ext in config_ext:
|
39 |
-
config_files.extend(config_path.glob(f'*{ext}'))
|
40 |
-
|
41 |
-
for cf in config_files:
|
42 |
-
with open(cf, "r", encoding="utf8") as f:
|
43 |
-
model_cfg = json.load(f)
|
44 |
-
if all(a in model_cfg for a in ('embed_dim', 'vision_cfg', 'text_cfg')):
|
45 |
-
_MODEL_CONFIGS[cf.stem] = model_cfg
|
46 |
-
|
47 |
-
_MODEL_CONFIGS = dict(sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0])))
|
48 |
-
|
49 |
-
|
50 |
-
_rescan_model_configs() # initial populate of model config registry
|
51 |
-
|
52 |
-
|
53 |
-
def list_models():
|
54 |
-
""" enumerate available model architectures based on config files """
|
55 |
-
return list(_MODEL_CONFIGS.keys())
|
56 |
-
|
57 |
-
|
58 |
-
def add_model_config(path):
|
59 |
-
""" add model config path or file and update registry """
|
60 |
-
if not isinstance(path, Path):
|
61 |
-
path = Path(path)
|
62 |
-
_MODEL_CONFIG_PATHS.append(path)
|
63 |
-
_rescan_model_configs()
|
64 |
-
|
65 |
-
|
66 |
-
def get_model_config(model_name):
|
67 |
-
if model_name in _MODEL_CONFIGS:
|
68 |
-
return deepcopy(_MODEL_CONFIGS[model_name])
|
69 |
-
else:
|
70 |
-
return None
|
71 |
-
|
72 |
-
|
73 |
-
def get_tokenizer(model_name):
|
74 |
-
config = get_model_config(model_name)
|
75 |
-
tokenizer = HFTokenizer(config['text_cfg']['hf_tokenizer_name']) if 'hf_tokenizer_name' in config['text_cfg'] else tokenize
|
76 |
-
return tokenizer
|
77 |
-
|
78 |
-
|
79 |
-
# loading openai CLIP weights when is_openai=True for training
|
80 |
-
def load_state_dict(checkpoint_path: str, map_location: str='cpu', model_key: str='model|module|state_dict', is_openai: bool=False, skip_list: list=[]):
|
81 |
-
if is_openai:
|
82 |
-
model = torch.jit.load(checkpoint_path, map_location="cpu").eval()
|
83 |
-
state_dict = model.state_dict()
|
84 |
-
for key in ["input_resolution", "context_length", "vocab_size"]:
|
85 |
-
state_dict.pop(key, None)
|
86 |
-
else:
|
87 |
-
checkpoint = torch.load(checkpoint_path, map_location=map_location)
|
88 |
-
for mk in model_key.split('|'):
|
89 |
-
if isinstance(checkpoint, dict) and mk in checkpoint:
|
90 |
-
state_dict = checkpoint[mk]
|
91 |
-
break
|
92 |
-
else:
|
93 |
-
state_dict = checkpoint
|
94 |
-
if next(iter(state_dict.items()))[0].startswith('module'):
|
95 |
-
state_dict = {k[7:]: v for k, v in state_dict.items()}
|
96 |
-
|
97 |
-
for k in skip_list:
|
98 |
-
if k in list(state_dict.keys()):
|
99 |
-
logging.info(f"Removing key {k} from pretrained checkpoint")
|
100 |
-
del state_dict[k]
|
101 |
-
|
102 |
-
if os.getenv('RoPE') == '1':
|
103 |
-
for k in list(state_dict.keys()):
|
104 |
-
if 'freqs_cos' in k or 'freqs_sin' in k:
|
105 |
-
del state_dict[k]
|
106 |
-
return state_dict
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
def load_checkpoint(model, checkpoint_path, model_key="model|module|state_dict", strict=True):
|
111 |
-
state_dict = load_state_dict(checkpoint_path, model_key=model_key, is_openai=False)
|
112 |
-
# detect old format and make compatible with new format
|
113 |
-
if 'positional_embedding' in state_dict and not hasattr(model, 'positional_embedding'):
|
114 |
-
state_dict = convert_to_custom_text_state_dict(state_dict)
|
115 |
-
if 'text.logit_scale' in state_dict and hasattr(model, 'logit_scale'):
|
116 |
-
state_dict['logit_scale'] = state_dict['text.logit_scale']
|
117 |
-
del state_dict['text.logit_scale']
|
118 |
-
|
119 |
-
# resize_clip_pos_embed for CLIP and open CLIP
|
120 |
-
if 'visual.positional_embedding' in state_dict:
|
121 |
-
resize_clip_pos_embed(state_dict, model)
|
122 |
-
# specified to eva_vit_model
|
123 |
-
elif 'visual.pos_embed' in state_dict:
|
124 |
-
resize_evaclip_pos_embed(state_dict, model)
|
125 |
-
|
126 |
-
# resize_clip_pos_embed(state_dict, model)
|
127 |
-
incompatible_keys = model.load_state_dict(state_dict, strict=strict)
|
128 |
-
logging.info(f"incompatible_keys.missing_keys: {incompatible_keys.missing_keys}")
|
129 |
-
return incompatible_keys
|
130 |
-
|
131 |
-
def load_clip_visual_state_dict(checkpoint_path: str, map_location: str='cpu', is_openai: bool=False, skip_list:list=[]):
|
132 |
-
state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list)
|
133 |
-
|
134 |
-
for k in list(state_dict.keys()):
|
135 |
-
if not k.startswith('visual.'):
|
136 |
-
del state_dict[k]
|
137 |
-
for k in list(state_dict.keys()):
|
138 |
-
if k.startswith('visual.'):
|
139 |
-
new_k = k[7:]
|
140 |
-
state_dict[new_k] = state_dict[k]
|
141 |
-
del state_dict[k]
|
142 |
-
return state_dict
|
143 |
-
|
144 |
-
def load_clip_text_state_dict(checkpoint_path: str, map_location: str='cpu', is_openai: bool=False, skip_list:list=[]):
|
145 |
-
state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list)
|
146 |
-
|
147 |
-
for k in list(state_dict.keys()):
|
148 |
-
if k.startswith('visual.'):
|
149 |
-
del state_dict[k]
|
150 |
-
return state_dict
|
151 |
-
|
152 |
-
def get_pretrained_tag(pretrained_model):
|
153 |
-
pretrained_model = pretrained_model.lower()
|
154 |
-
if "laion" in pretrained_model or "open_clip" in pretrained_model:
|
155 |
-
return "open_clip"
|
156 |
-
elif "openai" in pretrained_model:
|
157 |
-
return "clip"
|
158 |
-
elif "eva" in pretrained_model and "clip" in pretrained_model:
|
159 |
-
return "eva_clip"
|
160 |
-
else:
|
161 |
-
return "other"
|
162 |
-
|
163 |
-
def load_pretrained_checkpoint(
|
164 |
-
model,
|
165 |
-
visual_checkpoint_path,
|
166 |
-
text_checkpoint_path,
|
167 |
-
strict=True,
|
168 |
-
visual_model=None,
|
169 |
-
text_model=None,
|
170 |
-
model_key="model|module|state_dict",
|
171 |
-
skip_list=[]):
|
172 |
-
visual_tag = get_pretrained_tag(visual_model)
|
173 |
-
text_tag = get_pretrained_tag(text_model)
|
174 |
-
|
175 |
-
logging.info(f"num of model state_dict keys: {len(model.state_dict().keys())}")
|
176 |
-
visual_incompatible_keys, text_incompatible_keys = None, None
|
177 |
-
if visual_checkpoint_path:
|
178 |
-
if visual_tag == "eva_clip" or visual_tag == "open_clip":
|
179 |
-
visual_state_dict = load_clip_visual_state_dict(visual_checkpoint_path, is_openai=False, skip_list=skip_list)
|
180 |
-
elif visual_tag == "clip":
|
181 |
-
visual_state_dict = load_clip_visual_state_dict(visual_checkpoint_path, is_openai=True, skip_list=skip_list)
|
182 |
-
else:
|
183 |
-
visual_state_dict = load_state_dict(visual_checkpoint_path, model_key=model_key, is_openai=False, skip_list=skip_list)
|
184 |
-
|
185 |
-
# resize_clip_pos_embed for CLIP and open CLIP
|
186 |
-
if 'positional_embedding' in visual_state_dict:
|
187 |
-
resize_visual_pos_embed(visual_state_dict, model)
|
188 |
-
# specified to EVA model
|
189 |
-
elif 'pos_embed' in visual_state_dict:
|
190 |
-
resize_eva_pos_embed(visual_state_dict, model)
|
191 |
-
|
192 |
-
visual_incompatible_keys = model.visual.load_state_dict(visual_state_dict, strict=strict)
|
193 |
-
logging.info(f"num of loaded visual_state_dict keys: {len(visual_state_dict.keys())}")
|
194 |
-
logging.info(f"visual_incompatible_keys.missing_keys: {visual_incompatible_keys.missing_keys}")
|
195 |
-
|
196 |
-
if text_checkpoint_path:
|
197 |
-
if text_tag == "eva_clip" or text_tag == "open_clip":
|
198 |
-
text_state_dict = load_clip_text_state_dict(text_checkpoint_path, is_openai=False, skip_list=skip_list)
|
199 |
-
elif text_tag == "clip":
|
200 |
-
text_state_dict = load_clip_text_state_dict(text_checkpoint_path, is_openai=True, skip_list=skip_list)
|
201 |
-
else:
|
202 |
-
text_state_dict = load_state_dict(visual_checkpoint_path, model_key=model_key, is_openai=False, skip_list=skip_list)
|
203 |
-
|
204 |
-
text_incompatible_keys = model.text.load_state_dict(text_state_dict, strict=strict)
|
205 |
-
|
206 |
-
logging.info(f"num of loaded text_state_dict keys: {len(text_state_dict.keys())}")
|
207 |
-
logging.info(f"text_incompatible_keys.missing_keys: {text_incompatible_keys.missing_keys}")
|
208 |
-
|
209 |
-
return visual_incompatible_keys, text_incompatible_keys
|
210 |
-
|
211 |
-
def create_model(
|
212 |
-
model_name: str,
|
213 |
-
pretrained: Optional[str] = None,
|
214 |
-
precision: str = 'fp32',
|
215 |
-
device: Union[str, torch.device] = 'cpu',
|
216 |
-
jit: bool = False,
|
217 |
-
force_quick_gelu: bool = False,
|
218 |
-
force_custom_clip: bool = False,
|
219 |
-
force_patch_dropout: Optional[float] = None,
|
220 |
-
pretrained_image: str = '',
|
221 |
-
pretrained_text: str = '',
|
222 |
-
pretrained_hf: bool = True,
|
223 |
-
pretrained_visual_model: str = None,
|
224 |
-
pretrained_text_model: str = None,
|
225 |
-
cache_dir: Optional[str] = None,
|
226 |
-
skip_list: list = [],
|
227 |
-
):
|
228 |
-
model_name = model_name.replace('/', '-') # for callers using old naming with / in ViT names
|
229 |
-
if isinstance(device, str):
|
230 |
-
device = torch.device(device)
|
231 |
-
|
232 |
-
if pretrained and pretrained.lower() == 'openai':
|
233 |
-
logging.info(f'Loading pretrained {model_name} from OpenAI.')
|
234 |
-
model = load_openai_model(
|
235 |
-
model_name,
|
236 |
-
precision=precision,
|
237 |
-
device=device,
|
238 |
-
jit=jit,
|
239 |
-
cache_dir=cache_dir,
|
240 |
-
)
|
241 |
-
else:
|
242 |
-
model_cfg = get_model_config(model_name)
|
243 |
-
if model_cfg is not None:
|
244 |
-
logging.info(f'Loaded {model_name} model config.')
|
245 |
-
else:
|
246 |
-
logging.error(f'Model config for {model_name} not found; available models {list_models()}.')
|
247 |
-
raise RuntimeError(f'Model config for {model_name} not found.')
|
248 |
-
|
249 |
-
if 'rope' in model_cfg.get('vision_cfg', {}):
|
250 |
-
if model_cfg['vision_cfg']['rope']:
|
251 |
-
os.environ['RoPE'] = "1"
|
252 |
-
else:
|
253 |
-
os.environ['RoPE'] = "0"
|
254 |
-
|
255 |
-
if force_quick_gelu:
|
256 |
-
# override for use of QuickGELU on non-OpenAI transformer models
|
257 |
-
model_cfg["quick_gelu"] = True
|
258 |
-
|
259 |
-
if force_patch_dropout is not None:
|
260 |
-
# override the default patch dropout value
|
261 |
-
model_cfg['vision_cfg']["patch_dropout"] = force_patch_dropout
|
262 |
-
|
263 |
-
cast_dtype = get_cast_dtype(precision)
|
264 |
-
custom_clip = model_cfg.pop('custom_text', False) or force_custom_clip or ('hf_model_name' in model_cfg['text_cfg'])
|
265 |
-
|
266 |
-
|
267 |
-
if custom_clip:
|
268 |
-
if 'hf_model_name' in model_cfg.get('text_cfg', {}):
|
269 |
-
model_cfg['text_cfg']['hf_model_pretrained'] = pretrained_hf
|
270 |
-
model = CustomCLIP(**model_cfg, cast_dtype=cast_dtype)
|
271 |
-
else:
|
272 |
-
model = CLIP(**model_cfg, cast_dtype=cast_dtype)
|
273 |
-
|
274 |
-
pretrained_cfg = {}
|
275 |
-
if pretrained:
|
276 |
-
checkpoint_path = ''
|
277 |
-
pretrained_cfg = get_pretrained_cfg(model_name, pretrained)
|
278 |
-
if pretrained_cfg:
|
279 |
-
checkpoint_path = download_pretrained(pretrained_cfg, cache_dir=cache_dir)
|
280 |
-
elif os.path.exists(pretrained):
|
281 |
-
checkpoint_path = pretrained
|
282 |
-
|
283 |
-
if checkpoint_path:
|
284 |
-
logging.info(f'Loading pretrained {model_name} weights ({pretrained}).')
|
285 |
-
load_checkpoint(model,
|
286 |
-
checkpoint_path,
|
287 |
-
model_key="model|module|state_dict",
|
288 |
-
strict=False
|
289 |
-
)
|
290 |
-
else:
|
291 |
-
error_str = (
|
292 |
-
f'Pretrained weights ({pretrained}) not found for model {model_name}.'
|
293 |
-
f'Available pretrained tags ({list_pretrained_tags_by_model(model_name)}.')
|
294 |
-
logging.warning(error_str)
|
295 |
-
raise RuntimeError(error_str)
|
296 |
-
else:
|
297 |
-
visual_checkpoint_path = ''
|
298 |
-
text_checkpoint_path = ''
|
299 |
-
|
300 |
-
if pretrained_image:
|
301 |
-
pretrained_visual_model = pretrained_visual_model.replace('/', '-') # for callers using old naming with / in ViT names
|
302 |
-
pretrained_image_cfg = get_pretrained_cfg(pretrained_visual_model, pretrained_image)
|
303 |
-
if 'timm_model_name' in model_cfg.get('vision_cfg', {}):
|
304 |
-
# pretrained weight loading for timm models set via vision_cfg
|
305 |
-
model_cfg['vision_cfg']['timm_model_pretrained'] = True
|
306 |
-
elif pretrained_image_cfg:
|
307 |
-
visual_checkpoint_path = download_pretrained(pretrained_image_cfg, cache_dir=cache_dir)
|
308 |
-
elif os.path.exists(pretrained_image):
|
309 |
-
visual_checkpoint_path = pretrained_image
|
310 |
-
else:
|
311 |
-
logging.warning(f'Pretrained weights ({visual_checkpoint_path}) not found for model {model_name}.visual.')
|
312 |
-
raise RuntimeError(f'Pretrained weights ({visual_checkpoint_path}) not found for model {model_name}.visual.')
|
313 |
-
|
314 |
-
if pretrained_text:
|
315 |
-
pretrained_text_model = pretrained_text_model.replace('/', '-') # for callers using old naming with / in ViT names
|
316 |
-
pretrained_text_cfg = get_pretrained_cfg(pretrained_text_model, pretrained_text)
|
317 |
-
if pretrained_image_cfg:
|
318 |
-
text_checkpoint_path = download_pretrained(pretrained_text_cfg, cache_dir=cache_dir)
|
319 |
-
elif os.path.exists(pretrained_text):
|
320 |
-
text_checkpoint_path = pretrained_text
|
321 |
-
else:
|
322 |
-
logging.warning(f'Pretrained weights ({text_checkpoint_path}) not found for model {model_name}.text.')
|
323 |
-
raise RuntimeError(f'Pretrained weights ({text_checkpoint_path}) not found for model {model_name}.text.')
|
324 |
-
|
325 |
-
if visual_checkpoint_path:
|
326 |
-
logging.info(f'Loading pretrained {model_name}.visual weights ({visual_checkpoint_path}).')
|
327 |
-
if text_checkpoint_path:
|
328 |
-
logging.info(f'Loading pretrained {model_name}.text weights ({text_checkpoint_path}).')
|
329 |
-
|
330 |
-
if visual_checkpoint_path or text_checkpoint_path:
|
331 |
-
load_pretrained_checkpoint(
|
332 |
-
model,
|
333 |
-
visual_checkpoint_path,
|
334 |
-
text_checkpoint_path,
|
335 |
-
strict=False,
|
336 |
-
visual_model=pretrained_visual_model,
|
337 |
-
text_model=pretrained_text_model,
|
338 |
-
model_key="model|module|state_dict",
|
339 |
-
skip_list=skip_list
|
340 |
-
)
|
341 |
-
|
342 |
-
if "fp16" in precision or "bf16" in precision:
|
343 |
-
logging.info(f'convert precision to {precision}')
|
344 |
-
model = model.to(torch.bfloat16) if 'bf16' in precision else model.to(torch.float16)
|
345 |
-
|
346 |
-
model.to(device=device)
|
347 |
-
|
348 |
-
# set image / mean metadata from pretrained_cfg if available, or use default
|
349 |
-
model.visual.image_mean = pretrained_cfg.get('mean', None) or OPENAI_DATASET_MEAN
|
350 |
-
model.visual.image_std = pretrained_cfg.get('std', None) or OPENAI_DATASET_STD
|
351 |
-
|
352 |
-
if jit:
|
353 |
-
model = torch.jit.script(model)
|
354 |
-
|
355 |
-
return model
|
356 |
-
|
357 |
-
|
358 |
-
def create_model_and_transforms(
|
359 |
-
model_name: str,
|
360 |
-
pretrained: Optional[str] = None,
|
361 |
-
precision: str = 'fp32',
|
362 |
-
device: Union[str, torch.device] = 'cpu',
|
363 |
-
jit: bool = False,
|
364 |
-
force_quick_gelu: bool = False,
|
365 |
-
force_custom_clip: bool = False,
|
366 |
-
force_patch_dropout: Optional[float] = None,
|
367 |
-
pretrained_image: str = '',
|
368 |
-
pretrained_text: str = '',
|
369 |
-
pretrained_hf: bool = True,
|
370 |
-
pretrained_visual_model: str = None,
|
371 |
-
pretrained_text_model: str = None,
|
372 |
-
image_mean: Optional[Tuple[float, ...]] = None,
|
373 |
-
image_std: Optional[Tuple[float, ...]] = None,
|
374 |
-
cache_dir: Optional[str] = None,
|
375 |
-
skip_list: list = [],
|
376 |
-
):
|
377 |
-
model = create_model(
|
378 |
-
model_name,
|
379 |
-
pretrained,
|
380 |
-
precision=precision,
|
381 |
-
device=device,
|
382 |
-
jit=jit,
|
383 |
-
force_quick_gelu=force_quick_gelu,
|
384 |
-
force_custom_clip=force_custom_clip,
|
385 |
-
force_patch_dropout=force_patch_dropout,
|
386 |
-
pretrained_image=pretrained_image,
|
387 |
-
pretrained_text=pretrained_text,
|
388 |
-
pretrained_hf=pretrained_hf,
|
389 |
-
pretrained_visual_model=pretrained_visual_model,
|
390 |
-
pretrained_text_model=pretrained_text_model,
|
391 |
-
cache_dir=cache_dir,
|
392 |
-
skip_list=skip_list,
|
393 |
-
)
|
394 |
-
|
395 |
-
image_mean = image_mean or getattr(model.visual, 'image_mean', None)
|
396 |
-
image_std = image_std or getattr(model.visual, 'image_std', None)
|
397 |
-
preprocess_train = image_transform(
|
398 |
-
model.visual.image_size,
|
399 |
-
is_train=True,
|
400 |
-
mean=image_mean,
|
401 |
-
std=image_std
|
402 |
-
)
|
403 |
-
preprocess_val = image_transform(
|
404 |
-
model.visual.image_size,
|
405 |
-
is_train=False,
|
406 |
-
mean=image_mean,
|
407 |
-
std=image_std
|
408 |
-
)
|
409 |
-
|
410 |
-
return model, preprocess_train, preprocess_val
|
411 |
-
|
412 |
-
|
413 |
-
def create_transforms(
|
414 |
-
model_name: str,
|
415 |
-
pretrained: Optional[str] = None,
|
416 |
-
precision: str = 'fp32',
|
417 |
-
device: Union[str, torch.device] = 'cpu',
|
418 |
-
jit: bool = False,
|
419 |
-
force_quick_gelu: bool = False,
|
420 |
-
force_custom_clip: bool = False,
|
421 |
-
force_patch_dropout: Optional[float] = None,
|
422 |
-
pretrained_image: str = '',
|
423 |
-
pretrained_text: str = '',
|
424 |
-
pretrained_hf: bool = True,
|
425 |
-
pretrained_visual_model: str = None,
|
426 |
-
pretrained_text_model: str = None,
|
427 |
-
image_mean: Optional[Tuple[float, ...]] = None,
|
428 |
-
image_std: Optional[Tuple[float, ...]] = None,
|
429 |
-
cache_dir: Optional[str] = None,
|
430 |
-
skip_list: list = [],
|
431 |
-
):
|
432 |
-
model = create_model(
|
433 |
-
model_name,
|
434 |
-
pretrained,
|
435 |
-
precision=precision,
|
436 |
-
device=device,
|
437 |
-
jit=jit,
|
438 |
-
force_quick_gelu=force_quick_gelu,
|
439 |
-
force_custom_clip=force_custom_clip,
|
440 |
-
force_patch_dropout=force_patch_dropout,
|
441 |
-
pretrained_image=pretrained_image,
|
442 |
-
pretrained_text=pretrained_text,
|
443 |
-
pretrained_hf=pretrained_hf,
|
444 |
-
pretrained_visual_model=pretrained_visual_model,
|
445 |
-
pretrained_text_model=pretrained_text_model,
|
446 |
-
cache_dir=cache_dir,
|
447 |
-
skip_list=skip_list,
|
448 |
-
)
|
449 |
-
|
450 |
-
|
451 |
-
image_mean = image_mean or getattr(model.visual, 'image_mean', None)
|
452 |
-
image_std = image_std or getattr(model.visual, 'image_std', None)
|
453 |
-
preprocess_train = image_transform(
|
454 |
-
model.visual.image_size,
|
455 |
-
is_train=True,
|
456 |
-
mean=image_mean,
|
457 |
-
std=image_std
|
458 |
-
)
|
459 |
-
preprocess_val = image_transform(
|
460 |
-
model.visual.image_size,
|
461 |
-
is_train=False,
|
462 |
-
mean=image_mean,
|
463 |
-
std=image_std
|
464 |
-
)
|
465 |
-
del model
|
466 |
-
|
467 |
-
return preprocess_train, preprocess_val
|
468 |
-
|
469 |
-
def create_model_from_pretrained(
|
470 |
-
model_name: str,
|
471 |
-
pretrained: str,
|
472 |
-
precision: str = 'fp32',
|
473 |
-
device: Union[str, torch.device] = 'cpu',
|
474 |
-
jit: bool = False,
|
475 |
-
force_quick_gelu: bool = False,
|
476 |
-
force_custom_clip: bool = False,
|
477 |
-
force_patch_dropout: Optional[float] = None,
|
478 |
-
return_transform: bool = True,
|
479 |
-
image_mean: Optional[Tuple[float, ...]] = None,
|
480 |
-
image_std: Optional[Tuple[float, ...]] = None,
|
481 |
-
cache_dir: Optional[str] = None,
|
482 |
-
is_frozen: bool = False,
|
483 |
-
):
|
484 |
-
if not is_pretrained_cfg(model_name, pretrained) and not os.path.exists(pretrained):
|
485 |
-
raise RuntimeError(
|
486 |
-
f'{pretrained} is not a valid pretrained cfg or checkpoint for {model_name}.'
|
487 |
-
f' Use open_clip.list_pretrained() to find one.')
|
488 |
-
|
489 |
-
model = create_model(
|
490 |
-
model_name,
|
491 |
-
pretrained,
|
492 |
-
precision=precision,
|
493 |
-
device=device,
|
494 |
-
jit=jit,
|
495 |
-
force_quick_gelu=force_quick_gelu,
|
496 |
-
force_custom_clip=force_custom_clip,
|
497 |
-
force_patch_dropout=force_patch_dropout,
|
498 |
-
cache_dir=cache_dir,
|
499 |
-
)
|
500 |
-
|
501 |
-
if is_frozen:
|
502 |
-
for param in model.parameters():
|
503 |
-
param.requires_grad = False
|
504 |
-
|
505 |
-
if not return_transform:
|
506 |
-
return model
|
507 |
-
|
508 |
-
image_mean = image_mean or getattr(model.visual, 'image_mean', None)
|
509 |
-
image_std = image_std or getattr(model.visual, 'image_std', None)
|
510 |
-
preprocess = image_transform(
|
511 |
-
model.visual.image_size,
|
512 |
-
is_train=False,
|
513 |
-
mean=image_mean,
|
514 |
-
std=image_std
|
515 |
-
)
|
516 |
-
|
517 |
-
return model, preprocess
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/eva_clip/hf_configs.py
DELETED
@@ -1,57 +0,0 @@
|
|
1 |
-
# HF architecture dict:
|
2 |
-
arch_dict = {
|
3 |
-
# https://huggingface.co/docs/transformers/model_doc/roberta#roberta
|
4 |
-
"roberta": {
|
5 |
-
"config_names": {
|
6 |
-
"context_length": "max_position_embeddings",
|
7 |
-
"vocab_size": "vocab_size",
|
8 |
-
"width": "hidden_size",
|
9 |
-
"heads": "num_attention_heads",
|
10 |
-
"layers": "num_hidden_layers",
|
11 |
-
"layer_attr": "layer",
|
12 |
-
"token_embeddings_attr": "embeddings"
|
13 |
-
},
|
14 |
-
"pooler": "mean_pooler",
|
15 |
-
},
|
16 |
-
# https://huggingface.co/docs/transformers/model_doc/xlm-roberta#transformers.XLMRobertaConfig
|
17 |
-
"xlm-roberta": {
|
18 |
-
"config_names": {
|
19 |
-
"context_length": "max_position_embeddings",
|
20 |
-
"vocab_size": "vocab_size",
|
21 |
-
"width": "hidden_size",
|
22 |
-
"heads": "num_attention_heads",
|
23 |
-
"layers": "num_hidden_layers",
|
24 |
-
"layer_attr": "layer",
|
25 |
-
"token_embeddings_attr": "embeddings"
|
26 |
-
},
|
27 |
-
"pooler": "mean_pooler",
|
28 |
-
},
|
29 |
-
# https://huggingface.co/docs/transformers/model_doc/mt5#mt5
|
30 |
-
"mt5": {
|
31 |
-
"config_names": {
|
32 |
-
# unlimited seqlen
|
33 |
-
# https://github.com/google-research/text-to-text-transfer-transformer/issues/273
|
34 |
-
# https://github.com/huggingface/transformers/blob/v4.24.0/src/transformers/models/t5/modeling_t5.py#L374
|
35 |
-
"context_length": "",
|
36 |
-
"vocab_size": "vocab_size",
|
37 |
-
"width": "d_model",
|
38 |
-
"heads": "num_heads",
|
39 |
-
"layers": "num_layers",
|
40 |
-
"layer_attr": "block",
|
41 |
-
"token_embeddings_attr": "embed_tokens"
|
42 |
-
},
|
43 |
-
"pooler": "mean_pooler",
|
44 |
-
},
|
45 |
-
"bert": {
|
46 |
-
"config_names": {
|
47 |
-
"context_length": "max_position_embeddings",
|
48 |
-
"vocab_size": "vocab_size",
|
49 |
-
"width": "hidden_size",
|
50 |
-
"heads": "num_attention_heads",
|
51 |
-
"layers": "num_hidden_layers",
|
52 |
-
"layer_attr": "layer",
|
53 |
-
"token_embeddings_attr": "embeddings"
|
54 |
-
},
|
55 |
-
"pooler": "mean_pooler",
|
56 |
-
}
|
57 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/eva_clip/hf_model.py
DELETED
@@ -1,248 +0,0 @@
|
|
1 |
-
""" huggingface model adapter
|
2 |
-
|
3 |
-
Wraps HuggingFace transformers (https://github.com/huggingface/transformers) models for use as a text tower in CLIP model.
|
4 |
-
"""
|
5 |
-
|
6 |
-
import re
|
7 |
-
|
8 |
-
import torch
|
9 |
-
import torch.nn as nn
|
10 |
-
from torch.nn import functional as F
|
11 |
-
from torch import TensorType
|
12 |
-
try:
|
13 |
-
import transformers
|
14 |
-
from transformers import AutoModel, AutoModelForMaskedLM, AutoTokenizer, AutoConfig, PretrainedConfig
|
15 |
-
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, \
|
16 |
-
BaseModelOutputWithPoolingAndCrossAttentions
|
17 |
-
except ImportError as e:
|
18 |
-
transformers = None
|
19 |
-
|
20 |
-
|
21 |
-
class BaseModelOutput:
|
22 |
-
pass
|
23 |
-
|
24 |
-
|
25 |
-
class PretrainedConfig:
|
26 |
-
pass
|
27 |
-
|
28 |
-
from .hf_configs import arch_dict
|
29 |
-
|
30 |
-
# utils
|
31 |
-
def _camel2snake(s):
|
32 |
-
return re.sub(r'(?<!^)(?=[A-Z])', '_', s).lower()
|
33 |
-
|
34 |
-
# TODO: ?last - for gpt-like models
|
35 |
-
_POOLERS = {}
|
36 |
-
|
37 |
-
def register_pooler(cls):
|
38 |
-
"""Decorator registering pooler class"""
|
39 |
-
_POOLERS[_camel2snake(cls.__name__)] = cls
|
40 |
-
return cls
|
41 |
-
|
42 |
-
|
43 |
-
@register_pooler
|
44 |
-
class MeanPooler(nn.Module):
|
45 |
-
"""Mean pooling"""
|
46 |
-
def forward(self, x:BaseModelOutput, attention_mask:TensorType):
|
47 |
-
masked_output = x.last_hidden_state * attention_mask.unsqueeze(-1)
|
48 |
-
return masked_output.sum(dim=1) / attention_mask.sum(-1, keepdim=True)
|
49 |
-
|
50 |
-
@register_pooler
|
51 |
-
class MaxPooler(nn.Module):
|
52 |
-
"""Max pooling"""
|
53 |
-
def forward(self, x:BaseModelOutput, attention_mask:TensorType):
|
54 |
-
masked_output = x.last_hidden_state.masked_fill(attention_mask.unsqueeze(-1), -torch.inf)
|
55 |
-
return masked_output.max(1).values
|
56 |
-
|
57 |
-
@register_pooler
|
58 |
-
class ClsPooler(nn.Module):
|
59 |
-
"""CLS token pooling"""
|
60 |
-
def __init__(self, use_pooler_output=True):
|
61 |
-
super().__init__()
|
62 |
-
self.cls_token_position = 0
|
63 |
-
self.use_pooler_output = use_pooler_output
|
64 |
-
|
65 |
-
def forward(self, x:BaseModelOutput, attention_mask:TensorType):
|
66 |
-
|
67 |
-
if (self.use_pooler_output and
|
68 |
-
isinstance(x, (BaseModelOutputWithPooling, BaseModelOutputWithPoolingAndCrossAttentions)) and
|
69 |
-
(x.pooler_output is not None)
|
70 |
-
):
|
71 |
-
return x.pooler_output
|
72 |
-
|
73 |
-
return x.last_hidden_state[:, self.cls_token_position, :]
|
74 |
-
|
75 |
-
class HFTextEncoder(nn.Module):
|
76 |
-
"""HuggingFace model adapter"""
|
77 |
-
def __init__(
|
78 |
-
self,
|
79 |
-
model_name_or_path: str,
|
80 |
-
output_dim: int,
|
81 |
-
tokenizer_name: str = None,
|
82 |
-
config: PretrainedConfig = None,
|
83 |
-
pooler_type: str = None,
|
84 |
-
proj: str = None,
|
85 |
-
pretrained: bool = True,
|
86 |
-
masked_language_modeling: bool = False):
|
87 |
-
super().__init__()
|
88 |
-
|
89 |
-
self.output_dim = output_dim
|
90 |
-
|
91 |
-
# TODO: find better way to get this information
|
92 |
-
uses_transformer_pooler = (pooler_type == "cls_pooler")
|
93 |
-
|
94 |
-
if transformers is None:
|
95 |
-
raise RuntimeError("Please `pip install transformers` to use pre-trained HuggingFace models")
|
96 |
-
if config is None:
|
97 |
-
self.config = AutoConfig.from_pretrained(model_name_or_path)
|
98 |
-
if masked_language_modeling:
|
99 |
-
create_func, model_args = (AutoModelForMaskedLM.from_pretrained, model_name_or_path) if pretrained else (
|
100 |
-
AutoModelForMaskedLM.from_config, self.config)
|
101 |
-
else:
|
102 |
-
create_func, model_args = (AutoModel.from_pretrained, model_name_or_path) if pretrained else (
|
103 |
-
AutoModel.from_config, self.config)
|
104 |
-
# TODO: do all model configs have this attribute? PretrainedConfig does so yes??
|
105 |
-
if hasattr(self.config, "is_encoder_decoder") and self.config.is_encoder_decoder:
|
106 |
-
self.transformer = create_func(model_args)
|
107 |
-
self.transformer = self.transformer.encoder
|
108 |
-
else:
|
109 |
-
self.transformer = create_func(model_args, add_pooling_layer=uses_transformer_pooler)
|
110 |
-
else:
|
111 |
-
self.config = config
|
112 |
-
if masked_language_modeling:
|
113 |
-
self.transformer = AutoModelForMaskedLM.from_config(config)
|
114 |
-
else:
|
115 |
-
self.transformer = AutoModel.from_config(config)
|
116 |
-
|
117 |
-
if pooler_type is None: # get default arch pooler
|
118 |
-
self.pooler = _POOLERS[(arch_dict[self.config.model_type]["pooler"])]()
|
119 |
-
else:
|
120 |
-
self.pooler = _POOLERS[pooler_type]()
|
121 |
-
|
122 |
-
d_model = getattr(self.config, arch_dict[self.config.model_type]["config_names"]["width"])
|
123 |
-
if (d_model == output_dim) and (proj is None): # do we always need a proj?
|
124 |
-
self.proj = nn.Identity()
|
125 |
-
elif proj == 'linear':
|
126 |
-
self.proj = nn.Linear(d_model, output_dim, bias=False)
|
127 |
-
elif proj == 'mlp':
|
128 |
-
hidden_size = (d_model + output_dim) // 2
|
129 |
-
self.proj = nn.Sequential(
|
130 |
-
nn.Linear(d_model, hidden_size, bias=False),
|
131 |
-
nn.GELU(),
|
132 |
-
nn.Linear(hidden_size, output_dim, bias=False),
|
133 |
-
)
|
134 |
-
|
135 |
-
# self.itm_proj = nn.Linear(d_model, 2, bias=False)
|
136 |
-
# self.mlm_proj = nn.Linear(d_model, self.config.vocab_size), bias=False)
|
137 |
-
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
|
138 |
-
|
139 |
-
# def forward_itm(self, x:TensorType, image_embeds:TensorType) -> TensorType:
|
140 |
-
# image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(x.device)
|
141 |
-
# attn_mask = (x != self.config.pad_token_id).long()
|
142 |
-
# out = self.transformer(
|
143 |
-
# input_ids=x,
|
144 |
-
# attention_mask=attn_mask,
|
145 |
-
# encoder_hidden_states = image_embeds,
|
146 |
-
# encoder_attention_mask = image_atts,
|
147 |
-
# )
|
148 |
-
# pooled_out = self.pooler(out, attn_mask)
|
149 |
-
|
150 |
-
# return self.itm_proj(pooled_out)
|
151 |
-
|
152 |
-
def mask(self, input_ids, vocab_size, device, targets=None, masked_indices=None, probability_matrix=None):
|
153 |
-
if masked_indices is None:
|
154 |
-
masked_indices = torch.bernoulli(probability_matrix).bool()
|
155 |
-
|
156 |
-
masked_indices[input_ids == self.tokenizer.pad_token_id] = False
|
157 |
-
masked_indices[input_ids == self.tokenizer.cls_token_id] = False
|
158 |
-
|
159 |
-
if targets is not None:
|
160 |
-
targets[~masked_indices] = -100 # We only compute loss on masked tokens
|
161 |
-
|
162 |
-
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
|
163 |
-
indices_replaced = torch.bernoulli(torch.full(input_ids.shape, 0.8)).bool() & masked_indices
|
164 |
-
input_ids[indices_replaced] = self.tokenizer.mask_token_id
|
165 |
-
|
166 |
-
# 10% of the time, we replace masked input tokens with random word
|
167 |
-
indices_random = torch.bernoulli(torch.full(input_ids.shape, 0.5)).bool() & masked_indices & ~indices_replaced
|
168 |
-
random_words = torch.randint(vocab_size, input_ids.shape, dtype=torch.long).to(device)
|
169 |
-
input_ids[indices_random] = random_words[indices_random]
|
170 |
-
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
|
171 |
-
|
172 |
-
if targets is not None:
|
173 |
-
return input_ids, targets
|
174 |
-
else:
|
175 |
-
return input_ids
|
176 |
-
|
177 |
-
def forward_mlm(self, input_ids, image_embeds, mlm_probability=0.25):
|
178 |
-
labels = input_ids.clone()
|
179 |
-
attn_mask = (input_ids != self.config.pad_token_id).long()
|
180 |
-
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(input_ids.device)
|
181 |
-
vocab_size = getattr(self.config, arch_dict[self.config.model_type]["config_names"]["vocab_size"])
|
182 |
-
probability_matrix = torch.full(labels.shape, mlm_probability)
|
183 |
-
input_ids, labels = self.mask(input_ids, vocab_size, input_ids.device, targets=labels,
|
184 |
-
probability_matrix = probability_matrix)
|
185 |
-
mlm_output = self.transformer(input_ids,
|
186 |
-
attention_mask = attn_mask,
|
187 |
-
encoder_hidden_states = image_embeds,
|
188 |
-
encoder_attention_mask = image_atts,
|
189 |
-
return_dict = True,
|
190 |
-
labels = labels,
|
191 |
-
)
|
192 |
-
return mlm_output.loss
|
193 |
-
# mlm_output = self.transformer(input_ids,
|
194 |
-
# attention_mask = attn_mask,
|
195 |
-
# encoder_hidden_states = image_embeds,
|
196 |
-
# encoder_attention_mask = image_atts,
|
197 |
-
# return_dict = True,
|
198 |
-
# ).last_hidden_state
|
199 |
-
# logits = self.mlm_proj(mlm_output)
|
200 |
-
|
201 |
-
# # logits = logits[:, :-1, :].contiguous().view(-1, vocab_size)
|
202 |
-
# logits = logits[:, 1:, :].contiguous().view(-1, vocab_size)
|
203 |
-
# labels = labels[:, 1:].contiguous().view(-1)
|
204 |
-
|
205 |
-
# mlm_loss = F.cross_entropy(
|
206 |
-
# logits,
|
207 |
-
# labels,
|
208 |
-
# # label_smoothing=0.1,
|
209 |
-
# )
|
210 |
-
# return mlm_loss
|
211 |
-
|
212 |
-
|
213 |
-
def forward(self, x:TensorType) -> TensorType:
|
214 |
-
attn_mask = (x != self.config.pad_token_id).long()
|
215 |
-
out = self.transformer(input_ids=x, attention_mask=attn_mask)
|
216 |
-
pooled_out = self.pooler(out, attn_mask)
|
217 |
-
|
218 |
-
return self.proj(pooled_out)
|
219 |
-
|
220 |
-
def lock(self, unlocked_layers:int=0, freeze_layer_norm:bool=True):
|
221 |
-
if not unlocked_layers: # full freezing
|
222 |
-
for n, p in self.transformer.named_parameters():
|
223 |
-
p.requires_grad = (not freeze_layer_norm) if "LayerNorm" in n.split(".") else False
|
224 |
-
return
|
225 |
-
|
226 |
-
encoder = self.transformer.encoder if hasattr(self.transformer, 'encoder') else self.transformer
|
227 |
-
layer_list = getattr(encoder, arch_dict[self.config.model_type]["config_names"]["layer_attr"])
|
228 |
-
print(f"Unlocking {unlocked_layers}/{len(layer_list) + 1} layers of hf model")
|
229 |
-
embeddings = getattr(
|
230 |
-
self.transformer, arch_dict[self.config.model_type]["config_names"]["token_embeddings_attr"])
|
231 |
-
modules = [embeddings, *layer_list][:-unlocked_layers]
|
232 |
-
# freeze layers
|
233 |
-
for module in modules:
|
234 |
-
for n, p in module.named_parameters():
|
235 |
-
p.requires_grad = (not freeze_layer_norm) if "LayerNorm" in n.split(".") else False
|
236 |
-
|
237 |
-
|
238 |
-
@torch.jit.ignore
|
239 |
-
def set_grad_checkpointing(self, enable=True):
|
240 |
-
self.transformer.gradient_checkpointing_enable()
|
241 |
-
|
242 |
-
def get_num_layers(self):
|
243 |
-
encoder = self.transformer.encoder if hasattr(self.transformer, 'encoder') else self.transformer
|
244 |
-
layer_list = getattr(encoder, arch_dict[self.config.model_type]["config_names"]["layer_attr"])
|
245 |
-
return len(layer_list)
|
246 |
-
|
247 |
-
def init_parameters(self):
|
248 |
-
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/eva_clip/loss.py
DELETED
@@ -1,138 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
import torch
|
3 |
-
import torch.nn as nn
|
4 |
-
from torch.nn import functional as F
|
5 |
-
|
6 |
-
try:
|
7 |
-
import torch.distributed.nn
|
8 |
-
from torch import distributed as dist
|
9 |
-
has_distributed = True
|
10 |
-
except ImportError:
|
11 |
-
has_distributed = False
|
12 |
-
|
13 |
-
try:
|
14 |
-
import horovod.torch as hvd
|
15 |
-
except ImportError:
|
16 |
-
hvd = None
|
17 |
-
|
18 |
-
from timm.loss import LabelSmoothingCrossEntropy
|
19 |
-
|
20 |
-
|
21 |
-
def gather_features(
|
22 |
-
image_features,
|
23 |
-
text_features,
|
24 |
-
local_loss=False,
|
25 |
-
gather_with_grad=False,
|
26 |
-
rank=0,
|
27 |
-
world_size=1,
|
28 |
-
use_horovod=False
|
29 |
-
):
|
30 |
-
assert has_distributed, 'torch.distributed did not import correctly, please use a PyTorch version with support.'
|
31 |
-
if use_horovod:
|
32 |
-
assert hvd is not None, 'Please install horovod'
|
33 |
-
if gather_with_grad:
|
34 |
-
all_image_features = hvd.allgather(image_features)
|
35 |
-
all_text_features = hvd.allgather(text_features)
|
36 |
-
else:
|
37 |
-
with torch.no_grad():
|
38 |
-
all_image_features = hvd.allgather(image_features)
|
39 |
-
all_text_features = hvd.allgather(text_features)
|
40 |
-
if not local_loss:
|
41 |
-
# ensure grads for local rank when all_* features don't have a gradient
|
42 |
-
gathered_image_features = list(all_image_features.chunk(world_size, dim=0))
|
43 |
-
gathered_text_features = list(all_text_features.chunk(world_size, dim=0))
|
44 |
-
gathered_image_features[rank] = image_features
|
45 |
-
gathered_text_features[rank] = text_features
|
46 |
-
all_image_features = torch.cat(gathered_image_features, dim=0)
|
47 |
-
all_text_features = torch.cat(gathered_text_features, dim=0)
|
48 |
-
else:
|
49 |
-
# We gather tensors from all gpus
|
50 |
-
if gather_with_grad:
|
51 |
-
all_image_features = torch.cat(torch.distributed.nn.all_gather(image_features), dim=0)
|
52 |
-
all_text_features = torch.cat(torch.distributed.nn.all_gather(text_features), dim=0)
|
53 |
-
# all_image_features = torch.cat(torch.distributed.nn.all_gather(image_features, async_op=True), dim=0)
|
54 |
-
# all_text_features = torch.cat(torch.distributed.nn.all_gather(text_features, async_op=True), dim=0)
|
55 |
-
else:
|
56 |
-
gathered_image_features = [torch.zeros_like(image_features) for _ in range(world_size)]
|
57 |
-
gathered_text_features = [torch.zeros_like(text_features) for _ in range(world_size)]
|
58 |
-
dist.all_gather(gathered_image_features, image_features)
|
59 |
-
dist.all_gather(gathered_text_features, text_features)
|
60 |
-
if not local_loss:
|
61 |
-
# ensure grads for local rank when all_* features don't have a gradient
|
62 |
-
gathered_image_features[rank] = image_features
|
63 |
-
gathered_text_features[rank] = text_features
|
64 |
-
all_image_features = torch.cat(gathered_image_features, dim=0)
|
65 |
-
all_text_features = torch.cat(gathered_text_features, dim=0)
|
66 |
-
|
67 |
-
return all_image_features, all_text_features
|
68 |
-
|
69 |
-
|
70 |
-
class ClipLoss(nn.Module):
|
71 |
-
|
72 |
-
def __init__(
|
73 |
-
self,
|
74 |
-
local_loss=False,
|
75 |
-
gather_with_grad=False,
|
76 |
-
cache_labels=False,
|
77 |
-
rank=0,
|
78 |
-
world_size=1,
|
79 |
-
use_horovod=False,
|
80 |
-
smoothing=0.,
|
81 |
-
):
|
82 |
-
super().__init__()
|
83 |
-
self.local_loss = local_loss
|
84 |
-
self.gather_with_grad = gather_with_grad
|
85 |
-
self.cache_labels = cache_labels
|
86 |
-
self.rank = rank
|
87 |
-
self.world_size = world_size
|
88 |
-
self.use_horovod = use_horovod
|
89 |
-
self.label_smoothing_cross_entropy = LabelSmoothingCrossEntropy(smoothing=smoothing) if smoothing > 0 else None
|
90 |
-
|
91 |
-
# cache state
|
92 |
-
self.prev_num_logits = 0
|
93 |
-
self.labels = {}
|
94 |
-
|
95 |
-
def forward(self, image_features, text_features, logit_scale=1.):
|
96 |
-
device = image_features.device
|
97 |
-
if self.world_size > 1:
|
98 |
-
all_image_features, all_text_features = gather_features(
|
99 |
-
image_features, text_features,
|
100 |
-
self.local_loss, self.gather_with_grad, self.rank, self.world_size, self.use_horovod)
|
101 |
-
|
102 |
-
if self.local_loss:
|
103 |
-
logits_per_image = logit_scale * image_features @ all_text_features.T
|
104 |
-
logits_per_text = logit_scale * text_features @ all_image_features.T
|
105 |
-
else:
|
106 |
-
logits_per_image = logit_scale * all_image_features @ all_text_features.T
|
107 |
-
logits_per_text = logits_per_image.T
|
108 |
-
else:
|
109 |
-
logits_per_image = logit_scale * image_features @ text_features.T
|
110 |
-
logits_per_text = logit_scale * text_features @ image_features.T
|
111 |
-
# calculated ground-truth and cache if enabled
|
112 |
-
num_logits = logits_per_image.shape[0]
|
113 |
-
if self.prev_num_logits != num_logits or device not in self.labels:
|
114 |
-
labels = torch.arange(num_logits, device=device, dtype=torch.long)
|
115 |
-
if self.world_size > 1 and self.local_loss:
|
116 |
-
labels = labels + num_logits * self.rank
|
117 |
-
if self.cache_labels:
|
118 |
-
self.labels[device] = labels
|
119 |
-
self.prev_num_logits = num_logits
|
120 |
-
else:
|
121 |
-
labels = self.labels[device]
|
122 |
-
|
123 |
-
if self.label_smoothing_cross_entropy:
|
124 |
-
total_loss = (
|
125 |
-
self.label_smoothing_cross_entropy(logits_per_image, labels) +
|
126 |
-
self.label_smoothing_cross_entropy(logits_per_text, labels)
|
127 |
-
) / 2
|
128 |
-
else:
|
129 |
-
total_loss = (
|
130 |
-
F.cross_entropy(logits_per_image, labels) +
|
131 |
-
F.cross_entropy(logits_per_text, labels)
|
132 |
-
) / 2
|
133 |
-
|
134 |
-
acc = None
|
135 |
-
i2t_acc = (logits_per_image.argmax(-1) == labels).sum() / len(logits_per_image)
|
136 |
-
t2i_acc = (logits_per_text.argmax(-1) == labels).sum() / len(logits_per_text)
|
137 |
-
acc = {"i2t": i2t_acc, "t2i": t2i_acc}
|
138 |
-
return total_loss, acc
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/eva_clip/model.py
DELETED
@@ -1,439 +0,0 @@
|
|
1 |
-
""" CLIP Model
|
2 |
-
|
3 |
-
Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
|
4 |
-
"""
|
5 |
-
import os
|
6 |
-
from dataclasses import dataclass
|
7 |
-
from typing import Optional, Tuple, Union
|
8 |
-
from functools import partial
|
9 |
-
|
10 |
-
import numpy as np
|
11 |
-
import torch
|
12 |
-
import torch.nn.functional as F
|
13 |
-
from torch import nn
|
14 |
-
|
15 |
-
try:
|
16 |
-
from .hf_model import HFTextEncoder
|
17 |
-
except:
|
18 |
-
HFTextEncoder = None
|
19 |
-
from .modified_resnet import ModifiedResNet
|
20 |
-
from .timm_model import TimmModel
|
21 |
-
from .eva_vit_model import EVAVisionTransformer
|
22 |
-
from .transformer import LayerNorm, QuickGELU, Attention, VisionTransformer, TextTransformer
|
23 |
-
|
24 |
-
try:
|
25 |
-
from apex.normalization import FusedLayerNorm
|
26 |
-
except:
|
27 |
-
FusedLayerNorm = LayerNorm
|
28 |
-
print("Please 'pip install apex'")
|
29 |
-
|
30 |
-
try:
|
31 |
-
import xformers.ops as xops
|
32 |
-
except ImportError:
|
33 |
-
xops = None
|
34 |
-
print("Please 'pip install xformers'")
|
35 |
-
|
36 |
-
@dataclass
|
37 |
-
class CLIPVisionCfg:
|
38 |
-
layers: Union[Tuple[int, int, int, int], int] = 12
|
39 |
-
width: int = 768
|
40 |
-
head_width: int = 64
|
41 |
-
mlp_ratio: float = 4.0
|
42 |
-
patch_size: int = 16
|
43 |
-
image_size: Union[Tuple[int, int], int] = 224
|
44 |
-
ls_init_value: Optional[float] = None # layer scale initial value
|
45 |
-
patch_dropout: float = 0. # what fraction of patches to dropout during training (0 would mean disabled and no patches dropped) - 0.5 to 0.75 recommended in the paper for optimal results
|
46 |
-
global_average_pool: bool = False # whether to global average pool the last embedding layer, instead of using CLS token (https://arxiv.org/abs/2205.01580)
|
47 |
-
drop_path_rate: Optional[float] = None # drop path rate
|
48 |
-
timm_model_name: str = None # a valid model name overrides layers, width, patch_size
|
49 |
-
timm_model_pretrained: bool = False # use (imagenet) pretrained weights for named model
|
50 |
-
timm_pool: str = 'avg' # feature pooling for timm model ('abs_attn', 'rot_attn', 'avg', '')
|
51 |
-
timm_proj: str = 'linear' # linear projection for timm model output ('linear', 'mlp', '')
|
52 |
-
timm_proj_bias: bool = False # enable bias final projection
|
53 |
-
eva_model_name: str = None # a valid eva model name overrides layers, width, patch_size
|
54 |
-
qkv_bias: bool = True
|
55 |
-
fusedLN: bool = False
|
56 |
-
xattn: bool = False
|
57 |
-
postnorm: bool = False
|
58 |
-
rope: bool = False
|
59 |
-
pt_hw_seq_len: int = 16 # 224/14
|
60 |
-
intp_freq: bool = False
|
61 |
-
naiveswiglu: bool = False
|
62 |
-
subln: bool = False
|
63 |
-
|
64 |
-
|
65 |
-
@dataclass
|
66 |
-
class CLIPTextCfg:
|
67 |
-
context_length: int = 77
|
68 |
-
vocab_size: int = 49408
|
69 |
-
width: int = 512
|
70 |
-
heads: int = 8
|
71 |
-
layers: int = 12
|
72 |
-
ls_init_value: Optional[float] = None # layer scale initial value
|
73 |
-
hf_model_name: str = None
|
74 |
-
hf_tokenizer_name: str = None
|
75 |
-
hf_model_pretrained: bool = True
|
76 |
-
proj: str = 'mlp'
|
77 |
-
pooler_type: str = 'mean_pooler'
|
78 |
-
masked_language_modeling: bool = False
|
79 |
-
fusedLN: bool = False
|
80 |
-
xattn: bool = False
|
81 |
-
attn_mask: bool = True
|
82 |
-
|
83 |
-
def get_cast_dtype(precision: str):
|
84 |
-
cast_dtype = None
|
85 |
-
if precision == 'bf16':
|
86 |
-
cast_dtype = torch.bfloat16
|
87 |
-
elif precision == 'fp16':
|
88 |
-
cast_dtype = torch.float16
|
89 |
-
return cast_dtype
|
90 |
-
|
91 |
-
|
92 |
-
def _build_vision_tower(
|
93 |
-
embed_dim: int,
|
94 |
-
vision_cfg: CLIPVisionCfg,
|
95 |
-
quick_gelu: bool = False,
|
96 |
-
cast_dtype: Optional[torch.dtype] = None
|
97 |
-
):
|
98 |
-
if isinstance(vision_cfg, dict):
|
99 |
-
vision_cfg = CLIPVisionCfg(**vision_cfg)
|
100 |
-
|
101 |
-
# OpenAI models are pretrained w/ QuickGELU but native nn.GELU is both faster and more
|
102 |
-
# memory efficient in recent PyTorch releases (>= 1.10).
|
103 |
-
# NOTE: timm models always use native GELU regardless of quick_gelu flag.
|
104 |
-
act_layer = QuickGELU if quick_gelu else nn.GELU
|
105 |
-
|
106 |
-
if vision_cfg.eva_model_name:
|
107 |
-
vision_heads = vision_cfg.width // vision_cfg.head_width
|
108 |
-
norm_layer = LayerNorm
|
109 |
-
|
110 |
-
visual = EVAVisionTransformer(
|
111 |
-
img_size=vision_cfg.image_size,
|
112 |
-
patch_size=vision_cfg.patch_size,
|
113 |
-
num_classes=embed_dim,
|
114 |
-
use_mean_pooling=vision_cfg.global_average_pool, #False
|
115 |
-
init_values=vision_cfg.ls_init_value,
|
116 |
-
patch_dropout=vision_cfg.patch_dropout,
|
117 |
-
embed_dim=vision_cfg.width,
|
118 |
-
depth=vision_cfg.layers,
|
119 |
-
num_heads=vision_heads,
|
120 |
-
mlp_ratio=vision_cfg.mlp_ratio,
|
121 |
-
qkv_bias=vision_cfg.qkv_bias,
|
122 |
-
drop_path_rate=vision_cfg.drop_path_rate,
|
123 |
-
norm_layer= partial(FusedLayerNorm, eps=1e-6) if vision_cfg.fusedLN else partial(norm_layer, eps=1e-6),
|
124 |
-
xattn=vision_cfg.xattn,
|
125 |
-
rope=vision_cfg.rope,
|
126 |
-
postnorm=vision_cfg.postnorm,
|
127 |
-
pt_hw_seq_len= vision_cfg.pt_hw_seq_len, # 224/14
|
128 |
-
intp_freq= vision_cfg.intp_freq,
|
129 |
-
naiveswiglu= vision_cfg.naiveswiglu,
|
130 |
-
subln= vision_cfg.subln
|
131 |
-
)
|
132 |
-
elif vision_cfg.timm_model_name:
|
133 |
-
visual = TimmModel(
|
134 |
-
vision_cfg.timm_model_name,
|
135 |
-
pretrained=vision_cfg.timm_model_pretrained,
|
136 |
-
pool=vision_cfg.timm_pool,
|
137 |
-
proj=vision_cfg.timm_proj,
|
138 |
-
proj_bias=vision_cfg.timm_proj_bias,
|
139 |
-
embed_dim=embed_dim,
|
140 |
-
image_size=vision_cfg.image_size
|
141 |
-
)
|
142 |
-
act_layer = nn.GELU # so that text transformer doesn't use QuickGELU w/ timm models
|
143 |
-
elif isinstance(vision_cfg.layers, (tuple, list)):
|
144 |
-
vision_heads = vision_cfg.width * 32 // vision_cfg.head_width
|
145 |
-
visual = ModifiedResNet(
|
146 |
-
layers=vision_cfg.layers,
|
147 |
-
output_dim=embed_dim,
|
148 |
-
heads=vision_heads,
|
149 |
-
image_size=vision_cfg.image_size,
|
150 |
-
width=vision_cfg.width
|
151 |
-
)
|
152 |
-
else:
|
153 |
-
vision_heads = vision_cfg.width // vision_cfg.head_width
|
154 |
-
norm_layer = LayerNormFp32 if cast_dtype in (torch.float16, torch.bfloat16) else LayerNorm
|
155 |
-
visual = VisionTransformer(
|
156 |
-
image_size=vision_cfg.image_size,
|
157 |
-
patch_size=vision_cfg.patch_size,
|
158 |
-
width=vision_cfg.width,
|
159 |
-
layers=vision_cfg.layers,
|
160 |
-
heads=vision_heads,
|
161 |
-
mlp_ratio=vision_cfg.mlp_ratio,
|
162 |
-
ls_init_value=vision_cfg.ls_init_value,
|
163 |
-
patch_dropout=vision_cfg.patch_dropout,
|
164 |
-
global_average_pool=vision_cfg.global_average_pool,
|
165 |
-
output_dim=embed_dim,
|
166 |
-
act_layer=act_layer,
|
167 |
-
norm_layer=norm_layer,
|
168 |
-
)
|
169 |
-
|
170 |
-
return visual
|
171 |
-
|
172 |
-
|
173 |
-
def _build_text_tower(
|
174 |
-
embed_dim: int,
|
175 |
-
text_cfg: CLIPTextCfg,
|
176 |
-
quick_gelu: bool = False,
|
177 |
-
cast_dtype: Optional[torch.dtype] = None,
|
178 |
-
):
|
179 |
-
if isinstance(text_cfg, dict):
|
180 |
-
text_cfg = CLIPTextCfg(**text_cfg)
|
181 |
-
|
182 |
-
if text_cfg.hf_model_name:
|
183 |
-
text = HFTextEncoder(
|
184 |
-
text_cfg.hf_model_name,
|
185 |
-
output_dim=embed_dim,
|
186 |
-
tokenizer_name=text_cfg.hf_tokenizer_name,
|
187 |
-
proj=text_cfg.proj,
|
188 |
-
pooler_type=text_cfg.pooler_type,
|
189 |
-
masked_language_modeling=text_cfg.masked_language_modeling
|
190 |
-
)
|
191 |
-
else:
|
192 |
-
act_layer = QuickGELU if quick_gelu else nn.GELU
|
193 |
-
norm_layer = LayerNorm
|
194 |
-
|
195 |
-
text = TextTransformer(
|
196 |
-
context_length=text_cfg.context_length,
|
197 |
-
vocab_size=text_cfg.vocab_size,
|
198 |
-
width=text_cfg.width,
|
199 |
-
heads=text_cfg.heads,
|
200 |
-
layers=text_cfg.layers,
|
201 |
-
ls_init_value=text_cfg.ls_init_value,
|
202 |
-
output_dim=embed_dim,
|
203 |
-
act_layer=act_layer,
|
204 |
-
norm_layer= FusedLayerNorm if text_cfg.fusedLN else norm_layer,
|
205 |
-
xattn=text_cfg.xattn,
|
206 |
-
attn_mask=text_cfg.attn_mask,
|
207 |
-
)
|
208 |
-
return text
|
209 |
-
|
210 |
-
class CLIP(nn.Module):
|
211 |
-
def __init__(
|
212 |
-
self,
|
213 |
-
embed_dim: int,
|
214 |
-
vision_cfg: CLIPVisionCfg,
|
215 |
-
text_cfg: CLIPTextCfg,
|
216 |
-
quick_gelu: bool = False,
|
217 |
-
cast_dtype: Optional[torch.dtype] = None,
|
218 |
-
):
|
219 |
-
super().__init__()
|
220 |
-
self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype)
|
221 |
-
|
222 |
-
text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype)
|
223 |
-
self.transformer = text.transformer
|
224 |
-
self.vocab_size = text.vocab_size
|
225 |
-
self.token_embedding = text.token_embedding
|
226 |
-
self.positional_embedding = text.positional_embedding
|
227 |
-
self.ln_final = text.ln_final
|
228 |
-
self.text_projection = text.text_projection
|
229 |
-
self.register_buffer('attn_mask', text.attn_mask, persistent=False)
|
230 |
-
|
231 |
-
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
232 |
-
|
233 |
-
def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False):
|
234 |
-
# lock image tower as per LiT - https://arxiv.org/abs/2111.07991
|
235 |
-
self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats)
|
236 |
-
|
237 |
-
@torch.jit.ignore
|
238 |
-
def set_grad_checkpointing(self, enable=True):
|
239 |
-
self.visual.set_grad_checkpointing(enable)
|
240 |
-
self.transformer.grad_checkpointing = enable
|
241 |
-
|
242 |
-
@torch.jit.ignore
|
243 |
-
def no_weight_decay(self):
|
244 |
-
return {'logit_scale'}
|
245 |
-
|
246 |
-
def encode_image(self, image, normalize: bool = False):
|
247 |
-
features = self.visual(image)
|
248 |
-
return F.normalize(features, dim=-1) if normalize else features
|
249 |
-
|
250 |
-
def encode_text(self, text, normalize: bool = False):
|
251 |
-
cast_dtype = self.transformer.get_cast_dtype()
|
252 |
-
|
253 |
-
x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model]
|
254 |
-
|
255 |
-
x = x + self.positional_embedding.to(cast_dtype)
|
256 |
-
x = x.permute(1, 0, 2) # NLD -> LND
|
257 |
-
x = self.transformer(x, attn_mask=self.attn_mask)
|
258 |
-
x = x.permute(1, 0, 2) # LND -> NLD
|
259 |
-
x = self.ln_final(x) # [batch_size, n_ctx, transformer.width]
|
260 |
-
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
261 |
-
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
|
262 |
-
return F.normalize(x, dim=-1) if normalize else x
|
263 |
-
|
264 |
-
def forward(self, image, text):
|
265 |
-
image_features = self.encode_image(image, normalize=True)
|
266 |
-
text_features = self.encode_text(text, normalize=True)
|
267 |
-
return image_features, text_features, self.logit_scale.exp()
|
268 |
-
|
269 |
-
|
270 |
-
class CustomCLIP(nn.Module):
|
271 |
-
def __init__(
|
272 |
-
self,
|
273 |
-
embed_dim: int,
|
274 |
-
vision_cfg: CLIPVisionCfg,
|
275 |
-
text_cfg: CLIPTextCfg,
|
276 |
-
quick_gelu: bool = False,
|
277 |
-
cast_dtype: Optional[torch.dtype] = None,
|
278 |
-
itm_task: bool = False,
|
279 |
-
):
|
280 |
-
super().__init__()
|
281 |
-
self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype)
|
282 |
-
self.text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype)
|
283 |
-
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
284 |
-
|
285 |
-
def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False):
|
286 |
-
# lock image tower as per LiT - https://arxiv.org/abs/2111.07991
|
287 |
-
self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats)
|
288 |
-
|
289 |
-
def lock_text_tower(self, unlocked_layers:int=0, freeze_layer_norm:bool=True):
|
290 |
-
self.text.lock(unlocked_layers, freeze_layer_norm)
|
291 |
-
|
292 |
-
@torch.jit.ignore
|
293 |
-
def set_grad_checkpointing(self, enable=True):
|
294 |
-
self.visual.set_grad_checkpointing(enable)
|
295 |
-
self.text.set_grad_checkpointing(enable)
|
296 |
-
|
297 |
-
@torch.jit.ignore
|
298 |
-
def no_weight_decay(self):
|
299 |
-
return {'logit_scale'}
|
300 |
-
|
301 |
-
def encode_image(self, image, normalize: bool = False):
|
302 |
-
features = self.visual(image)
|
303 |
-
return F.normalize(features, dim=-1) if normalize else features
|
304 |
-
|
305 |
-
def encode_text(self, text, normalize: bool = False):
|
306 |
-
features = self.text(text)
|
307 |
-
return F.normalize(features, dim=-1) if normalize else features
|
308 |
-
|
309 |
-
def forward(self, image, text):
|
310 |
-
image_features = self.encode_image(image, normalize=True)
|
311 |
-
text_features = self.encode_text(text, normalize=True)
|
312 |
-
return image_features, text_features, self.logit_scale.exp()
|
313 |
-
|
314 |
-
|
315 |
-
def convert_weights_to_lp(model: nn.Module, dtype=torch.float16):
|
316 |
-
"""Convert applicable model parameters to low-precision (bf16 or fp16)"""
|
317 |
-
|
318 |
-
def _convert_weights(l):
|
319 |
-
|
320 |
-
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
|
321 |
-
l.weight.data = l.weight.data.to(dtype)
|
322 |
-
if l.bias is not None:
|
323 |
-
l.bias.data = l.bias.data.to(dtype)
|
324 |
-
|
325 |
-
if isinstance(l, (nn.MultiheadAttention, Attention)):
|
326 |
-
for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
|
327 |
-
tensor = getattr(l, attr, None)
|
328 |
-
if tensor is not None:
|
329 |
-
tensor.data = tensor.data.to(dtype)
|
330 |
-
|
331 |
-
if isinstance(l, nn.Parameter):
|
332 |
-
l.data = l.data.to(dtype)
|
333 |
-
|
334 |
-
for name in ["text_projection", "proj"]:
|
335 |
-
if hasattr(l, name) and isinstance(l, nn.Parameter):
|
336 |
-
attr = getattr(l, name, None)
|
337 |
-
if attr is not None:
|
338 |
-
attr.data = attr.data.to(dtype)
|
339 |
-
|
340 |
-
model.apply(_convert_weights)
|
341 |
-
|
342 |
-
|
343 |
-
convert_weights_to_fp16 = convert_weights_to_lp # backwards compat
|
344 |
-
|
345 |
-
|
346 |
-
# used to maintain checkpoint compatibility
|
347 |
-
def convert_to_custom_text_state_dict(state_dict: dict):
|
348 |
-
if 'text_projection' in state_dict:
|
349 |
-
# old format state_dict, move text tower -> .text
|
350 |
-
new_state_dict = {}
|
351 |
-
for k, v in state_dict.items():
|
352 |
-
if any(k.startswith(p) for p in (
|
353 |
-
'text_projection',
|
354 |
-
'positional_embedding',
|
355 |
-
'token_embedding',
|
356 |
-
'transformer',
|
357 |
-
'ln_final',
|
358 |
-
'logit_scale'
|
359 |
-
)):
|
360 |
-
k = 'text.' + k
|
361 |
-
new_state_dict[k] = v
|
362 |
-
return new_state_dict
|
363 |
-
return state_dict
|
364 |
-
|
365 |
-
|
366 |
-
def build_model_from_openai_state_dict(
|
367 |
-
state_dict: dict,
|
368 |
-
quick_gelu=True,
|
369 |
-
cast_dtype=torch.float16,
|
370 |
-
):
|
371 |
-
vit = "visual.proj" in state_dict
|
372 |
-
|
373 |
-
if vit:
|
374 |
-
vision_width = state_dict["visual.conv1.weight"].shape[0]
|
375 |
-
vision_layers = len(
|
376 |
-
[k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
|
377 |
-
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
|
378 |
-
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
|
379 |
-
image_size = vision_patch_size * grid_size
|
380 |
-
else:
|
381 |
-
counts: list = [
|
382 |
-
len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
|
383 |
-
vision_layers = tuple(counts)
|
384 |
-
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
|
385 |
-
output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
|
386 |
-
vision_patch_size = None
|
387 |
-
assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
|
388 |
-
image_size = output_width * 32
|
389 |
-
|
390 |
-
embed_dim = state_dict["text_projection"].shape[1]
|
391 |
-
context_length = state_dict["positional_embedding"].shape[0]
|
392 |
-
vocab_size = state_dict["token_embedding.weight"].shape[0]
|
393 |
-
transformer_width = state_dict["ln_final.weight"].shape[0]
|
394 |
-
transformer_heads = transformer_width // 64
|
395 |
-
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))
|
396 |
-
|
397 |
-
vision_cfg = CLIPVisionCfg(
|
398 |
-
layers=vision_layers,
|
399 |
-
width=vision_width,
|
400 |
-
patch_size=vision_patch_size,
|
401 |
-
image_size=image_size,
|
402 |
-
)
|
403 |
-
text_cfg = CLIPTextCfg(
|
404 |
-
context_length=context_length,
|
405 |
-
vocab_size=vocab_size,
|
406 |
-
width=transformer_width,
|
407 |
-
heads=transformer_heads,
|
408 |
-
layers=transformer_layers
|
409 |
-
)
|
410 |
-
model = CLIP(
|
411 |
-
embed_dim,
|
412 |
-
vision_cfg=vision_cfg,
|
413 |
-
text_cfg=text_cfg,
|
414 |
-
quick_gelu=quick_gelu, # OpenAI models were trained with QuickGELU
|
415 |
-
cast_dtype=cast_dtype,
|
416 |
-
)
|
417 |
-
|
418 |
-
for key in ["input_resolution", "context_length", "vocab_size"]:
|
419 |
-
state_dict.pop(key, None)
|
420 |
-
|
421 |
-
convert_weights_to_fp16(model) # OpenAI state dicts are partially converted to float16
|
422 |
-
model.load_state_dict(state_dict)
|
423 |
-
return model.eval()
|
424 |
-
|
425 |
-
|
426 |
-
def trace_model(model, batch_size=256, device=torch.device('cpu')):
|
427 |
-
model.eval()
|
428 |
-
image_size = model.visual.image_size
|
429 |
-
example_images = torch.ones((batch_size, 3, image_size, image_size), device=device)
|
430 |
-
example_text = torch.zeros((batch_size, model.context_length), dtype=torch.int, device=device)
|
431 |
-
model = torch.jit.trace_module(
|
432 |
-
model,
|
433 |
-
inputs=dict(
|
434 |
-
forward=(example_images, example_text),
|
435 |
-
encode_text=(example_text,),
|
436 |
-
encode_image=(example_images,)
|
437 |
-
))
|
438 |
-
model.visual.image_size = image_size
|
439 |
-
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/eva_clip/model_configs/EVA01-CLIP-B-16.json
DELETED
@@ -1,19 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"embed_dim": 512,
|
3 |
-
"vision_cfg": {
|
4 |
-
"image_size": 224,
|
5 |
-
"layers": 12,
|
6 |
-
"width": 768,
|
7 |
-
"patch_size": 16,
|
8 |
-
"eva_model_name": "eva-clip-b-16",
|
9 |
-
"ls_init_value": 0.1,
|
10 |
-
"drop_path_rate": 0.0
|
11 |
-
},
|
12 |
-
"text_cfg": {
|
13 |
-
"context_length": 77,
|
14 |
-
"vocab_size": 49408,
|
15 |
-
"width": 512,
|
16 |
-
"heads": 8,
|
17 |
-
"layers": 12
|
18 |
-
}
|
19 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/eva_clip/model_configs/EVA01-CLIP-g-14-plus.json
DELETED
@@ -1,24 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"embed_dim": 1024,
|
3 |
-
"vision_cfg": {
|
4 |
-
"image_size": 224,
|
5 |
-
"layers": 40,
|
6 |
-
"width": 1408,
|
7 |
-
"head_width": 88,
|
8 |
-
"mlp_ratio": 4.3637,
|
9 |
-
"patch_size": 14,
|
10 |
-
"eva_model_name": "eva-clip-g-14-x",
|
11 |
-
"drop_path_rate": 0,
|
12 |
-
"xattn": true,
|
13 |
-
"fusedLN": true
|
14 |
-
},
|
15 |
-
"text_cfg": {
|
16 |
-
"context_length": 77,
|
17 |
-
"vocab_size": 49408,
|
18 |
-
"width": 1024,
|
19 |
-
"heads": 16,
|
20 |
-
"layers": 24,
|
21 |
-
"xattn": false,
|
22 |
-
"fusedLN": true
|
23 |
-
}
|
24 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/eva_clip/model_configs/EVA01-CLIP-g-14.json
DELETED
@@ -1,24 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"embed_dim": 1024,
|
3 |
-
"vision_cfg": {
|
4 |
-
"image_size": 224,
|
5 |
-
"layers": 40,
|
6 |
-
"width": 1408,
|
7 |
-
"head_width": 88,
|
8 |
-
"mlp_ratio": 4.3637,
|
9 |
-
"patch_size": 14,
|
10 |
-
"eva_model_name": "eva-clip-g-14-x",
|
11 |
-
"drop_path_rate": 0.4,
|
12 |
-
"xattn": true,
|
13 |
-
"fusedLN": true
|
14 |
-
},
|
15 |
-
"text_cfg": {
|
16 |
-
"context_length": 77,
|
17 |
-
"vocab_size": 49408,
|
18 |
-
"width": 768,
|
19 |
-
"heads": 12,
|
20 |
-
"layers": 12,
|
21 |
-
"xattn": false,
|
22 |
-
"fusedLN": true
|
23 |
-
}
|
24 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/eva_clip/model_configs/EVA02-CLIP-B-16.json
DELETED
@@ -1,29 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"embed_dim": 512,
|
3 |
-
"vision_cfg": {
|
4 |
-
"image_size": 224,
|
5 |
-
"layers": 12,
|
6 |
-
"width": 768,
|
7 |
-
"head_width": 64,
|
8 |
-
"patch_size": 16,
|
9 |
-
"mlp_ratio": 2.6667,
|
10 |
-
"eva_model_name": "eva-clip-b-16-X",
|
11 |
-
"drop_path_rate": 0.0,
|
12 |
-
"xattn": true,
|
13 |
-
"fusedLN": true,
|
14 |
-
"rope": true,
|
15 |
-
"pt_hw_seq_len": 16,
|
16 |
-
"intp_freq": true,
|
17 |
-
"naiveswiglu": true,
|
18 |
-
"subln": true
|
19 |
-
},
|
20 |
-
"text_cfg": {
|
21 |
-
"context_length": 77,
|
22 |
-
"vocab_size": 49408,
|
23 |
-
"width": 512,
|
24 |
-
"heads": 8,
|
25 |
-
"layers": 12,
|
26 |
-
"xattn": true,
|
27 |
-
"fusedLN": true
|
28 |
-
}
|
29 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/eva_clip/model_configs/EVA02-CLIP-L-14-336.json
DELETED
@@ -1,29 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"embed_dim": 768,
|
3 |
-
"vision_cfg": {
|
4 |
-
"image_size": 336,
|
5 |
-
"layers": 24,
|
6 |
-
"width": 1024,
|
7 |
-
"drop_path_rate": 0,
|
8 |
-
"head_width": 64,
|
9 |
-
"mlp_ratio": 2.6667,
|
10 |
-
"patch_size": 14,
|
11 |
-
"eva_model_name": "eva-clip-l-14-336",
|
12 |
-
"xattn": true,
|
13 |
-
"fusedLN": true,
|
14 |
-
"rope": true,
|
15 |
-
"pt_hw_seq_len": 16,
|
16 |
-
"intp_freq": true,
|
17 |
-
"naiveswiglu": true,
|
18 |
-
"subln": true
|
19 |
-
},
|
20 |
-
"text_cfg": {
|
21 |
-
"context_length": 77,
|
22 |
-
"vocab_size": 49408,
|
23 |
-
"width": 768,
|
24 |
-
"heads": 12,
|
25 |
-
"layers": 12,
|
26 |
-
"xattn": false,
|
27 |
-
"fusedLN": true
|
28 |
-
}
|
29 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/eva_clip/model_configs/EVA02-CLIP-L-14.json
DELETED
@@ -1,29 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"embed_dim": 768,
|
3 |
-
"vision_cfg": {
|
4 |
-
"image_size": 224,
|
5 |
-
"layers": 24,
|
6 |
-
"width": 1024,
|
7 |
-
"drop_path_rate": 0,
|
8 |
-
"head_width": 64,
|
9 |
-
"mlp_ratio": 2.6667,
|
10 |
-
"patch_size": 14,
|
11 |
-
"eva_model_name": "eva-clip-l-14",
|
12 |
-
"xattn": true,
|
13 |
-
"fusedLN": true,
|
14 |
-
"rope": true,
|
15 |
-
"pt_hw_seq_len": 16,
|
16 |
-
"intp_freq": true,
|
17 |
-
"naiveswiglu": true,
|
18 |
-
"subln": true
|
19 |
-
},
|
20 |
-
"text_cfg": {
|
21 |
-
"context_length": 77,
|
22 |
-
"vocab_size": 49408,
|
23 |
-
"width": 768,
|
24 |
-
"heads": 12,
|
25 |
-
"layers": 12,
|
26 |
-
"xattn": false,
|
27 |
-
"fusedLN": true
|
28 |
-
}
|
29 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/eva_clip/model_configs/EVA02-CLIP-bigE-14-plus.json
DELETED
@@ -1,25 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"embed_dim": 1024,
|
3 |
-
"vision_cfg": {
|
4 |
-
"image_size": 224,
|
5 |
-
"layers": 64,
|
6 |
-
"width": 1792,
|
7 |
-
"head_width": 112,
|
8 |
-
"mlp_ratio": 8.571428571428571,
|
9 |
-
"patch_size": 14,
|
10 |
-
"eva_model_name": "eva-clip-4b-14-x",
|
11 |
-
"drop_path_rate": 0,
|
12 |
-
"xattn": true,
|
13 |
-
"postnorm": true,
|
14 |
-
"fusedLN": true
|
15 |
-
},
|
16 |
-
"text_cfg": {
|
17 |
-
"context_length": 77,
|
18 |
-
"vocab_size": 49408,
|
19 |
-
"width": 1280,
|
20 |
-
"heads": 20,
|
21 |
-
"layers": 32,
|
22 |
-
"xattn": false,
|
23 |
-
"fusedLN": true
|
24 |
-
}
|
25 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/eva_clip/model_configs/EVA02-CLIP-bigE-14.json
DELETED
@@ -1,25 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"embed_dim": 1024,
|
3 |
-
"vision_cfg": {
|
4 |
-
"image_size": 224,
|
5 |
-
"layers": 64,
|
6 |
-
"width": 1792,
|
7 |
-
"head_width": 112,
|
8 |
-
"mlp_ratio": 8.571428571428571,
|
9 |
-
"patch_size": 14,
|
10 |
-
"eva_model_name": "eva-clip-4b-14-x",
|
11 |
-
"drop_path_rate": 0,
|
12 |
-
"xattn": true,
|
13 |
-
"postnorm": true,
|
14 |
-
"fusedLN": true
|
15 |
-
},
|
16 |
-
"text_cfg": {
|
17 |
-
"context_length": 77,
|
18 |
-
"vocab_size": 49408,
|
19 |
-
"width": 1024,
|
20 |
-
"heads": 16,
|
21 |
-
"layers": 24,
|
22 |
-
"xattn": false,
|
23 |
-
"fusedLN": true
|
24 |
-
}
|
25 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/eva_clip/modified_resnet.py
DELETED
@@ -1,188 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import sys
|
3 |
-
|
4 |
-
import torch
|
5 |
-
from torch import nn
|
6 |
-
from torch.nn import functional as F
|
7 |
-
from collections import OrderedDict
|
8 |
-
|
9 |
-
current_file_path = os.path.abspath(__file__)
|
10 |
-
project_roots = [os.path.dirname(current_file_path)]
|
11 |
-
for project_root in project_roots:
|
12 |
-
sys.path.insert(0, project_root) if project_root not in sys.path else None
|
13 |
-
|
14 |
-
from utils import freeze_batch_norm_2d
|
15 |
-
|
16 |
-
|
17 |
-
class Bottleneck(nn.Module):
|
18 |
-
expansion = 4
|
19 |
-
|
20 |
-
def __init__(self, inplanes, planes, stride=1):
|
21 |
-
super().__init__()
|
22 |
-
|
23 |
-
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
|
24 |
-
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
|
25 |
-
self.bn1 = nn.BatchNorm2d(planes)
|
26 |
-
self.act1 = nn.ReLU(inplace=True)
|
27 |
-
|
28 |
-
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
|
29 |
-
self.bn2 = nn.BatchNorm2d(planes)
|
30 |
-
self.act2 = nn.ReLU(inplace=True)
|
31 |
-
|
32 |
-
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
|
33 |
-
|
34 |
-
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
|
35 |
-
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
36 |
-
self.act3 = nn.ReLU(inplace=True)
|
37 |
-
|
38 |
-
self.downsample = None
|
39 |
-
self.stride = stride
|
40 |
-
|
41 |
-
if stride > 1 or inplanes != planes * Bottleneck.expansion:
|
42 |
-
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
|
43 |
-
self.downsample = nn.Sequential(OrderedDict([
|
44 |
-
("-1", nn.AvgPool2d(stride)),
|
45 |
-
("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
|
46 |
-
("1", nn.BatchNorm2d(planes * self.expansion))
|
47 |
-
]))
|
48 |
-
|
49 |
-
def forward(self, x: torch.Tensor):
|
50 |
-
identity = x
|
51 |
-
|
52 |
-
out = self.act1(self.bn1(self.conv1(x)))
|
53 |
-
out = self.act2(self.bn2(self.conv2(out)))
|
54 |
-
out = self.avgpool(out)
|
55 |
-
out = self.bn3(self.conv3(out))
|
56 |
-
|
57 |
-
if self.downsample is not None:
|
58 |
-
identity = self.downsample(x)
|
59 |
-
|
60 |
-
out += identity
|
61 |
-
out = self.act3(out)
|
62 |
-
return out
|
63 |
-
|
64 |
-
|
65 |
-
class AttentionPool2d(nn.Module):
|
66 |
-
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
|
67 |
-
super().__init__()
|
68 |
-
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
|
69 |
-
self.k_proj = nn.Linear(embed_dim, embed_dim)
|
70 |
-
self.q_proj = nn.Linear(embed_dim, embed_dim)
|
71 |
-
self.v_proj = nn.Linear(embed_dim, embed_dim)
|
72 |
-
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
|
73 |
-
self.num_heads = num_heads
|
74 |
-
|
75 |
-
def forward(self, x):
|
76 |
-
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC
|
77 |
-
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
|
78 |
-
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
|
79 |
-
x, _ = F.multi_head_attention_forward(
|
80 |
-
query=x, key=x, value=x,
|
81 |
-
embed_dim_to_check=x.shape[-1],
|
82 |
-
num_heads=self.num_heads,
|
83 |
-
q_proj_weight=self.q_proj.weight,
|
84 |
-
k_proj_weight=self.k_proj.weight,
|
85 |
-
v_proj_weight=self.v_proj.weight,
|
86 |
-
in_proj_weight=None,
|
87 |
-
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
|
88 |
-
bias_k=None,
|
89 |
-
bias_v=None,
|
90 |
-
add_zero_attn=False,
|
91 |
-
dropout_p=0.,
|
92 |
-
out_proj_weight=self.c_proj.weight,
|
93 |
-
out_proj_bias=self.c_proj.bias,
|
94 |
-
use_separate_proj_weight=True,
|
95 |
-
training=self.training,
|
96 |
-
need_weights=False
|
97 |
-
)
|
98 |
-
|
99 |
-
return x[0]
|
100 |
-
|
101 |
-
|
102 |
-
class ModifiedResNet(nn.Module):
|
103 |
-
"""
|
104 |
-
A ResNet class that is similar to torchvision's but contains the following changes:
|
105 |
-
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
|
106 |
-
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
|
107 |
-
- The final pooling layer is a QKV attention instead of an average pool
|
108 |
-
"""
|
109 |
-
|
110 |
-
def __init__(self, layers, output_dim, heads, image_size=224, width=64):
|
111 |
-
super().__init__()
|
112 |
-
self.output_dim = output_dim
|
113 |
-
self.image_size = image_size
|
114 |
-
|
115 |
-
# the 3-layer stem
|
116 |
-
self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
|
117 |
-
self.bn1 = nn.BatchNorm2d(width // 2)
|
118 |
-
self.act1 = nn.ReLU(inplace=True)
|
119 |
-
self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
|
120 |
-
self.bn2 = nn.BatchNorm2d(width // 2)
|
121 |
-
self.act2 = nn.ReLU(inplace=True)
|
122 |
-
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
|
123 |
-
self.bn3 = nn.BatchNorm2d(width)
|
124 |
-
self.act3 = nn.ReLU(inplace=True)
|
125 |
-
self.avgpool = nn.AvgPool2d(2)
|
126 |
-
|
127 |
-
# residual layers
|
128 |
-
self._inplanes = width # this is a *mutable* variable used during construction
|
129 |
-
self.layer1 = self._make_layer(width, layers[0])
|
130 |
-
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
|
131 |
-
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
|
132 |
-
self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
|
133 |
-
|
134 |
-
embed_dim = width * 32 # the ResNet feature dimension
|
135 |
-
self.attnpool = AttentionPool2d(image_size // 32, embed_dim, heads, output_dim)
|
136 |
-
|
137 |
-
self.init_parameters()
|
138 |
-
|
139 |
-
def _make_layer(self, planes, blocks, stride=1):
|
140 |
-
layers = [Bottleneck(self._inplanes, planes, stride)]
|
141 |
-
|
142 |
-
self._inplanes = planes * Bottleneck.expansion
|
143 |
-
for _ in range(1, blocks):
|
144 |
-
layers.append(Bottleneck(self._inplanes, planes))
|
145 |
-
|
146 |
-
return nn.Sequential(*layers)
|
147 |
-
|
148 |
-
def init_parameters(self):
|
149 |
-
if self.attnpool is not None:
|
150 |
-
std = self.attnpool.c_proj.in_features ** -0.5
|
151 |
-
nn.init.normal_(self.attnpool.q_proj.weight, std=std)
|
152 |
-
nn.init.normal_(self.attnpool.k_proj.weight, std=std)
|
153 |
-
nn.init.normal_(self.attnpool.v_proj.weight, std=std)
|
154 |
-
nn.init.normal_(self.attnpool.c_proj.weight, std=std)
|
155 |
-
|
156 |
-
for resnet_block in [self.layer1, self.layer2, self.layer3, self.layer4]:
|
157 |
-
for name, param in resnet_block.named_parameters():
|
158 |
-
if name.endswith("bn3.weight"):
|
159 |
-
nn.init.zeros_(param)
|
160 |
-
|
161 |
-
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
|
162 |
-
assert unlocked_groups == 0, 'partial locking not currently supported for this model'
|
163 |
-
for param in self.parameters():
|
164 |
-
param.requires_grad = False
|
165 |
-
if freeze_bn_stats:
|
166 |
-
freeze_batch_norm_2d(self)
|
167 |
-
|
168 |
-
@torch.jit.ignore
|
169 |
-
def set_grad_checkpointing(self, enable=True):
|
170 |
-
# FIXME support for non-transformer
|
171 |
-
pass
|
172 |
-
|
173 |
-
def stem(self, x):
|
174 |
-
x = self.act1(self.bn1(self.conv1(x)))
|
175 |
-
x = self.act2(self.bn2(self.conv2(x)))
|
176 |
-
x = self.act3(self.bn3(self.conv3(x)))
|
177 |
-
x = self.avgpool(x)
|
178 |
-
return x
|
179 |
-
|
180 |
-
def forward(self, x):
|
181 |
-
x = self.stem(x)
|
182 |
-
x = self.layer1(x)
|
183 |
-
x = self.layer2(x)
|
184 |
-
x = self.layer3(x)
|
185 |
-
x = self.layer4(x)
|
186 |
-
x = self.attnpool(x)
|
187 |
-
|
188 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/eva_clip/openai.py
DELETED
@@ -1,144 +0,0 @@
|
|
1 |
-
""" OpenAI pretrained model functions
|
2 |
-
|
3 |
-
Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
|
4 |
-
"""
|
5 |
-
|
6 |
-
import os
|
7 |
-
import warnings
|
8 |
-
from typing import List, Optional, Union
|
9 |
-
|
10 |
-
import torch
|
11 |
-
|
12 |
-
from .model import build_model_from_openai_state_dict, convert_weights_to_lp, get_cast_dtype
|
13 |
-
from .pretrained import get_pretrained_url, list_pretrained_models_by_tag, download_pretrained_from_url
|
14 |
-
|
15 |
-
__all__ = ["list_openai_models", "load_openai_model"]
|
16 |
-
|
17 |
-
|
18 |
-
def list_openai_models() -> List[str]:
|
19 |
-
"""Returns the names of available CLIP models"""
|
20 |
-
return list_pretrained_models_by_tag('openai')
|
21 |
-
|
22 |
-
|
23 |
-
def load_openai_model(
|
24 |
-
name: str,
|
25 |
-
precision: Optional[str] = None,
|
26 |
-
device: Optional[Union[str, torch.device]] = None,
|
27 |
-
jit: bool = True,
|
28 |
-
cache_dir: Optional[str] = None,
|
29 |
-
):
|
30 |
-
"""Load a CLIP model
|
31 |
-
|
32 |
-
Parameters
|
33 |
-
----------
|
34 |
-
name : str
|
35 |
-
A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict
|
36 |
-
precision: str
|
37 |
-
Model precision, if None defaults to 'fp32' if device == 'cpu' else 'fp16'.
|
38 |
-
device : Union[str, torch.device]
|
39 |
-
The device to put the loaded model
|
40 |
-
jit : bool
|
41 |
-
Whether to load the optimized JIT model (default) or more hackable non-JIT model.
|
42 |
-
cache_dir : Optional[str]
|
43 |
-
The directory to cache the downloaded model weights
|
44 |
-
|
45 |
-
Returns
|
46 |
-
-------
|
47 |
-
model : torch.nn.Module
|
48 |
-
The CLIP model
|
49 |
-
preprocess : Callable[[PIL.Image], torch.Tensor]
|
50 |
-
A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input
|
51 |
-
"""
|
52 |
-
if device is None:
|
53 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
54 |
-
if precision is None:
|
55 |
-
precision = 'fp32' if device == 'cpu' else 'fp16'
|
56 |
-
|
57 |
-
if get_pretrained_url(name, 'openai'):
|
58 |
-
model_path = download_pretrained_from_url(get_pretrained_url(name, 'openai'), cache_dir=cache_dir)
|
59 |
-
elif os.path.isfile(name):
|
60 |
-
model_path = name
|
61 |
-
else:
|
62 |
-
raise RuntimeError(f"Model {name} not found; available models = {list_openai_models()}")
|
63 |
-
|
64 |
-
try:
|
65 |
-
# loading JIT archive
|
66 |
-
model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval()
|
67 |
-
state_dict = None
|
68 |
-
except RuntimeError:
|
69 |
-
# loading saved state dict
|
70 |
-
if jit:
|
71 |
-
warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead")
|
72 |
-
jit = False
|
73 |
-
state_dict = torch.load(model_path, map_location="cpu")
|
74 |
-
|
75 |
-
if not jit:
|
76 |
-
# Build a non-jit model from the OpenAI jitted model state dict
|
77 |
-
cast_dtype = get_cast_dtype(precision)
|
78 |
-
try:
|
79 |
-
model = build_model_from_openai_state_dict(state_dict or model.state_dict(), cast_dtype=cast_dtype)
|
80 |
-
except KeyError:
|
81 |
-
sd = {k[7:]: v for k, v in state_dict["state_dict"].items()}
|
82 |
-
model = build_model_from_openai_state_dict(sd, cast_dtype=cast_dtype)
|
83 |
-
|
84 |
-
# model from OpenAI state dict is in manually cast fp16 mode, must be converted for AMP/fp32/bf16 use
|
85 |
-
model = model.to(device)
|
86 |
-
if precision.startswith('amp') or precision == 'fp32':
|
87 |
-
model.float()
|
88 |
-
elif precision == 'bf16':
|
89 |
-
convert_weights_to_lp(model, dtype=torch.bfloat16)
|
90 |
-
|
91 |
-
return model
|
92 |
-
|
93 |
-
# patch the device names
|
94 |
-
device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[])
|
95 |
-
device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1]
|
96 |
-
|
97 |
-
def patch_device(module):
|
98 |
-
try:
|
99 |
-
graphs = [module.graph] if hasattr(module, "graph") else []
|
100 |
-
except RuntimeError:
|
101 |
-
graphs = []
|
102 |
-
|
103 |
-
if hasattr(module, "forward1"):
|
104 |
-
graphs.append(module.forward1.graph)
|
105 |
-
|
106 |
-
for graph in graphs:
|
107 |
-
for node in graph.findAllNodes("prim::Constant"):
|
108 |
-
if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"):
|
109 |
-
node.copyAttributes(device_node)
|
110 |
-
|
111 |
-
model.apply(patch_device)
|
112 |
-
patch_device(model.encode_image)
|
113 |
-
patch_device(model.encode_text)
|
114 |
-
|
115 |
-
# patch dtype to float32 (typically for CPU)
|
116 |
-
if precision == 'fp32':
|
117 |
-
float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[])
|
118 |
-
float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
|
119 |
-
float_node = float_input.node()
|
120 |
-
|
121 |
-
def patch_float(module):
|
122 |
-
try:
|
123 |
-
graphs = [module.graph] if hasattr(module, "graph") else []
|
124 |
-
except RuntimeError:
|
125 |
-
graphs = []
|
126 |
-
|
127 |
-
if hasattr(module, "forward1"):
|
128 |
-
graphs.append(module.forward1.graph)
|
129 |
-
|
130 |
-
for graph in graphs:
|
131 |
-
for node in graph.findAllNodes("aten::to"):
|
132 |
-
inputs = list(node.inputs())
|
133 |
-
for i in [1, 2]: # dtype can be the second or third argument to aten::to()
|
134 |
-
if inputs[i].node()["value"] == 5:
|
135 |
-
inputs[i].node().copyAttributes(float_node)
|
136 |
-
|
137 |
-
model.apply(patch_float)
|
138 |
-
patch_float(model.encode_image)
|
139 |
-
patch_float(model.encode_text)
|
140 |
-
model.float()
|
141 |
-
|
142 |
-
# ensure image_size attr available at consistent location for both jit and non-jit
|
143 |
-
model.visual.image_size = model.input_resolution.item()
|
144 |
-
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/eva_clip/pretrained.py
DELETED
@@ -1,332 +0,0 @@
|
|
1 |
-
import hashlib
|
2 |
-
import os
|
3 |
-
import urllib
|
4 |
-
import warnings
|
5 |
-
from functools import partial
|
6 |
-
from typing import Dict, Union
|
7 |
-
|
8 |
-
from tqdm import tqdm
|
9 |
-
|
10 |
-
try:
|
11 |
-
from huggingface_hub import hf_hub_download
|
12 |
-
_has_hf_hub = True
|
13 |
-
except ImportError:
|
14 |
-
hf_hub_download = None
|
15 |
-
_has_hf_hub = False
|
16 |
-
|
17 |
-
|
18 |
-
def _pcfg(url='', hf_hub='', filename='', mean=None, std=None):
|
19 |
-
return dict(
|
20 |
-
url=url,
|
21 |
-
hf_hub=hf_hub,
|
22 |
-
mean=mean,
|
23 |
-
std=std,
|
24 |
-
)
|
25 |
-
|
26 |
-
_VITB32 = dict(
|
27 |
-
openai=_pcfg(
|
28 |
-
"https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt"),
|
29 |
-
laion400m_e31=_pcfg(
|
30 |
-
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt"),
|
31 |
-
laion400m_e32=_pcfg(
|
32 |
-
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt"),
|
33 |
-
laion2b_e16=_pcfg(
|
34 |
-
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-laion2b_e16-af8dbd0c.pth"),
|
35 |
-
laion2b_s34b_b79k=_pcfg(hf_hub='laion/CLIP-ViT-B-32-laion2B-s34B-b79K/')
|
36 |
-
)
|
37 |
-
|
38 |
-
_VITB32_quickgelu = dict(
|
39 |
-
openai=_pcfg(
|
40 |
-
"https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt"),
|
41 |
-
laion400m_e31=_pcfg(
|
42 |
-
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt"),
|
43 |
-
laion400m_e32=_pcfg(
|
44 |
-
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt"),
|
45 |
-
)
|
46 |
-
|
47 |
-
_VITB16 = dict(
|
48 |
-
openai=_pcfg(
|
49 |
-
"https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt"),
|
50 |
-
laion400m_e31=_pcfg(
|
51 |
-
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16-laion400m_e31-00efa78f.pt"),
|
52 |
-
laion400m_e32=_pcfg(
|
53 |
-
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16-laion400m_e32-55e67d44.pt"),
|
54 |
-
laion2b_s34b_b88k=_pcfg(hf_hub='laion/CLIP-ViT-B-16-laion2B-s34B-b88K/'),
|
55 |
-
)
|
56 |
-
|
57 |
-
_EVAB16 = dict(
|
58 |
-
eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_B_psz14to16.pt'),
|
59 |
-
eva02=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_B_psz14to16.pt'),
|
60 |
-
eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_B_psz16_s8B.pt'),
|
61 |
-
eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_B_psz16_s8B.pt'),
|
62 |
-
)
|
63 |
-
|
64 |
-
_VITB16_PLUS_240 = dict(
|
65 |
-
laion400m_e31=_pcfg(
|
66 |
-
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16_plus_240-laion400m_e31-8fb26589.pt"),
|
67 |
-
laion400m_e32=_pcfg(
|
68 |
-
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16_plus_240-laion400m_e32-699c4b84.pt"),
|
69 |
-
)
|
70 |
-
|
71 |
-
_VITL14 = dict(
|
72 |
-
openai=_pcfg(
|
73 |
-
"https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt"),
|
74 |
-
laion400m_e31=_pcfg(
|
75 |
-
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_l_14-laion400m_e31-69988bb6.pt"),
|
76 |
-
laion400m_e32=_pcfg(
|
77 |
-
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_l_14-laion400m_e32-3d133497.pt"),
|
78 |
-
laion2b_s32b_b82k=_pcfg(
|
79 |
-
hf_hub='laion/CLIP-ViT-L-14-laion2B-s32B-b82K/',
|
80 |
-
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
|
81 |
-
)
|
82 |
-
|
83 |
-
_EVAL14 = dict(
|
84 |
-
eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_L_psz14.pt'),
|
85 |
-
eva02=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_L_psz14.pt'),
|
86 |
-
eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_s4B.pt'),
|
87 |
-
eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_s4B.pt'),
|
88 |
-
)
|
89 |
-
|
90 |
-
_VITL14_336 = dict(
|
91 |
-
openai=_pcfg(
|
92 |
-
"https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt"),
|
93 |
-
)
|
94 |
-
|
95 |
-
_EVAL14_336 = dict(
|
96 |
-
eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_336_psz14_s6B.pt'),
|
97 |
-
eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_336_psz14_s6B.pt'),
|
98 |
-
eva_clip_224to336=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_224to336.pt'),
|
99 |
-
eva02_clip_224to336=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_224to336.pt'),
|
100 |
-
)
|
101 |
-
|
102 |
-
_VITH14 = dict(
|
103 |
-
laion2b_s32b_b79k=_pcfg(hf_hub='laion/CLIP-ViT-H-14-laion2B-s32B-b79K/'),
|
104 |
-
)
|
105 |
-
|
106 |
-
_VITg14 = dict(
|
107 |
-
laion2b_s12b_b42k=_pcfg(hf_hub='laion/CLIP-ViT-g-14-laion2B-s12B-b42K/'),
|
108 |
-
laion2b_s34b_b88k=_pcfg(hf_hub='laion/CLIP-ViT-g-14-laion2B-s34B-b88K/'),
|
109 |
-
)
|
110 |
-
|
111 |
-
_EVAg14 = dict(
|
112 |
-
eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/'),
|
113 |
-
eva01=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_g_psz14.pt'),
|
114 |
-
eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_CLIP_g_14_psz14_s11B.pt'),
|
115 |
-
eva01_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_CLIP_g_14_psz14_s11B.pt'),
|
116 |
-
)
|
117 |
-
|
118 |
-
_EVAg14_PLUS = dict(
|
119 |
-
eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/'),
|
120 |
-
eva01=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_g_psz14.pt'),
|
121 |
-
eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_CLIP_g_14_plus_psz14_s11B.pt'),
|
122 |
-
eva01_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_CLIP_g_14_plus_psz14_s11B.pt'),
|
123 |
-
)
|
124 |
-
|
125 |
-
_VITbigG14 = dict(
|
126 |
-
laion2b_s39b_b160k=_pcfg(hf_hub='laion/CLIP-ViT-bigG-14-laion2B-39B-b160k/'),
|
127 |
-
)
|
128 |
-
|
129 |
-
_EVAbigE14 = dict(
|
130 |
-
eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_E_psz14.pt'),
|
131 |
-
eva02=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_E_psz14.pt'),
|
132 |
-
eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_s4B.pt'),
|
133 |
-
eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_s4B.pt'),
|
134 |
-
)
|
135 |
-
|
136 |
-
_EVAbigE14_PLUS = dict(
|
137 |
-
eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_E_psz14.pt'),
|
138 |
-
eva02=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_E_psz14.pt'),
|
139 |
-
eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_plus_s9B.pt'),
|
140 |
-
eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_plus_s9B.pt'),
|
141 |
-
)
|
142 |
-
|
143 |
-
|
144 |
-
_PRETRAINED = {
|
145 |
-
# "ViT-B-32": _VITB32,
|
146 |
-
"OpenaiCLIP-B-32": _VITB32,
|
147 |
-
"OpenCLIP-B-32": _VITB32,
|
148 |
-
|
149 |
-
# "ViT-B-32-quickgelu": _VITB32_quickgelu,
|
150 |
-
"OpenaiCLIP-B-32-quickgelu": _VITB32_quickgelu,
|
151 |
-
"OpenCLIP-B-32-quickgelu": _VITB32_quickgelu,
|
152 |
-
|
153 |
-
# "ViT-B-16": _VITB16,
|
154 |
-
"OpenaiCLIP-B-16": _VITB16,
|
155 |
-
"OpenCLIP-B-16": _VITB16,
|
156 |
-
|
157 |
-
"EVA02-B-16": _EVAB16,
|
158 |
-
"EVA02-CLIP-B-16": _EVAB16,
|
159 |
-
|
160 |
-
# "ViT-B-16-plus-240": _VITB16_PLUS_240,
|
161 |
-
"OpenCLIP-B-16-plus-240": _VITB16_PLUS_240,
|
162 |
-
|
163 |
-
# "ViT-L-14": _VITL14,
|
164 |
-
"OpenaiCLIP-L-14": _VITL14,
|
165 |
-
"OpenCLIP-L-14": _VITL14,
|
166 |
-
|
167 |
-
"EVA02-L-14": _EVAL14,
|
168 |
-
"EVA02-CLIP-L-14": _EVAL14,
|
169 |
-
|
170 |
-
# "ViT-L-14-336": _VITL14_336,
|
171 |
-
"OpenaiCLIP-L-14-336": _VITL14_336,
|
172 |
-
|
173 |
-
"EVA02-CLIP-L-14-336": _EVAL14_336,
|
174 |
-
|
175 |
-
# "ViT-H-14": _VITH14,
|
176 |
-
# "ViT-g-14": _VITg14,
|
177 |
-
"OpenCLIP-H-14": _VITH14,
|
178 |
-
"OpenCLIP-g-14": _VITg14,
|
179 |
-
|
180 |
-
"EVA01-CLIP-g-14": _EVAg14,
|
181 |
-
"EVA01-CLIP-g-14-plus": _EVAg14_PLUS,
|
182 |
-
|
183 |
-
# "ViT-bigG-14": _VITbigG14,
|
184 |
-
"OpenCLIP-bigG-14": _VITbigG14,
|
185 |
-
|
186 |
-
"EVA02-CLIP-bigE-14": _EVAbigE14,
|
187 |
-
"EVA02-CLIP-bigE-14-plus": _EVAbigE14_PLUS,
|
188 |
-
}
|
189 |
-
|
190 |
-
|
191 |
-
def _clean_tag(tag: str):
|
192 |
-
# normalize pretrained tags
|
193 |
-
return tag.lower().replace('-', '_')
|
194 |
-
|
195 |
-
|
196 |
-
def list_pretrained(as_str: bool = False):
|
197 |
-
""" returns list of pretrained models
|
198 |
-
Returns a tuple (model_name, pretrain_tag) by default or 'name:tag' if as_str == True
|
199 |
-
"""
|
200 |
-
return [':'.join([k, t]) if as_str else (k, t) for k in _PRETRAINED.keys() for t in _PRETRAINED[k].keys()]
|
201 |
-
|
202 |
-
|
203 |
-
def list_pretrained_models_by_tag(tag: str):
|
204 |
-
""" return all models having the specified pretrain tag """
|
205 |
-
models = []
|
206 |
-
tag = _clean_tag(tag)
|
207 |
-
for k in _PRETRAINED.keys():
|
208 |
-
if tag in _PRETRAINED[k]:
|
209 |
-
models.append(k)
|
210 |
-
return models
|
211 |
-
|
212 |
-
|
213 |
-
def list_pretrained_tags_by_model(model: str):
|
214 |
-
""" return all pretrain tags for the specified model architecture """
|
215 |
-
tags = []
|
216 |
-
if model in _PRETRAINED:
|
217 |
-
tags.extend(_PRETRAINED[model].keys())
|
218 |
-
return tags
|
219 |
-
|
220 |
-
|
221 |
-
def is_pretrained_cfg(model: str, tag: str):
|
222 |
-
if model not in _PRETRAINED:
|
223 |
-
return False
|
224 |
-
return _clean_tag(tag) in _PRETRAINED[model]
|
225 |
-
|
226 |
-
|
227 |
-
def get_pretrained_cfg(model: str, tag: str):
|
228 |
-
if model not in _PRETRAINED:
|
229 |
-
return {}
|
230 |
-
model_pretrained = _PRETRAINED[model]
|
231 |
-
return model_pretrained.get(_clean_tag(tag), {})
|
232 |
-
|
233 |
-
|
234 |
-
def get_pretrained_url(model: str, tag: str):
|
235 |
-
cfg = get_pretrained_cfg(model, _clean_tag(tag))
|
236 |
-
return cfg.get('url', '')
|
237 |
-
|
238 |
-
|
239 |
-
def download_pretrained_from_url(
|
240 |
-
url: str,
|
241 |
-
cache_dir: Union[str, None] = None,
|
242 |
-
):
|
243 |
-
if not cache_dir:
|
244 |
-
cache_dir = os.path.expanduser("~/.cache/clip")
|
245 |
-
os.makedirs(cache_dir, exist_ok=True)
|
246 |
-
filename = os.path.basename(url)
|
247 |
-
|
248 |
-
if 'openaipublic' in url:
|
249 |
-
expected_sha256 = url.split("/")[-2]
|
250 |
-
elif 'mlfoundations' in url:
|
251 |
-
expected_sha256 = os.path.splitext(filename)[0].split("-")[-1]
|
252 |
-
else:
|
253 |
-
expected_sha256 = ''
|
254 |
-
|
255 |
-
download_target = os.path.join(cache_dir, filename)
|
256 |
-
|
257 |
-
if os.path.exists(download_target) and not os.path.isfile(download_target):
|
258 |
-
raise RuntimeError(f"{download_target} exists and is not a regular file")
|
259 |
-
|
260 |
-
if os.path.isfile(download_target):
|
261 |
-
if expected_sha256:
|
262 |
-
if hashlib.sha256(open(download_target, "rb").read()).hexdigest().startswith(expected_sha256):
|
263 |
-
return download_target
|
264 |
-
else:
|
265 |
-
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
|
266 |
-
else:
|
267 |
-
return download_target
|
268 |
-
|
269 |
-
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
|
270 |
-
with tqdm(total=int(source.headers.get("Content-Length")), ncols=80, unit='iB', unit_scale=True) as loop:
|
271 |
-
while True:
|
272 |
-
buffer = source.read(8192)
|
273 |
-
if not buffer:
|
274 |
-
break
|
275 |
-
|
276 |
-
output.write(buffer)
|
277 |
-
loop.update(len(buffer))
|
278 |
-
|
279 |
-
if expected_sha256 and not hashlib.sha256(open(download_target, "rb").read()).hexdigest().startswith(expected_sha256):
|
280 |
-
raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match")
|
281 |
-
|
282 |
-
return download_target
|
283 |
-
|
284 |
-
|
285 |
-
def has_hf_hub(necessary=False):
|
286 |
-
if not _has_hf_hub and necessary:
|
287 |
-
# if no HF Hub module installed, and it is necessary to continue, raise error
|
288 |
-
raise RuntimeError(
|
289 |
-
'Hugging Face hub model specified but package not installed. Run `pip install huggingface_hub`.')
|
290 |
-
return _has_hf_hub
|
291 |
-
|
292 |
-
|
293 |
-
def download_pretrained_from_hf(
|
294 |
-
model_id: str,
|
295 |
-
filename: str = 'open_clip_pytorch_model.bin',
|
296 |
-
revision=None,
|
297 |
-
cache_dir: Union[str, None] = None,
|
298 |
-
):
|
299 |
-
has_hf_hub(True)
|
300 |
-
cached_file = hf_hub_download(model_id, filename, revision=revision, cache_dir=cache_dir)
|
301 |
-
return cached_file
|
302 |
-
|
303 |
-
|
304 |
-
def download_pretrained(
|
305 |
-
cfg: Dict,
|
306 |
-
force_hf_hub: bool = False,
|
307 |
-
cache_dir: Union[str, None] = None,
|
308 |
-
):
|
309 |
-
target = ''
|
310 |
-
if not cfg:
|
311 |
-
return target
|
312 |
-
|
313 |
-
download_url = cfg.get('url', '')
|
314 |
-
download_hf_hub = cfg.get('hf_hub', '')
|
315 |
-
if download_hf_hub and force_hf_hub:
|
316 |
-
# use HF hub even if url exists
|
317 |
-
download_url = ''
|
318 |
-
|
319 |
-
if download_url:
|
320 |
-
target = download_pretrained_from_url(download_url, cache_dir=cache_dir)
|
321 |
-
elif download_hf_hub:
|
322 |
-
has_hf_hub(True)
|
323 |
-
# we assume the hf_hub entries in pretrained config combine model_id + filename in
|
324 |
-
# 'org/model_name/filename.pt' form. To specify just the model id w/o filename and
|
325 |
-
# use 'open_clip_pytorch_model.bin' default, there must be a trailing slash 'org/model_name/'.
|
326 |
-
model_id, filename = os.path.split(download_hf_hub)
|
327 |
-
if filename:
|
328 |
-
target = download_pretrained_from_hf(model_id, filename=filename, cache_dir=cache_dir)
|
329 |
-
else:
|
330 |
-
target = download_pretrained_from_hf(model_id, cache_dir=cache_dir)
|
331 |
-
|
332 |
-
return target
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/eva_clip/rope.py
DELETED
@@ -1,137 +0,0 @@
|
|
1 |
-
from math import pi
|
2 |
-
import torch
|
3 |
-
from torch import nn
|
4 |
-
from einops import rearrange, repeat
|
5 |
-
import logging
|
6 |
-
|
7 |
-
def broadcat(tensors, dim = -1):
|
8 |
-
num_tensors = len(tensors)
|
9 |
-
shape_lens = set(list(map(lambda t: len(t.shape), tensors)))
|
10 |
-
assert len(shape_lens) == 1, 'tensors must all have the same number of dimensions'
|
11 |
-
shape_len = list(shape_lens)[0]
|
12 |
-
dim = (dim + shape_len) if dim < 0 else dim
|
13 |
-
dims = list(zip(*map(lambda t: list(t.shape), tensors)))
|
14 |
-
expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim]
|
15 |
-
assert all([*map(lambda t: len(set(t[1])) <= 2, expandable_dims)]), 'invalid dimensions for broadcastable concatentation'
|
16 |
-
max_dims = list(map(lambda t: (t[0], max(t[1])), expandable_dims))
|
17 |
-
expanded_dims = list(map(lambda t: (t[0], (t[1],) * num_tensors), max_dims))
|
18 |
-
expanded_dims.insert(dim, (dim, dims[dim]))
|
19 |
-
expandable_shapes = list(zip(*map(lambda t: t[1], expanded_dims)))
|
20 |
-
tensors = list(map(lambda t: t[0].expand(*t[1]), zip(tensors, expandable_shapes)))
|
21 |
-
return torch.cat(tensors, dim = dim)
|
22 |
-
|
23 |
-
def rotate_half(x):
|
24 |
-
x = rearrange(x, '... (d r) -> ... d r', r = 2)
|
25 |
-
x1, x2 = x.unbind(dim = -1)
|
26 |
-
x = torch.stack((-x2, x1), dim = -1)
|
27 |
-
return rearrange(x, '... d r -> ... (d r)')
|
28 |
-
|
29 |
-
|
30 |
-
class VisionRotaryEmbedding(nn.Module):
|
31 |
-
def __init__(
|
32 |
-
self,
|
33 |
-
dim,
|
34 |
-
pt_seq_len,
|
35 |
-
ft_seq_len=None,
|
36 |
-
custom_freqs = None,
|
37 |
-
freqs_for = 'lang',
|
38 |
-
theta = 10000,
|
39 |
-
max_freq = 10,
|
40 |
-
num_freqs = 1,
|
41 |
-
):
|
42 |
-
super().__init__()
|
43 |
-
if custom_freqs:
|
44 |
-
freqs = custom_freqs
|
45 |
-
elif freqs_for == 'lang':
|
46 |
-
freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim))
|
47 |
-
elif freqs_for == 'pixel':
|
48 |
-
freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi
|
49 |
-
elif freqs_for == 'constant':
|
50 |
-
freqs = torch.ones(num_freqs).float()
|
51 |
-
else:
|
52 |
-
raise ValueError(f'unknown modality {freqs_for}')
|
53 |
-
|
54 |
-
if ft_seq_len is None: ft_seq_len = pt_seq_len
|
55 |
-
t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len
|
56 |
-
|
57 |
-
freqs_h = torch.einsum('..., f -> ... f', t, freqs)
|
58 |
-
freqs_h = repeat(freqs_h, '... n -> ... (n r)', r = 2)
|
59 |
-
|
60 |
-
freqs_w = torch.einsum('..., f -> ... f', t, freqs)
|
61 |
-
freqs_w = repeat(freqs_w, '... n -> ... (n r)', r = 2)
|
62 |
-
|
63 |
-
freqs = broadcat((freqs_h[:, None, :], freqs_w[None, :, :]), dim = -1)
|
64 |
-
|
65 |
-
self.register_buffer("freqs_cos", freqs.cos())
|
66 |
-
self.register_buffer("freqs_sin", freqs.sin())
|
67 |
-
|
68 |
-
logging.info(f'Shape of rope freq: {self.freqs_cos.shape}')
|
69 |
-
|
70 |
-
def forward(self, t, start_index = 0):
|
71 |
-
rot_dim = self.freqs_cos.shape[-1]
|
72 |
-
end_index = start_index + rot_dim
|
73 |
-
assert rot_dim <= t.shape[-1], f'feature dimension {t.shape[-1]} is not of sufficient size to rotate in all the positions {rot_dim}'
|
74 |
-
t_left, t, t_right = t[..., :start_index], t[..., start_index:end_index], t[..., end_index:]
|
75 |
-
t = (t * self.freqs_cos) + (rotate_half(t) * self.freqs_sin)
|
76 |
-
|
77 |
-
return torch.cat((t_left, t, t_right), dim = -1)
|
78 |
-
|
79 |
-
class VisionRotaryEmbeddingFast(nn.Module):
|
80 |
-
def __init__(
|
81 |
-
self,
|
82 |
-
dim,
|
83 |
-
pt_seq_len,
|
84 |
-
ft_seq_len=None,
|
85 |
-
custom_freqs = None,
|
86 |
-
freqs_for = 'lang',
|
87 |
-
theta = 10000,
|
88 |
-
max_freq = 10,
|
89 |
-
num_freqs = 1,
|
90 |
-
patch_dropout = 0.
|
91 |
-
):
|
92 |
-
super().__init__()
|
93 |
-
if custom_freqs:
|
94 |
-
freqs = custom_freqs
|
95 |
-
elif freqs_for == 'lang':
|
96 |
-
freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim))
|
97 |
-
elif freqs_for == 'pixel':
|
98 |
-
freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi
|
99 |
-
elif freqs_for == 'constant':
|
100 |
-
freqs = torch.ones(num_freqs).float()
|
101 |
-
else:
|
102 |
-
raise ValueError(f'unknown modality {freqs_for}')
|
103 |
-
|
104 |
-
if ft_seq_len is None: ft_seq_len = pt_seq_len
|
105 |
-
t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len
|
106 |
-
|
107 |
-
freqs = torch.einsum('..., f -> ... f', t, freqs)
|
108 |
-
freqs = repeat(freqs, '... n -> ... (n r)', r = 2)
|
109 |
-
freqs = broadcat((freqs[:, None, :], freqs[None, :, :]), dim = -1)
|
110 |
-
|
111 |
-
freqs_cos = freqs.cos().view(-1, freqs.shape[-1])
|
112 |
-
freqs_sin = freqs.sin().view(-1, freqs.shape[-1])
|
113 |
-
|
114 |
-
self.patch_dropout = patch_dropout
|
115 |
-
|
116 |
-
self.register_buffer("freqs_cos", freqs_cos)
|
117 |
-
self.register_buffer("freqs_sin", freqs_sin)
|
118 |
-
|
119 |
-
logging.info(f'Shape of rope freq: {self.freqs_cos.shape}')
|
120 |
-
|
121 |
-
def forward(self, t, patch_indices_keep=None):
|
122 |
-
if patch_indices_keep is not None:
|
123 |
-
batch = t.size()[0]
|
124 |
-
batch_indices = torch.arange(batch)
|
125 |
-
batch_indices = batch_indices[..., None]
|
126 |
-
|
127 |
-
freqs_cos = repeat(self.freqs_cos, 'i j -> n i m j', n=t.shape[0], m=t.shape[1])
|
128 |
-
freqs_sin = repeat(self.freqs_sin, 'i j -> n i m j', n=t.shape[0], m=t.shape[1])
|
129 |
-
|
130 |
-
freqs_cos = freqs_cos[batch_indices, patch_indices_keep]
|
131 |
-
freqs_cos = rearrange(freqs_cos, 'n i m j -> n m i j')
|
132 |
-
freqs_sin = freqs_sin[batch_indices, patch_indices_keep]
|
133 |
-
freqs_sin = rearrange(freqs_sin, 'n i m j -> n m i j')
|
134 |
-
|
135 |
-
return t * freqs_cos + rotate_half(t) * freqs_sin
|
136 |
-
|
137 |
-
return t * self.freqs_cos + rotate_half(t) * self.freqs_sin
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/eva_clip/timm_model.py
DELETED
@@ -1,122 +0,0 @@
|
|
1 |
-
""" timm model adapter
|
2 |
-
|
3 |
-
Wraps timm (https://github.com/rwightman/pytorch-image-models) models for use as a vision tower in CLIP model.
|
4 |
-
"""
|
5 |
-
import logging
|
6 |
-
from collections import OrderedDict
|
7 |
-
|
8 |
-
import torch
|
9 |
-
import torch.nn as nn
|
10 |
-
|
11 |
-
try:
|
12 |
-
import timm
|
13 |
-
from timm.models.layers import Mlp, to_2tuple
|
14 |
-
try:
|
15 |
-
# old timm imports < 0.8.1
|
16 |
-
from timm.models.layers.attention_pool2d import RotAttentionPool2d
|
17 |
-
from timm.models.layers.attention_pool2d import AttentionPool2d as AbsAttentionPool2d
|
18 |
-
except ImportError:
|
19 |
-
# new timm imports >= 0.8.1
|
20 |
-
from timm.layers import RotAttentionPool2d
|
21 |
-
from timm.layers import AttentionPool2d as AbsAttentionPool2d
|
22 |
-
except ImportError:
|
23 |
-
timm = None
|
24 |
-
|
25 |
-
from .utils import freeze_batch_norm_2d
|
26 |
-
|
27 |
-
|
28 |
-
class TimmModel(nn.Module):
|
29 |
-
""" timm model adapter
|
30 |
-
# FIXME this adapter is a work in progress, may change in ways that break weight compat
|
31 |
-
"""
|
32 |
-
|
33 |
-
def __init__(
|
34 |
-
self,
|
35 |
-
model_name,
|
36 |
-
embed_dim,
|
37 |
-
image_size=224,
|
38 |
-
pool='avg',
|
39 |
-
proj='linear',
|
40 |
-
proj_bias=False,
|
41 |
-
drop=0.,
|
42 |
-
pretrained=False):
|
43 |
-
super().__init__()
|
44 |
-
if timm is None:
|
45 |
-
raise RuntimeError("Please `pip install timm` to use timm models.")
|
46 |
-
|
47 |
-
self.image_size = to_2tuple(image_size)
|
48 |
-
self.trunk = timm.create_model(model_name, pretrained=pretrained)
|
49 |
-
feat_size = self.trunk.default_cfg.get('pool_size', None)
|
50 |
-
feature_ndim = 1 if not feat_size else 2
|
51 |
-
if pool in ('abs_attn', 'rot_attn'):
|
52 |
-
assert feature_ndim == 2
|
53 |
-
# if attn pooling used, remove both classifier and default pool
|
54 |
-
self.trunk.reset_classifier(0, global_pool='')
|
55 |
-
else:
|
56 |
-
# reset global pool if pool config set, otherwise leave as network default
|
57 |
-
reset_kwargs = dict(global_pool=pool) if pool else {}
|
58 |
-
self.trunk.reset_classifier(0, **reset_kwargs)
|
59 |
-
prev_chs = self.trunk.num_features
|
60 |
-
|
61 |
-
head_layers = OrderedDict()
|
62 |
-
if pool == 'abs_attn':
|
63 |
-
head_layers['pool'] = AbsAttentionPool2d(prev_chs, feat_size=feat_size, out_features=embed_dim)
|
64 |
-
prev_chs = embed_dim
|
65 |
-
elif pool == 'rot_attn':
|
66 |
-
head_layers['pool'] = RotAttentionPool2d(prev_chs, out_features=embed_dim)
|
67 |
-
prev_chs = embed_dim
|
68 |
-
else:
|
69 |
-
assert proj, 'projection layer needed if non-attention pooling is used.'
|
70 |
-
|
71 |
-
# NOTE attention pool ends with a projection layer, so proj should usually be set to '' if such pooling is used
|
72 |
-
if proj == 'linear':
|
73 |
-
head_layers['drop'] = nn.Dropout(drop)
|
74 |
-
head_layers['proj'] = nn.Linear(prev_chs, embed_dim, bias=proj_bias)
|
75 |
-
elif proj == 'mlp':
|
76 |
-
head_layers['mlp'] = Mlp(prev_chs, 2 * embed_dim, embed_dim, drop=drop, bias=(True, proj_bias))
|
77 |
-
|
78 |
-
self.head = nn.Sequential(head_layers)
|
79 |
-
|
80 |
-
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
|
81 |
-
""" lock modules
|
82 |
-
Args:
|
83 |
-
unlocked_groups (int): leave last n layer groups unlocked (default: 0)
|
84 |
-
"""
|
85 |
-
if not unlocked_groups:
|
86 |
-
# lock full model
|
87 |
-
for param in self.trunk.parameters():
|
88 |
-
param.requires_grad = False
|
89 |
-
if freeze_bn_stats:
|
90 |
-
freeze_batch_norm_2d(self.trunk)
|
91 |
-
else:
|
92 |
-
# NOTE: partial freeze requires latest timm (master) branch and is subject to change
|
93 |
-
try:
|
94 |
-
# FIXME import here until API stable and in an official release
|
95 |
-
from timm.models.helpers import group_parameters, group_modules
|
96 |
-
except ImportError:
|
97 |
-
raise RuntimeError(
|
98 |
-
'Please install latest timm `pip install git+https://github.com/rwightman/pytorch-image-models`')
|
99 |
-
matcher = self.trunk.group_matcher()
|
100 |
-
gparams = group_parameters(self.trunk, matcher)
|
101 |
-
max_layer_id = max(gparams.keys())
|
102 |
-
max_layer_id = max_layer_id - unlocked_groups
|
103 |
-
for group_idx in range(max_layer_id + 1):
|
104 |
-
group = gparams[group_idx]
|
105 |
-
for param in group:
|
106 |
-
self.trunk.get_parameter(param).requires_grad = False
|
107 |
-
if freeze_bn_stats:
|
108 |
-
gmodules = group_modules(self.trunk, matcher, reverse=True)
|
109 |
-
gmodules = {k for k, v in gmodules.items() if v <= max_layer_id}
|
110 |
-
freeze_batch_norm_2d(self.trunk, gmodules)
|
111 |
-
|
112 |
-
@torch.jit.ignore
|
113 |
-
def set_grad_checkpointing(self, enable=True):
|
114 |
-
try:
|
115 |
-
self.trunk.set_grad_checkpointing(enable)
|
116 |
-
except Exception as e:
|
117 |
-
logging.warning('grad checkpointing not supported for this timm image tower, continuing without...')
|
118 |
-
|
119 |
-
def forward(self, x):
|
120 |
-
x = self.trunk(x)
|
121 |
-
x = self.head(x)
|
122 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/eva_clip/tokenizer.py
DELETED
@@ -1,201 +0,0 @@
|
|
1 |
-
""" CLIP tokenizer
|
2 |
-
|
3 |
-
Copied from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
|
4 |
-
"""
|
5 |
-
import gzip
|
6 |
-
import html
|
7 |
-
import os
|
8 |
-
from functools import lru_cache
|
9 |
-
from typing import Union, List
|
10 |
-
|
11 |
-
import ftfy
|
12 |
-
import regex as re
|
13 |
-
import torch
|
14 |
-
|
15 |
-
# https://stackoverflow.com/q/62691279
|
16 |
-
import os
|
17 |
-
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
18 |
-
|
19 |
-
|
20 |
-
@lru_cache()
|
21 |
-
def default_bpe():
|
22 |
-
return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz")
|
23 |
-
|
24 |
-
|
25 |
-
@lru_cache()
|
26 |
-
def bytes_to_unicode():
|
27 |
-
"""
|
28 |
-
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
29 |
-
The reversible bpe codes work on unicode strings.
|
30 |
-
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
31 |
-
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
32 |
-
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
33 |
-
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
34 |
-
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
35 |
-
"""
|
36 |
-
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
37 |
-
cs = bs[:]
|
38 |
-
n = 0
|
39 |
-
for b in range(2**8):
|
40 |
-
if b not in bs:
|
41 |
-
bs.append(b)
|
42 |
-
cs.append(2**8+n)
|
43 |
-
n += 1
|
44 |
-
cs = [chr(n) for n in cs]
|
45 |
-
return dict(zip(bs, cs))
|
46 |
-
|
47 |
-
|
48 |
-
def get_pairs(word):
|
49 |
-
"""Return set of symbol pairs in a word.
|
50 |
-
Word is represented as tuple of symbols (symbols being variable-length strings).
|
51 |
-
"""
|
52 |
-
pairs = set()
|
53 |
-
prev_char = word[0]
|
54 |
-
for char in word[1:]:
|
55 |
-
pairs.add((prev_char, char))
|
56 |
-
prev_char = char
|
57 |
-
return pairs
|
58 |
-
|
59 |
-
|
60 |
-
def basic_clean(text):
|
61 |
-
text = ftfy.fix_text(text)
|
62 |
-
text = html.unescape(html.unescape(text))
|
63 |
-
return text.strip()
|
64 |
-
|
65 |
-
|
66 |
-
def whitespace_clean(text):
|
67 |
-
text = re.sub(r'\s+', ' ', text)
|
68 |
-
text = text.strip()
|
69 |
-
return text
|
70 |
-
|
71 |
-
|
72 |
-
class SimpleTokenizer(object):
|
73 |
-
def __init__(self, bpe_path: str = default_bpe(), special_tokens=None):
|
74 |
-
self.byte_encoder = bytes_to_unicode()
|
75 |
-
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
76 |
-
merges = gzip.open(bpe_path).read().decode("utf-8").split('\n')
|
77 |
-
merges = merges[1:49152-256-2+1]
|
78 |
-
merges = [tuple(merge.split()) for merge in merges]
|
79 |
-
vocab = list(bytes_to_unicode().values())
|
80 |
-
vocab = vocab + [v+'</w>' for v in vocab]
|
81 |
-
for merge in merges:
|
82 |
-
vocab.append(''.join(merge))
|
83 |
-
if not special_tokens:
|
84 |
-
special_tokens = ['<start_of_text>', '<end_of_text>']
|
85 |
-
else:
|
86 |
-
special_tokens = ['<start_of_text>', '<end_of_text>'] + special_tokens
|
87 |
-
vocab.extend(special_tokens)
|
88 |
-
self.encoder = dict(zip(vocab, range(len(vocab))))
|
89 |
-
self.decoder = {v: k for k, v in self.encoder.items()}
|
90 |
-
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
91 |
-
self.cache = {t:t for t in special_tokens}
|
92 |
-
special = "|".join(special_tokens)
|
93 |
-
self.pat = re.compile(special + r"""|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE)
|
94 |
-
|
95 |
-
self.vocab_size = len(self.encoder)
|
96 |
-
self.all_special_ids = [self.encoder[t] for t in special_tokens]
|
97 |
-
|
98 |
-
def bpe(self, token):
|
99 |
-
if token in self.cache:
|
100 |
-
return self.cache[token]
|
101 |
-
word = tuple(token[:-1]) + ( token[-1] + '</w>',)
|
102 |
-
pairs = get_pairs(word)
|
103 |
-
|
104 |
-
if not pairs:
|
105 |
-
return token+'</w>'
|
106 |
-
|
107 |
-
while True:
|
108 |
-
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
|
109 |
-
if bigram not in self.bpe_ranks:
|
110 |
-
break
|
111 |
-
first, second = bigram
|
112 |
-
new_word = []
|
113 |
-
i = 0
|
114 |
-
while i < len(word):
|
115 |
-
try:
|
116 |
-
j = word.index(first, i)
|
117 |
-
new_word.extend(word[i:j])
|
118 |
-
i = j
|
119 |
-
except:
|
120 |
-
new_word.extend(word[i:])
|
121 |
-
break
|
122 |
-
|
123 |
-
if word[i] == first and i < len(word)-1 and word[i+1] == second:
|
124 |
-
new_word.append(first+second)
|
125 |
-
i += 2
|
126 |
-
else:
|
127 |
-
new_word.append(word[i])
|
128 |
-
i += 1
|
129 |
-
new_word = tuple(new_word)
|
130 |
-
word = new_word
|
131 |
-
if len(word) == 1:
|
132 |
-
break
|
133 |
-
else:
|
134 |
-
pairs = get_pairs(word)
|
135 |
-
word = ' '.join(word)
|
136 |
-
self.cache[token] = word
|
137 |
-
return word
|
138 |
-
|
139 |
-
def encode(self, text):
|
140 |
-
bpe_tokens = []
|
141 |
-
text = whitespace_clean(basic_clean(text)).lower()
|
142 |
-
for token in re.findall(self.pat, text):
|
143 |
-
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
|
144 |
-
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
|
145 |
-
return bpe_tokens
|
146 |
-
|
147 |
-
def decode(self, tokens):
|
148 |
-
text = ''.join([self.decoder[token] for token in tokens])
|
149 |
-
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ')
|
150 |
-
return text
|
151 |
-
|
152 |
-
|
153 |
-
_tokenizer = SimpleTokenizer()
|
154 |
-
|
155 |
-
|
156 |
-
def tokenize(texts: Union[str, List[str]], context_length: int = 77) -> torch.LongTensor:
|
157 |
-
"""
|
158 |
-
Returns the tokenized representation of given input string(s)
|
159 |
-
|
160 |
-
Parameters
|
161 |
-
----------
|
162 |
-
texts : Union[str, List[str]]
|
163 |
-
An input string or a list of input strings to tokenize
|
164 |
-
context_length : int
|
165 |
-
The context length to use; all CLIP models use 77 as the context length
|
166 |
-
|
167 |
-
Returns
|
168 |
-
-------
|
169 |
-
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]
|
170 |
-
"""
|
171 |
-
if isinstance(texts, str):
|
172 |
-
texts = [texts]
|
173 |
-
|
174 |
-
sot_token = _tokenizer.encoder["<start_of_text>"]
|
175 |
-
eot_token = _tokenizer.encoder["<end_of_text>"]
|
176 |
-
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts]
|
177 |
-
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
|
178 |
-
|
179 |
-
for i, tokens in enumerate(all_tokens):
|
180 |
-
if len(tokens) > context_length:
|
181 |
-
tokens = tokens[:context_length] # Truncate
|
182 |
-
tokens[-1] = eot_token
|
183 |
-
result[i, :len(tokens)] = torch.tensor(tokens)
|
184 |
-
|
185 |
-
return result
|
186 |
-
|
187 |
-
|
188 |
-
class HFTokenizer:
|
189 |
-
"HuggingFace tokenizer wrapper"
|
190 |
-
def __init__(self, tokenizer_name:str):
|
191 |
-
from transformers import AutoTokenizer
|
192 |
-
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
|
193 |
-
|
194 |
-
def __call__(self, texts:Union[str, List[str]], context_length:int=77) -> torch.Tensor:
|
195 |
-
# same cleaning as for default tokenizer, except lowercasing
|
196 |
-
# adding lower (for case-sensitive tokenizers) will make it more robust but less sensitive to nuance
|
197 |
-
if isinstance(texts, str):
|
198 |
-
texts = [texts]
|
199 |
-
texts = [whitespace_clean(basic_clean(text)) for text in texts]
|
200 |
-
input_ids = self.tokenizer(texts, return_tensors='pt', max_length=context_length, padding='max_length', truncation=True).input_ids
|
201 |
-
return input_ids
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/eva_clip/transform.py
DELETED
@@ -1,103 +0,0 @@
|
|
1 |
-
from typing import Optional, Sequence, Tuple
|
2 |
-
|
3 |
-
import torch
|
4 |
-
import torch.nn as nn
|
5 |
-
import torchvision.transforms.functional as F
|
6 |
-
|
7 |
-
from torchvision.transforms import Normalize, Compose, RandomResizedCrop, InterpolationMode, ToTensor, Resize, \
|
8 |
-
CenterCrop
|
9 |
-
|
10 |
-
from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
|
11 |
-
|
12 |
-
|
13 |
-
class ResizeMaxSize(nn.Module):
|
14 |
-
|
15 |
-
def __init__(self, max_size, interpolation=InterpolationMode.BICUBIC, fn='max', fill=0):
|
16 |
-
super().__init__()
|
17 |
-
if not isinstance(max_size, int):
|
18 |
-
raise TypeError(f"Size should be int. Got {type(max_size)}")
|
19 |
-
self.max_size = max_size
|
20 |
-
self.interpolation = interpolation
|
21 |
-
self.fn = min if fn == 'min' else min
|
22 |
-
self.fill = fill
|
23 |
-
|
24 |
-
def forward(self, img):
|
25 |
-
if isinstance(img, torch.Tensor):
|
26 |
-
height, width = img.shape[:2]
|
27 |
-
else:
|
28 |
-
width, height = img.size
|
29 |
-
scale = self.max_size / float(max(height, width))
|
30 |
-
if scale != 1.0:
|
31 |
-
new_size = tuple(round(dim * scale) for dim in (height, width))
|
32 |
-
img = F.resize(img, new_size, self.interpolation)
|
33 |
-
pad_h = self.max_size - new_size[0]
|
34 |
-
pad_w = self.max_size - new_size[1]
|
35 |
-
img = F.pad(img, padding=[pad_w//2, pad_h//2, pad_w - pad_w//2, pad_h - pad_h//2], fill=self.fill)
|
36 |
-
return img
|
37 |
-
|
38 |
-
|
39 |
-
def _convert_to_rgb(image):
|
40 |
-
return image.convert('RGB')
|
41 |
-
|
42 |
-
|
43 |
-
# class CatGen(nn.Module):
|
44 |
-
# def __init__(self, num=4):
|
45 |
-
# self.num = num
|
46 |
-
# def mixgen_batch(image, text):
|
47 |
-
# batch_size = image.shape[0]
|
48 |
-
# index = np.random.permutation(batch_size)
|
49 |
-
|
50 |
-
# cat_images = []
|
51 |
-
# for i in range(batch_size):
|
52 |
-
# # image mixup
|
53 |
-
# image[i,:] = lam * image[i,:] + (1 - lam) * image[index[i],:]
|
54 |
-
# # text concat
|
55 |
-
# text[i] = tokenizer((str(text[i]) + " " + str(text[index[i]])))[0]
|
56 |
-
# text = torch.stack(text)
|
57 |
-
# return image, text
|
58 |
-
|
59 |
-
|
60 |
-
def image_transform(
|
61 |
-
image_size: int,
|
62 |
-
is_train: bool,
|
63 |
-
mean: Optional[Tuple[float, ...]] = None,
|
64 |
-
std: Optional[Tuple[float, ...]] = None,
|
65 |
-
resize_longest_max: bool = False,
|
66 |
-
fill_color: int = 0,
|
67 |
-
):
|
68 |
-
mean = mean or OPENAI_DATASET_MEAN
|
69 |
-
if not isinstance(mean, (list, tuple)):
|
70 |
-
mean = (mean,) * 3
|
71 |
-
|
72 |
-
std = std or OPENAI_DATASET_STD
|
73 |
-
if not isinstance(std, (list, tuple)):
|
74 |
-
std = (std,) * 3
|
75 |
-
|
76 |
-
if isinstance(image_size, (list, tuple)) and image_size[0] == image_size[1]:
|
77 |
-
# for square size, pass size as int so that Resize() uses aspect preserving shortest edge
|
78 |
-
image_size = image_size[0]
|
79 |
-
|
80 |
-
normalize = Normalize(mean=mean, std=std)
|
81 |
-
if is_train:
|
82 |
-
return Compose([
|
83 |
-
RandomResizedCrop(image_size, scale=(0.9, 1.0), interpolation=InterpolationMode.BICUBIC),
|
84 |
-
_convert_to_rgb,
|
85 |
-
ToTensor(),
|
86 |
-
normalize,
|
87 |
-
])
|
88 |
-
else:
|
89 |
-
if resize_longest_max:
|
90 |
-
transforms = [
|
91 |
-
ResizeMaxSize(image_size, fill=fill_color)
|
92 |
-
]
|
93 |
-
else:
|
94 |
-
transforms = [
|
95 |
-
Resize(image_size, interpolation=InterpolationMode.BICUBIC),
|
96 |
-
CenterCrop(image_size),
|
97 |
-
]
|
98 |
-
transforms.extend([
|
99 |
-
_convert_to_rgb,
|
100 |
-
ToTensor(),
|
101 |
-
normalize,
|
102 |
-
])
|
103 |
-
return Compose(transforms)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/eva_clip/transformer.py
DELETED
@@ -1,737 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import logging
|
3 |
-
from collections import OrderedDict
|
4 |
-
import math
|
5 |
-
from typing import Callable, Optional, Sequence
|
6 |
-
import numpy as np
|
7 |
-
import torch
|
8 |
-
from torch import nn
|
9 |
-
from torch.nn import functional as F
|
10 |
-
|
11 |
-
try:
|
12 |
-
from timm.models.layers import trunc_normal_
|
13 |
-
except:
|
14 |
-
from timm.layers import trunc_normal_
|
15 |
-
|
16 |
-
from .rope import VisionRotaryEmbedding, VisionRotaryEmbeddingFast
|
17 |
-
from .utils import to_2tuple
|
18 |
-
|
19 |
-
if os.getenv('ENV_TYPE') == 'deepspeed':
|
20 |
-
try:
|
21 |
-
import deepspeed
|
22 |
-
from deepspeed.runtime.activation_checkpointing.checkpointing import checkpoint
|
23 |
-
except:
|
24 |
-
print("Please 'pip install deepspeed'")
|
25 |
-
deepspeed = None
|
26 |
-
from torch.utils.checkpoint import checkpoint
|
27 |
-
else:
|
28 |
-
from torch.utils.checkpoint import checkpoint
|
29 |
-
|
30 |
-
try:
|
31 |
-
import xformers.ops as xops
|
32 |
-
except ImportError:
|
33 |
-
xops = None
|
34 |
-
print("Please 'pip install xformers'")
|
35 |
-
|
36 |
-
class LayerNormFp32(nn.LayerNorm):
|
37 |
-
"""Subclass torch's LayerNorm to handle fp16 (by casting to float32 and back)."""
|
38 |
-
def __init__(self, *args, **kwargs):
|
39 |
-
super().__init__(*args, **kwargs)
|
40 |
-
|
41 |
-
def forward(self, x: torch.Tensor):
|
42 |
-
output = F.layer_norm(
|
43 |
-
x.float(),
|
44 |
-
self.normalized_shape,
|
45 |
-
self.weight.float() if self.weight is not None else None,
|
46 |
-
self.bias.float() if self.bias is not None else None,
|
47 |
-
self.eps,
|
48 |
-
)
|
49 |
-
return output.type_as(x)
|
50 |
-
|
51 |
-
|
52 |
-
class LayerNorm(nn.LayerNorm):
|
53 |
-
"""Subclass torch's LayerNorm (with cast back to input dtype)."""
|
54 |
-
|
55 |
-
def forward(self, x: torch.Tensor):
|
56 |
-
orig_type = x.dtype
|
57 |
-
x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
|
58 |
-
return x.to(orig_type)
|
59 |
-
|
60 |
-
class QuickGELU(nn.Module):
|
61 |
-
# NOTE This is slower than nn.GELU or nn.SiLU and uses more GPU memory
|
62 |
-
def forward(self, x: torch.Tensor):
|
63 |
-
return x * torch.sigmoid(1.702 * x)
|
64 |
-
|
65 |
-
|
66 |
-
class LayerScale(nn.Module):
|
67 |
-
def __init__(self, dim, init_values=1e-5, inplace=False):
|
68 |
-
super().__init__()
|
69 |
-
self.inplace = inplace
|
70 |
-
self.gamma = nn.Parameter(init_values * torch.ones(dim))
|
71 |
-
|
72 |
-
def forward(self, x):
|
73 |
-
return x.mul_(self.gamma) if self.inplace else x * self.gamma
|
74 |
-
|
75 |
-
class PatchDropout(nn.Module):
|
76 |
-
"""
|
77 |
-
https://arxiv.org/abs/2212.00794
|
78 |
-
"""
|
79 |
-
|
80 |
-
def __init__(self, prob, exclude_first_token=True):
|
81 |
-
super().__init__()
|
82 |
-
assert 0 <= prob < 1.
|
83 |
-
self.prob = prob
|
84 |
-
self.exclude_first_token = exclude_first_token # exclude CLS token
|
85 |
-
logging.info(f"os.getenv('RoPE')={os.getenv('RoPE')}")
|
86 |
-
|
87 |
-
def forward(self, x):
|
88 |
-
if not self.training or self.prob == 0.:
|
89 |
-
return x
|
90 |
-
|
91 |
-
if self.exclude_first_token:
|
92 |
-
cls_tokens, x = x[:, :1], x[:, 1:]
|
93 |
-
else:
|
94 |
-
cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1])
|
95 |
-
|
96 |
-
batch = x.size()[0]
|
97 |
-
num_tokens = x.size()[1]
|
98 |
-
|
99 |
-
batch_indices = torch.arange(batch)
|
100 |
-
batch_indices = batch_indices[..., None]
|
101 |
-
|
102 |
-
keep_prob = 1 - self.prob
|
103 |
-
num_patches_keep = max(1, int(num_tokens * keep_prob))
|
104 |
-
|
105 |
-
rand = torch.randn(batch, num_tokens)
|
106 |
-
patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices
|
107 |
-
|
108 |
-
x = x[batch_indices, patch_indices_keep]
|
109 |
-
|
110 |
-
if self.exclude_first_token:
|
111 |
-
x = torch.cat((cls_tokens, x), dim=1)
|
112 |
-
|
113 |
-
if self.training and os.getenv('RoPE') == '1':
|
114 |
-
return x, patch_indices_keep
|
115 |
-
|
116 |
-
return x
|
117 |
-
|
118 |
-
|
119 |
-
def _in_projection_packed(
|
120 |
-
q: torch.Tensor,
|
121 |
-
k: torch.Tensor,
|
122 |
-
v: torch.Tensor,
|
123 |
-
w: torch.Tensor,
|
124 |
-
b: Optional[torch.Tensor] = None,
|
125 |
-
):
|
126 |
-
"""
|
127 |
-
https://github.com/pytorch/pytorch/blob/db2a237763eb8693a20788be94f8c192e762baa8/torch/nn/functional.py#L4726
|
128 |
-
"""
|
129 |
-
E = q.size(-1)
|
130 |
-
if k is v:
|
131 |
-
if q is k:
|
132 |
-
# self-attention
|
133 |
-
return F.linear(q, w, b).chunk(3, dim=-1)
|
134 |
-
else:
|
135 |
-
# encoder-decoder attention
|
136 |
-
w_q, w_kv = w.split([E, E * 2])
|
137 |
-
if b is None:
|
138 |
-
b_q = b_kv = None
|
139 |
-
else:
|
140 |
-
b_q, b_kv = b.split([E, E * 2])
|
141 |
-
return (F.linear(q, w_q, b_q),) + F.linear(k, w_kv, b_kv).chunk(2, dim=-1)
|
142 |
-
else:
|
143 |
-
w_q, w_k, w_v = w.chunk(3)
|
144 |
-
if b is None:
|
145 |
-
b_q = b_k = b_v = None
|
146 |
-
else:
|
147 |
-
b_q, b_k, b_v = b.chunk(3)
|
148 |
-
return F.linear(q, w_q, b_q), F.linear(k, w_k, b_k), F.linear(v, w_v, b_v)
|
149 |
-
|
150 |
-
class Attention(nn.Module):
|
151 |
-
def __init__(
|
152 |
-
self,
|
153 |
-
dim,
|
154 |
-
num_heads=8,
|
155 |
-
qkv_bias=True,
|
156 |
-
scaled_cosine=False,
|
157 |
-
scale_heads=False,
|
158 |
-
logit_scale_max=math.log(1. / 0.01),
|
159 |
-
attn_drop=0.,
|
160 |
-
proj_drop=0.,
|
161 |
-
xattn=False,
|
162 |
-
rope=False
|
163 |
-
):
|
164 |
-
super().__init__()
|
165 |
-
self.scaled_cosine = scaled_cosine
|
166 |
-
self.scale_heads = scale_heads
|
167 |
-
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
|
168 |
-
self.num_heads = num_heads
|
169 |
-
self.head_dim = dim // num_heads
|
170 |
-
self.scale = self.head_dim ** -0.5
|
171 |
-
self.logit_scale_max = logit_scale_max
|
172 |
-
|
173 |
-
# keeping in_proj in this form (instead of nn.Linear) to match weight scheme of original
|
174 |
-
self.in_proj_weight = nn.Parameter(torch.randn((dim * 3, dim)) * self.scale)
|
175 |
-
if qkv_bias:
|
176 |
-
self.in_proj_bias = nn.Parameter(torch.zeros(dim * 3))
|
177 |
-
else:
|
178 |
-
self.in_proj_bias = None
|
179 |
-
|
180 |
-
if self.scaled_cosine:
|
181 |
-
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))))
|
182 |
-
else:
|
183 |
-
self.logit_scale = None
|
184 |
-
self.attn_drop = nn.Dropout(attn_drop)
|
185 |
-
if self.scale_heads:
|
186 |
-
self.head_scale = nn.Parameter(torch.ones((num_heads, 1, 1)))
|
187 |
-
else:
|
188 |
-
self.head_scale = None
|
189 |
-
self.out_proj = nn.Linear(dim, dim)
|
190 |
-
self.out_drop = nn.Dropout(proj_drop)
|
191 |
-
self.xattn = xattn
|
192 |
-
self.xattn_drop = attn_drop
|
193 |
-
self.rope = rope
|
194 |
-
|
195 |
-
def forward(self, x, attn_mask: Optional[torch.Tensor] = None):
|
196 |
-
L, N, C = x.shape
|
197 |
-
q, k, v = F.linear(x, self.in_proj_weight, self.in_proj_bias).chunk(3, dim=-1)
|
198 |
-
if self.xattn:
|
199 |
-
q = q.contiguous().view(L, N, self.num_heads, -1).transpose(0, 1)
|
200 |
-
k = k.contiguous().view(L, N, self.num_heads, -1).transpose(0, 1)
|
201 |
-
v = v.contiguous().view(L, N, self.num_heads, -1).transpose(0, 1)
|
202 |
-
|
203 |
-
x = xops.memory_efficient_attention(
|
204 |
-
q, k, v,
|
205 |
-
p=self.xattn_drop,
|
206 |
-
scale=self.scale if self.logit_scale is None else None,
|
207 |
-
attn_bias=xops.LowerTriangularMask() if attn_mask is not None else None,
|
208 |
-
)
|
209 |
-
else:
|
210 |
-
q = q.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1)
|
211 |
-
k = k.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1)
|
212 |
-
v = v.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1)
|
213 |
-
|
214 |
-
if self.logit_scale is not None:
|
215 |
-
attn = torch.bmm(F.normalize(q, dim=-1), F.normalize(k, dim=-1).transpose(-1, -2))
|
216 |
-
logit_scale = torch.clamp(self.logit_scale, max=self.logit_scale_max).exp()
|
217 |
-
attn = attn.view(N, self.num_heads, L, L) * logit_scale
|
218 |
-
attn = attn.view(-1, L, L)
|
219 |
-
else:
|
220 |
-
q = q * self.scale
|
221 |
-
attn = torch.bmm(q, k.transpose(-1, -2))
|
222 |
-
|
223 |
-
if attn_mask is not None:
|
224 |
-
if attn_mask.dtype == torch.bool:
|
225 |
-
new_attn_mask = torch.zeros_like(attn_mask, dtype=q.dtype)
|
226 |
-
new_attn_mask.masked_fill_(attn_mask, float("-inf"))
|
227 |
-
attn_mask = new_attn_mask
|
228 |
-
attn += attn_mask
|
229 |
-
|
230 |
-
attn = attn.softmax(dim=-1)
|
231 |
-
attn = self.attn_drop(attn)
|
232 |
-
|
233 |
-
x = torch.bmm(attn, v)
|
234 |
-
|
235 |
-
if self.head_scale is not None:
|
236 |
-
x = x.view(N, self.num_heads, L, C) * self.head_scale
|
237 |
-
x = x.view(-1, L, C)
|
238 |
-
x = x.transpose(0, 1).reshape(L, N, C)
|
239 |
-
x = self.out_proj(x)
|
240 |
-
x = self.out_drop(x)
|
241 |
-
return x
|
242 |
-
|
243 |
-
class CustomAttention(nn.Module):
|
244 |
-
def __init__(
|
245 |
-
self,
|
246 |
-
dim,
|
247 |
-
num_heads=8,
|
248 |
-
qkv_bias=True,
|
249 |
-
scaled_cosine=True,
|
250 |
-
scale_heads=False,
|
251 |
-
logit_scale_max=math.log(1. / 0.01),
|
252 |
-
attn_drop=0.,
|
253 |
-
proj_drop=0.,
|
254 |
-
xattn=False
|
255 |
-
):
|
256 |
-
super().__init__()
|
257 |
-
self.scaled_cosine = scaled_cosine
|
258 |
-
self.scale_heads = scale_heads
|
259 |
-
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
|
260 |
-
self.num_heads = num_heads
|
261 |
-
self.head_dim = dim // num_heads
|
262 |
-
self.scale = self.head_dim ** -0.5
|
263 |
-
self.logit_scale_max = logit_scale_max
|
264 |
-
|
265 |
-
# keeping in_proj in this form (instead of nn.Linear) to match weight scheme of original
|
266 |
-
self.in_proj_weight = nn.Parameter(torch.randn((dim * 3, dim)) * self.scale)
|
267 |
-
if qkv_bias:
|
268 |
-
self.in_proj_bias = nn.Parameter(torch.zeros(dim * 3))
|
269 |
-
else:
|
270 |
-
self.in_proj_bias = None
|
271 |
-
|
272 |
-
if self.scaled_cosine:
|
273 |
-
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))))
|
274 |
-
else:
|
275 |
-
self.logit_scale = None
|
276 |
-
self.attn_drop = nn.Dropout(attn_drop)
|
277 |
-
if self.scale_heads:
|
278 |
-
self.head_scale = nn.Parameter(torch.ones((num_heads, 1, 1)))
|
279 |
-
else:
|
280 |
-
self.head_scale = None
|
281 |
-
self.out_proj = nn.Linear(dim, dim)
|
282 |
-
self.out_drop = nn.Dropout(proj_drop)
|
283 |
-
self.xattn = xattn
|
284 |
-
self.xattn_drop = attn_drop
|
285 |
-
|
286 |
-
def forward(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
|
287 |
-
q, k, v = _in_projection_packed(query, key, value, self.in_proj_weight, self.in_proj_bias)
|
288 |
-
N_q, B_q, C_q = q.shape
|
289 |
-
N_k, B_k, C_k = k.shape
|
290 |
-
N_v, B_v, C_v = v.shape
|
291 |
-
if self.xattn:
|
292 |
-
# B, N, C -> B, N, num_heads, C
|
293 |
-
q = q.permute(1, 0, 2).reshape(B_q, N_q, self.num_heads, -1)
|
294 |
-
k = k.permute(1, 0, 2).reshape(B_k, N_k, self.num_heads, -1)
|
295 |
-
v = v.permute(1, 0, 2).reshape(B_v, N_v, self.num_heads, -1)
|
296 |
-
|
297 |
-
x = xops.memory_efficient_attention(
|
298 |
-
q, k, v,
|
299 |
-
p=self.xattn_drop,
|
300 |
-
scale=self.scale if self.logit_scale is None else None,
|
301 |
-
attn_bias=xops.LowerTriangularMask() if attn_mask is not None else None
|
302 |
-
)
|
303 |
-
else:
|
304 |
-
# B*H, L, C
|
305 |
-
q = q.contiguous().view(N_q, B_q * self.num_heads, -1).transpose(0, 1)
|
306 |
-
k = k.contiguous().view(N_k, B_k * self.num_heads, -1).transpose(0, 1)
|
307 |
-
v = v.contiguous().view(N_v, B_v * self.num_heads, -1).transpose(0, 1)
|
308 |
-
|
309 |
-
if self.logit_scale is not None:
|
310 |
-
# B*H, N_q, N_k
|
311 |
-
attn = torch.bmm(F.normalize(q, dim=-1), F.normalize(k, dim=-1).transpose(-1, -2))
|
312 |
-
logit_scale = torch.clamp(self.logit_scale, max=self.logit_scale_max).exp()
|
313 |
-
attn = attn.view(B_q, self.num_heads, N_q, N_k) * logit_scale
|
314 |
-
attn = attn.view(-1, N_q, N_k)
|
315 |
-
else:
|
316 |
-
q = q * self.scale
|
317 |
-
attn = torch.bmm(q, k.transpose(-1, -2))
|
318 |
-
|
319 |
-
if attn_mask is not None:
|
320 |
-
if attn_mask.dtype == torch.bool:
|
321 |
-
new_attn_mask = torch.zeros_like(attn_mask, dtype=q.dtype)
|
322 |
-
new_attn_mask.masked_fill_(attn_mask, float("-inf"))
|
323 |
-
attn_mask = new_attn_mask
|
324 |
-
attn += attn_mask
|
325 |
-
|
326 |
-
attn = attn.softmax(dim=-1)
|
327 |
-
attn = self.attn_drop(attn)
|
328 |
-
|
329 |
-
x = torch.bmm(attn, v)
|
330 |
-
|
331 |
-
if self.head_scale is not None:
|
332 |
-
x = x.view(B_q, self.num_heads, N_q, C_q) * self.head_scale
|
333 |
-
x = x.view(-1, N_q, C_q)
|
334 |
-
x = x.transpose(0, 1).reshape(N_q, B_q, C_q)
|
335 |
-
x = self.out_proj(x)
|
336 |
-
x = self.out_drop(x)
|
337 |
-
return x
|
338 |
-
|
339 |
-
class CustomResidualAttentionBlock(nn.Module):
|
340 |
-
def __init__(
|
341 |
-
self,
|
342 |
-
d_model: int,
|
343 |
-
n_head: int,
|
344 |
-
mlp_ratio: float = 4.0,
|
345 |
-
ls_init_value: float = None,
|
346 |
-
act_layer: Callable = nn.GELU,
|
347 |
-
norm_layer: Callable = LayerNorm,
|
348 |
-
scale_cosine_attn: bool = False,
|
349 |
-
scale_heads: bool = False,
|
350 |
-
scale_attn: bool = False,
|
351 |
-
scale_fc: bool = False,
|
352 |
-
cross_attn: bool = False,
|
353 |
-
xattn: bool = False,
|
354 |
-
):
|
355 |
-
super().__init__()
|
356 |
-
|
357 |
-
self.ln_1 = norm_layer(d_model)
|
358 |
-
self.ln_1_k = norm_layer(d_model) if cross_attn else self.ln_1
|
359 |
-
self.ln_1_v = norm_layer(d_model) if cross_attn else self.ln_1
|
360 |
-
self.attn = CustomAttention(
|
361 |
-
d_model, n_head,
|
362 |
-
qkv_bias=True,
|
363 |
-
attn_drop=0.,
|
364 |
-
proj_drop=0.,
|
365 |
-
scaled_cosine=scale_cosine_attn,
|
366 |
-
scale_heads=scale_heads,
|
367 |
-
xattn=xattn
|
368 |
-
)
|
369 |
-
|
370 |
-
self.ln_attn = norm_layer(d_model) if scale_attn else nn.Identity()
|
371 |
-
self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
|
372 |
-
|
373 |
-
self.ln_2 = norm_layer(d_model)
|
374 |
-
mlp_width = int(d_model * mlp_ratio)
|
375 |
-
self.mlp = nn.Sequential(OrderedDict([
|
376 |
-
("c_fc", nn.Linear(d_model, mlp_width)),
|
377 |
-
('ln', norm_layer(mlp_width) if scale_fc else nn.Identity()),
|
378 |
-
("gelu", act_layer()),
|
379 |
-
("c_proj", nn.Linear(mlp_width, d_model))
|
380 |
-
]))
|
381 |
-
|
382 |
-
self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
|
383 |
-
|
384 |
-
def forward(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
|
385 |
-
q = q + self.ls_1(self.ln_attn(self.attn(self.ln_1(q), self.ln_1_k(k), self.ln_1_v(v), attn_mask=attn_mask)))
|
386 |
-
q = q + self.ls_2(self.mlp(self.ln_2(q)))
|
387 |
-
return q
|
388 |
-
|
389 |
-
class CustomTransformer(nn.Module):
|
390 |
-
def __init__(
|
391 |
-
self,
|
392 |
-
width: int,
|
393 |
-
layers: int,
|
394 |
-
heads: int,
|
395 |
-
mlp_ratio: float = 4.0,
|
396 |
-
ls_init_value: float = None,
|
397 |
-
act_layer: Callable = nn.GELU,
|
398 |
-
norm_layer: Callable = LayerNorm,
|
399 |
-
scale_cosine_attn: bool = True,
|
400 |
-
scale_heads: bool = False,
|
401 |
-
scale_attn: bool = False,
|
402 |
-
scale_fc: bool = False,
|
403 |
-
cross_attn: bool = False,
|
404 |
-
xattn: bool = False,
|
405 |
-
):
|
406 |
-
super().__init__()
|
407 |
-
self.width = width
|
408 |
-
self.layers = layers
|
409 |
-
self.grad_checkpointing = False
|
410 |
-
self.xattn = xattn
|
411 |
-
|
412 |
-
self.resblocks = nn.ModuleList([
|
413 |
-
CustomResidualAttentionBlock(
|
414 |
-
width,
|
415 |
-
heads,
|
416 |
-
mlp_ratio,
|
417 |
-
ls_init_value=ls_init_value,
|
418 |
-
act_layer=act_layer,
|
419 |
-
norm_layer=norm_layer,
|
420 |
-
scale_cosine_attn=scale_cosine_attn,
|
421 |
-
scale_heads=scale_heads,
|
422 |
-
scale_attn=scale_attn,
|
423 |
-
scale_fc=scale_fc,
|
424 |
-
cross_attn=cross_attn,
|
425 |
-
xattn=xattn)
|
426 |
-
for _ in range(layers)
|
427 |
-
])
|
428 |
-
|
429 |
-
def get_cast_dtype(self) -> torch.dtype:
|
430 |
-
return self.resblocks[0].mlp.c_fc.weight.dtype
|
431 |
-
|
432 |
-
def forward(self, q: torch.Tensor, k: torch.Tensor = None, v: torch.Tensor = None, attn_mask: Optional[torch.Tensor] = None):
|
433 |
-
if k is None and v is None:
|
434 |
-
k = v = q
|
435 |
-
for r in self.resblocks:
|
436 |
-
if self.grad_checkpointing and not torch.jit.is_scripting():
|
437 |
-
q = checkpoint(r, q, k, v, attn_mask)
|
438 |
-
else:
|
439 |
-
q = r(q, k, v, attn_mask=attn_mask)
|
440 |
-
return q
|
441 |
-
|
442 |
-
|
443 |
-
class ResidualAttentionBlock(nn.Module):
|
444 |
-
def __init__(
|
445 |
-
self,
|
446 |
-
d_model: int,
|
447 |
-
n_head: int,
|
448 |
-
mlp_ratio: float = 4.0,
|
449 |
-
ls_init_value: float = None,
|
450 |
-
act_layer: Callable = nn.GELU,
|
451 |
-
norm_layer: Callable = LayerNorm,
|
452 |
-
xattn: bool = False,
|
453 |
-
):
|
454 |
-
super().__init__()
|
455 |
-
|
456 |
-
self.ln_1 = norm_layer(d_model)
|
457 |
-
if xattn:
|
458 |
-
self.attn = Attention(d_model, n_head, xattn=True)
|
459 |
-
else:
|
460 |
-
self.attn = nn.MultiheadAttention(d_model, n_head)
|
461 |
-
self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
|
462 |
-
|
463 |
-
self.ln_2 = norm_layer(d_model)
|
464 |
-
mlp_width = int(d_model * mlp_ratio)
|
465 |
-
self.mlp = nn.Sequential(OrderedDict([
|
466 |
-
("c_fc", nn.Linear(d_model, mlp_width)),
|
467 |
-
("gelu", act_layer()),
|
468 |
-
("c_proj", nn.Linear(mlp_width, d_model))
|
469 |
-
]))
|
470 |
-
|
471 |
-
self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
|
472 |
-
self.xattn = xattn
|
473 |
-
|
474 |
-
def attention(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
|
475 |
-
attn_mask = attn_mask.to(x.dtype) if attn_mask is not None else None
|
476 |
-
if self.xattn:
|
477 |
-
return self.attn(x, attn_mask=attn_mask)
|
478 |
-
return self.attn(x, x, x, need_weights=False, attn_mask=attn_mask)[0]
|
479 |
-
|
480 |
-
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
|
481 |
-
x = x + self.ls_1(self.attention(self.ln_1(x), attn_mask=attn_mask))
|
482 |
-
x = x + self.ls_2(self.mlp(self.ln_2(x)))
|
483 |
-
return x
|
484 |
-
|
485 |
-
class Transformer(nn.Module):
|
486 |
-
def __init__(
|
487 |
-
self,
|
488 |
-
width: int,
|
489 |
-
layers: int,
|
490 |
-
heads: int,
|
491 |
-
mlp_ratio: float = 4.0,
|
492 |
-
ls_init_value: float = None,
|
493 |
-
act_layer: Callable = nn.GELU,
|
494 |
-
norm_layer: Callable = LayerNorm,
|
495 |
-
xattn: bool = False,
|
496 |
-
):
|
497 |
-
super().__init__()
|
498 |
-
self.width = width
|
499 |
-
self.layers = layers
|
500 |
-
self.grad_checkpointing = False
|
501 |
-
|
502 |
-
self.resblocks = nn.ModuleList([
|
503 |
-
ResidualAttentionBlock(
|
504 |
-
width, heads, mlp_ratio, ls_init_value=ls_init_value, act_layer=act_layer, norm_layer=norm_layer, xattn=xattn)
|
505 |
-
for _ in range(layers)
|
506 |
-
])
|
507 |
-
|
508 |
-
def get_cast_dtype(self) -> torch.dtype:
|
509 |
-
return self.resblocks[0].mlp.c_fc.weight.dtype
|
510 |
-
|
511 |
-
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
|
512 |
-
for r in self.resblocks:
|
513 |
-
if self.grad_checkpointing and not torch.jit.is_scripting():
|
514 |
-
x = checkpoint(r, x, attn_mask)
|
515 |
-
else:
|
516 |
-
x = r(x, attn_mask=attn_mask)
|
517 |
-
return x
|
518 |
-
|
519 |
-
|
520 |
-
class VisionTransformer(nn.Module):
|
521 |
-
def __init__(
|
522 |
-
self,
|
523 |
-
image_size: int,
|
524 |
-
patch_size: int,
|
525 |
-
width: int,
|
526 |
-
layers: int,
|
527 |
-
heads: int,
|
528 |
-
mlp_ratio: float,
|
529 |
-
ls_init_value: float = None,
|
530 |
-
patch_dropout: float = 0.,
|
531 |
-
global_average_pool: bool = False,
|
532 |
-
output_dim: int = 512,
|
533 |
-
act_layer: Callable = nn.GELU,
|
534 |
-
norm_layer: Callable = LayerNorm,
|
535 |
-
xattn: bool = False,
|
536 |
-
):
|
537 |
-
super().__init__()
|
538 |
-
self.image_size = to_2tuple(image_size)
|
539 |
-
self.patch_size = to_2tuple(patch_size)
|
540 |
-
self.grid_size = (self.image_size[0] // self.patch_size[0], self.image_size[1] // self.patch_size[1])
|
541 |
-
self.output_dim = output_dim
|
542 |
-
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
|
543 |
-
|
544 |
-
scale = width ** -0.5
|
545 |
-
self.class_embedding = nn.Parameter(scale * torch.randn(width))
|
546 |
-
self.positional_embedding = nn.Parameter(scale * torch.randn(self.grid_size[0] * self.grid_size[1] + 1, width))
|
547 |
-
|
548 |
-
# setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn
|
549 |
-
self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0. else nn.Identity()
|
550 |
-
self.ln_pre = norm_layer(width)
|
551 |
-
|
552 |
-
self.transformer = Transformer(
|
553 |
-
width,
|
554 |
-
layers,
|
555 |
-
heads,
|
556 |
-
mlp_ratio,
|
557 |
-
ls_init_value=ls_init_value,
|
558 |
-
act_layer=act_layer,
|
559 |
-
norm_layer=norm_layer,
|
560 |
-
xattn=xattn
|
561 |
-
)
|
562 |
-
|
563 |
-
self.global_average_pool = global_average_pool
|
564 |
-
self.ln_post = norm_layer(width)
|
565 |
-
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
|
566 |
-
|
567 |
-
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
|
568 |
-
for param in self.parameters():
|
569 |
-
param.requires_grad = False
|
570 |
-
|
571 |
-
if unlocked_groups != 0:
|
572 |
-
groups = [
|
573 |
-
[
|
574 |
-
self.conv1,
|
575 |
-
self.class_embedding,
|
576 |
-
self.positional_embedding,
|
577 |
-
self.ln_pre,
|
578 |
-
],
|
579 |
-
*self.transformer.resblocks[:-1],
|
580 |
-
[
|
581 |
-
self.transformer.resblocks[-1],
|
582 |
-
self.ln_post,
|
583 |
-
],
|
584 |
-
self.proj,
|
585 |
-
]
|
586 |
-
|
587 |
-
def _unlock(x):
|
588 |
-
if isinstance(x, Sequence):
|
589 |
-
for g in x:
|
590 |
-
_unlock(g)
|
591 |
-
else:
|
592 |
-
if isinstance(x, torch.nn.Parameter):
|
593 |
-
x.requires_grad = True
|
594 |
-
else:
|
595 |
-
for p in x.parameters():
|
596 |
-
p.requires_grad = True
|
597 |
-
|
598 |
-
_unlock(groups[-unlocked_groups:])
|
599 |
-
|
600 |
-
def get_num_layers(self):
|
601 |
-
return self.transformer.layers
|
602 |
-
|
603 |
-
@torch.jit.ignore
|
604 |
-
def set_grad_checkpointing(self, enable=True):
|
605 |
-
self.transformer.grad_checkpointing = enable
|
606 |
-
|
607 |
-
@torch.jit.ignore
|
608 |
-
def no_weight_decay(self):
|
609 |
-
return {'positional_embedding', 'class_embedding'}
|
610 |
-
|
611 |
-
def forward(self, x: torch.Tensor, return_all_features: bool=False):
|
612 |
-
x = self.conv1(x) # shape = [*, width, grid, grid]
|
613 |
-
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
614 |
-
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
615 |
-
x = torch.cat(
|
616 |
-
[self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device),
|
617 |
-
x], dim=1) # shape = [*, grid ** 2 + 1, width]
|
618 |
-
x = x + self.positional_embedding.to(x.dtype)
|
619 |
-
|
620 |
-
# a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in
|
621 |
-
x = self.patch_dropout(x)
|
622 |
-
x = self.ln_pre(x)
|
623 |
-
|
624 |
-
x = x.permute(1, 0, 2) # NLD -> LND
|
625 |
-
x = self.transformer(x)
|
626 |
-
x = x.permute(1, 0, 2) # LND -> NLD
|
627 |
-
|
628 |
-
if not return_all_features:
|
629 |
-
if self.global_average_pool:
|
630 |
-
x = x.mean(dim=1) #x = x[:,1:,:].mean(dim=1)
|
631 |
-
else:
|
632 |
-
x = x[:, 0]
|
633 |
-
|
634 |
-
x = self.ln_post(x)
|
635 |
-
|
636 |
-
if self.proj is not None:
|
637 |
-
x = x @ self.proj
|
638 |
-
|
639 |
-
return x
|
640 |
-
|
641 |
-
|
642 |
-
class TextTransformer(nn.Module):
|
643 |
-
def __init__(
|
644 |
-
self,
|
645 |
-
context_length: int = 77,
|
646 |
-
vocab_size: int = 49408,
|
647 |
-
width: int = 512,
|
648 |
-
heads: int = 8,
|
649 |
-
layers: int = 12,
|
650 |
-
ls_init_value: float = None,
|
651 |
-
output_dim: int = 512,
|
652 |
-
act_layer: Callable = nn.GELU,
|
653 |
-
norm_layer: Callable = LayerNorm,
|
654 |
-
xattn: bool= False,
|
655 |
-
attn_mask: bool = True
|
656 |
-
):
|
657 |
-
super().__init__()
|
658 |
-
self.context_length = context_length
|
659 |
-
self.vocab_size = vocab_size
|
660 |
-
self.width = width
|
661 |
-
self.output_dim = output_dim
|
662 |
-
|
663 |
-
self.token_embedding = nn.Embedding(vocab_size, width)
|
664 |
-
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, width))
|
665 |
-
self.transformer = Transformer(
|
666 |
-
width=width,
|
667 |
-
layers=layers,
|
668 |
-
heads=heads,
|
669 |
-
ls_init_value=ls_init_value,
|
670 |
-
act_layer=act_layer,
|
671 |
-
norm_layer=norm_layer,
|
672 |
-
xattn=xattn
|
673 |
-
)
|
674 |
-
|
675 |
-
self.xattn = xattn
|
676 |
-
self.ln_final = norm_layer(width)
|
677 |
-
self.text_projection = nn.Parameter(torch.empty(width, output_dim))
|
678 |
-
|
679 |
-
if attn_mask:
|
680 |
-
self.register_buffer('attn_mask', self.build_attention_mask(), persistent=False)
|
681 |
-
else:
|
682 |
-
self.attn_mask = None
|
683 |
-
|
684 |
-
self.init_parameters()
|
685 |
-
|
686 |
-
def init_parameters(self):
|
687 |
-
nn.init.normal_(self.token_embedding.weight, std=0.02)
|
688 |
-
nn.init.normal_(self.positional_embedding, std=0.01)
|
689 |
-
|
690 |
-
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
|
691 |
-
attn_std = self.transformer.width ** -0.5
|
692 |
-
fc_std = (2 * self.transformer.width) ** -0.5
|
693 |
-
for block in self.transformer.resblocks:
|
694 |
-
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
|
695 |
-
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
|
696 |
-
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
|
697 |
-
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
|
698 |
-
|
699 |
-
if self.text_projection is not None:
|
700 |
-
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
|
701 |
-
|
702 |
-
@torch.jit.ignore
|
703 |
-
def set_grad_checkpointing(self, enable=True):
|
704 |
-
self.transformer.grad_checkpointing = enable
|
705 |
-
|
706 |
-
@torch.jit.ignore
|
707 |
-
def no_weight_decay(self):
|
708 |
-
# return {'positional_embedding', 'token_embedding'}
|
709 |
-
return {'positional_embedding'}
|
710 |
-
|
711 |
-
def get_num_layers(self):
|
712 |
-
return self.transformer.layers
|
713 |
-
|
714 |
-
def build_attention_mask(self):
|
715 |
-
# lazily create causal attention mask, with full attention between the vision tokens
|
716 |
-
# pytorch uses additive attention mask; fill with -inf
|
717 |
-
mask = torch.empty(self.context_length, self.context_length)
|
718 |
-
mask.fill_(float("-inf"))
|
719 |
-
mask.triu_(1) # zero out the lower diagonal
|
720 |
-
return mask
|
721 |
-
|
722 |
-
def forward(self, text, return_all_features: bool=False):
|
723 |
-
cast_dtype = self.transformer.get_cast_dtype()
|
724 |
-
x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model]
|
725 |
-
|
726 |
-
x = x + self.positional_embedding.to(cast_dtype)
|
727 |
-
x = x.permute(1, 0, 2) # NLD -> LND
|
728 |
-
x = self.transformer(x, attn_mask=self.attn_mask)
|
729 |
-
# x = self.transformer(x) # no attention mask is applied
|
730 |
-
x = x.permute(1, 0, 2) # LND -> NLD
|
731 |
-
x = self.ln_final(x)
|
732 |
-
|
733 |
-
if not return_all_features:
|
734 |
-
# x.shape = [batch_size, n_ctx, transformer.width]
|
735 |
-
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
736 |
-
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
|
737 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/eva_clip/utils.py
DELETED
@@ -1,326 +0,0 @@
|
|
1 |
-
from itertools import repeat
|
2 |
-
import collections.abc
|
3 |
-
import logging
|
4 |
-
import math
|
5 |
-
import numpy as np
|
6 |
-
|
7 |
-
import torch
|
8 |
-
from torch import nn as nn
|
9 |
-
from torchvision.ops.misc import FrozenBatchNorm2d
|
10 |
-
import torch.nn.functional as F
|
11 |
-
|
12 |
-
# open CLIP
|
13 |
-
def resize_clip_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1):
|
14 |
-
# Rescale the grid of position embeddings when loading from state_dict
|
15 |
-
old_pos_embed = state_dict.get('visual.positional_embedding', None)
|
16 |
-
if old_pos_embed is None or not hasattr(model.visual, 'grid_size'):
|
17 |
-
return
|
18 |
-
grid_size = to_2tuple(model.visual.grid_size)
|
19 |
-
extra_tokens = 1 # FIXME detect different token configs (ie no class token, or more)
|
20 |
-
new_seq_len = grid_size[0] * grid_size[1] + extra_tokens
|
21 |
-
if new_seq_len == old_pos_embed.shape[0]:
|
22 |
-
return
|
23 |
-
|
24 |
-
if extra_tokens:
|
25 |
-
pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:]
|
26 |
-
else:
|
27 |
-
pos_emb_tok, pos_emb_img = None, old_pos_embed
|
28 |
-
old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img))))
|
29 |
-
|
30 |
-
logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size)
|
31 |
-
pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2)
|
32 |
-
pos_emb_img = F.interpolate(
|
33 |
-
pos_emb_img,
|
34 |
-
size=grid_size,
|
35 |
-
mode=interpolation,
|
36 |
-
align_corners=True,
|
37 |
-
)
|
38 |
-
pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0]
|
39 |
-
if pos_emb_tok is not None:
|
40 |
-
new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0)
|
41 |
-
else:
|
42 |
-
new_pos_embed = pos_emb_img
|
43 |
-
state_dict['visual.positional_embedding'] = new_pos_embed
|
44 |
-
|
45 |
-
|
46 |
-
def resize_visual_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1):
|
47 |
-
# Rescale the grid of position embeddings when loading from state_dict
|
48 |
-
old_pos_embed = state_dict.get('positional_embedding', None)
|
49 |
-
if old_pos_embed is None or not hasattr(model.visual, 'grid_size'):
|
50 |
-
return
|
51 |
-
grid_size = to_2tuple(model.visual.grid_size)
|
52 |
-
extra_tokens = 1 # FIXME detect different token configs (ie no class token, or more)
|
53 |
-
new_seq_len = grid_size[0] * grid_size[1] + extra_tokens
|
54 |
-
if new_seq_len == old_pos_embed.shape[0]:
|
55 |
-
return
|
56 |
-
|
57 |
-
if extra_tokens:
|
58 |
-
pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:]
|
59 |
-
else:
|
60 |
-
pos_emb_tok, pos_emb_img = None, old_pos_embed
|
61 |
-
old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img))))
|
62 |
-
|
63 |
-
logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size)
|
64 |
-
pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2)
|
65 |
-
pos_emb_img = F.interpolate(
|
66 |
-
pos_emb_img,
|
67 |
-
size=grid_size,
|
68 |
-
mode=interpolation,
|
69 |
-
align_corners=True,
|
70 |
-
)
|
71 |
-
pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0]
|
72 |
-
if pos_emb_tok is not None:
|
73 |
-
new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0)
|
74 |
-
else:
|
75 |
-
new_pos_embed = pos_emb_img
|
76 |
-
state_dict['positional_embedding'] = new_pos_embed
|
77 |
-
|
78 |
-
def resize_evaclip_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1):
|
79 |
-
all_keys = list(state_dict.keys())
|
80 |
-
# interpolate position embedding
|
81 |
-
if 'visual.pos_embed' in state_dict:
|
82 |
-
pos_embed_checkpoint = state_dict['visual.pos_embed']
|
83 |
-
embedding_size = pos_embed_checkpoint.shape[-1]
|
84 |
-
num_patches = model.visual.patch_embed.num_patches
|
85 |
-
num_extra_tokens = model.visual.pos_embed.shape[-2] - num_patches
|
86 |
-
# height (== width) for the checkpoint position embedding
|
87 |
-
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
|
88 |
-
# height (== width) for the new position embedding
|
89 |
-
new_size = int(num_patches ** 0.5)
|
90 |
-
# class_token and dist_token are kept unchanged
|
91 |
-
if orig_size != new_size:
|
92 |
-
print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
|
93 |
-
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
94 |
-
# only the position tokens are interpolated
|
95 |
-
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
96 |
-
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
|
97 |
-
pos_tokens = torch.nn.functional.interpolate(
|
98 |
-
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
|
99 |
-
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
|
100 |
-
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
101 |
-
state_dict['visual.pos_embed'] = new_pos_embed
|
102 |
-
|
103 |
-
patch_embed_proj = state_dict['visual.patch_embed.proj.weight']
|
104 |
-
patch_size = model.visual.patch_embed.patch_size
|
105 |
-
state_dict['visual.patch_embed.proj.weight'] = torch.nn.functional.interpolate(
|
106 |
-
patch_embed_proj.float(), size=patch_size, mode='bicubic', align_corners=False)
|
107 |
-
|
108 |
-
|
109 |
-
def resize_eva_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1):
|
110 |
-
all_keys = list(state_dict.keys())
|
111 |
-
# interpolate position embedding
|
112 |
-
if 'pos_embed' in state_dict:
|
113 |
-
pos_embed_checkpoint = state_dict['pos_embed']
|
114 |
-
embedding_size = pos_embed_checkpoint.shape[-1]
|
115 |
-
num_patches = model.visual.patch_embed.num_patches
|
116 |
-
num_extra_tokens = model.visual.pos_embed.shape[-2] - num_patches
|
117 |
-
# height (== width) for the checkpoint position embedding
|
118 |
-
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
|
119 |
-
# height (== width) for the new position embedding
|
120 |
-
new_size = int(num_patches ** 0.5)
|
121 |
-
# class_token and dist_token are kept unchanged
|
122 |
-
if orig_size != new_size:
|
123 |
-
print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
|
124 |
-
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
125 |
-
# only the position tokens are interpolated
|
126 |
-
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
127 |
-
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
|
128 |
-
pos_tokens = torch.nn.functional.interpolate(
|
129 |
-
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
|
130 |
-
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
|
131 |
-
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
132 |
-
state_dict['pos_embed'] = new_pos_embed
|
133 |
-
|
134 |
-
patch_embed_proj = state_dict['patch_embed.proj.weight']
|
135 |
-
patch_size = model.visual.patch_embed.patch_size
|
136 |
-
state_dict['patch_embed.proj.weight'] = torch.nn.functional.interpolate(
|
137 |
-
patch_embed_proj.float(), size=patch_size, mode='bicubic', align_corners=False)
|
138 |
-
|
139 |
-
|
140 |
-
def resize_rel_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1):
|
141 |
-
all_keys = list(state_dict.keys())
|
142 |
-
for key in all_keys:
|
143 |
-
if "relative_position_index" in key:
|
144 |
-
state_dict.pop(key)
|
145 |
-
|
146 |
-
if "relative_position_bias_table" in key:
|
147 |
-
rel_pos_bias = state_dict[key]
|
148 |
-
src_num_pos, num_attn_heads = rel_pos_bias.size()
|
149 |
-
dst_num_pos, _ = model.visual.state_dict()[key].size()
|
150 |
-
dst_patch_shape = model.visual.patch_embed.patch_shape
|
151 |
-
if dst_patch_shape[0] != dst_patch_shape[1]:
|
152 |
-
raise NotImplementedError()
|
153 |
-
num_extra_tokens = dst_num_pos - (dst_patch_shape[0] * 2 - 1) * (dst_patch_shape[1] * 2 - 1)
|
154 |
-
src_size = int((src_num_pos - num_extra_tokens) ** 0.5)
|
155 |
-
dst_size = int((dst_num_pos - num_extra_tokens) ** 0.5)
|
156 |
-
if src_size != dst_size:
|
157 |
-
print("Position interpolate for %s from %dx%d to %dx%d" % (
|
158 |
-
key, src_size, src_size, dst_size, dst_size))
|
159 |
-
extra_tokens = rel_pos_bias[-num_extra_tokens:, :]
|
160 |
-
rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :]
|
161 |
-
|
162 |
-
def geometric_progression(a, r, n):
|
163 |
-
return a * (1.0 - r ** n) / (1.0 - r)
|
164 |
-
|
165 |
-
left, right = 1.01, 1.5
|
166 |
-
while right - left > 1e-6:
|
167 |
-
q = (left + right) / 2.0
|
168 |
-
gp = geometric_progression(1, q, src_size // 2)
|
169 |
-
if gp > dst_size // 2:
|
170 |
-
right = q
|
171 |
-
else:
|
172 |
-
left = q
|
173 |
-
|
174 |
-
# if q > 1.090307:
|
175 |
-
# q = 1.090307
|
176 |
-
|
177 |
-
dis = []
|
178 |
-
cur = 1
|
179 |
-
for i in range(src_size // 2):
|
180 |
-
dis.append(cur)
|
181 |
-
cur += q ** (i + 1)
|
182 |
-
|
183 |
-
r_ids = [-_ for _ in reversed(dis)]
|
184 |
-
|
185 |
-
x = r_ids + [0] + dis
|
186 |
-
y = r_ids + [0] + dis
|
187 |
-
|
188 |
-
t = dst_size // 2.0
|
189 |
-
dx = np.arange(-t, t + 0.1, 1.0)
|
190 |
-
dy = np.arange(-t, t + 0.1, 1.0)
|
191 |
-
|
192 |
-
print("Original positions = %s" % str(x))
|
193 |
-
print("Target positions = %s" % str(dx))
|
194 |
-
|
195 |
-
all_rel_pos_bias = []
|
196 |
-
|
197 |
-
for i in range(num_attn_heads):
|
198 |
-
z = rel_pos_bias[:, i].view(src_size, src_size).float().numpy()
|
199 |
-
f = F.interpolate.interp2d(x, y, z, kind='cubic')
|
200 |
-
all_rel_pos_bias.append(
|
201 |
-
torch.Tensor(f(dx, dy)).contiguous().view(-1, 1).to(rel_pos_bias.device))
|
202 |
-
|
203 |
-
rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1)
|
204 |
-
|
205 |
-
new_rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0)
|
206 |
-
state_dict[key] = new_rel_pos_bias
|
207 |
-
|
208 |
-
# interpolate position embedding
|
209 |
-
if 'pos_embed' in state_dict:
|
210 |
-
pos_embed_checkpoint = state_dict['pos_embed']
|
211 |
-
embedding_size = pos_embed_checkpoint.shape[-1]
|
212 |
-
num_patches = model.visual.patch_embed.num_patches
|
213 |
-
num_extra_tokens = model.visual.pos_embed.shape[-2] - num_patches
|
214 |
-
# height (== width) for the checkpoint position embedding
|
215 |
-
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
|
216 |
-
# height (== width) for the new position embedding
|
217 |
-
new_size = int(num_patches ** 0.5)
|
218 |
-
# class_token and dist_token are kept unchanged
|
219 |
-
if orig_size != new_size:
|
220 |
-
print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
|
221 |
-
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
222 |
-
# only the position tokens are interpolated
|
223 |
-
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
224 |
-
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
|
225 |
-
pos_tokens = torch.nn.functional.interpolate(
|
226 |
-
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
|
227 |
-
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
|
228 |
-
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
229 |
-
state_dict['pos_embed'] = new_pos_embed
|
230 |
-
|
231 |
-
patch_embed_proj = state_dict['patch_embed.proj.weight']
|
232 |
-
patch_size = model.visual.patch_embed.patch_size
|
233 |
-
state_dict['patch_embed.proj.weight'] = torch.nn.functional.interpolate(
|
234 |
-
patch_embed_proj.float(), size=patch_size, mode='bicubic', align_corners=False)
|
235 |
-
|
236 |
-
|
237 |
-
def freeze_batch_norm_2d(module, module_match={}, name=''):
|
238 |
-
"""
|
239 |
-
Converts all `BatchNorm2d` and `SyncBatchNorm` layers of provided module into `FrozenBatchNorm2d`. If `module` is
|
240 |
-
itself an instance of either `BatchNorm2d` or `SyncBatchNorm`, it is converted into `FrozenBatchNorm2d` and
|
241 |
-
returned. Otherwise, the module is walked recursively and submodules are converted in place.
|
242 |
-
|
243 |
-
Args:
|
244 |
-
module (torch.nn.Module): Any PyTorch module.
|
245 |
-
module_match (dict): Dictionary of full module names to freeze (all if empty)
|
246 |
-
name (str): Full module name (prefix)
|
247 |
-
|
248 |
-
Returns:
|
249 |
-
torch.nn.Module: Resulting module
|
250 |
-
|
251 |
-
Inspired by https://github.com/pytorch/pytorch/blob/a5895f85be0f10212791145bfedc0261d364f103/torch/nn/modules/batchnorm.py#L762
|
252 |
-
"""
|
253 |
-
res = module
|
254 |
-
is_match = True
|
255 |
-
if module_match:
|
256 |
-
is_match = name in module_match
|
257 |
-
if is_match and isinstance(module, (nn.modules.batchnorm.BatchNorm2d, nn.modules.batchnorm.SyncBatchNorm)):
|
258 |
-
res = FrozenBatchNorm2d(module.num_features)
|
259 |
-
res.num_features = module.num_features
|
260 |
-
res.affine = module.affine
|
261 |
-
if module.affine:
|
262 |
-
res.weight.data = module.weight.data.clone().detach()
|
263 |
-
res.bias.data = module.bias.data.clone().detach()
|
264 |
-
res.running_mean.data = module.running_mean.data
|
265 |
-
res.running_var.data = module.running_var.data
|
266 |
-
res.eps = module.eps
|
267 |
-
else:
|
268 |
-
for child_name, child in module.named_children():
|
269 |
-
full_child_name = '.'.join([name, child_name]) if name else child_name
|
270 |
-
new_child = freeze_batch_norm_2d(child, module_match, full_child_name)
|
271 |
-
if new_child is not child:
|
272 |
-
res.add_module(child_name, new_child)
|
273 |
-
return res
|
274 |
-
|
275 |
-
|
276 |
-
# From PyTorch internals
|
277 |
-
def _ntuple(n):
|
278 |
-
def parse(x):
|
279 |
-
if isinstance(x, collections.abc.Iterable):
|
280 |
-
return x
|
281 |
-
return tuple(repeat(x, n))
|
282 |
-
return parse
|
283 |
-
|
284 |
-
|
285 |
-
to_1tuple = _ntuple(1)
|
286 |
-
to_2tuple = _ntuple(2)
|
287 |
-
to_3tuple = _ntuple(3)
|
288 |
-
to_4tuple = _ntuple(4)
|
289 |
-
to_ntuple = lambda n, x: _ntuple(n)(x)
|
290 |
-
|
291 |
-
|
292 |
-
def is_logging(args):
|
293 |
-
def is_global_master(args):
|
294 |
-
return args.rank == 0
|
295 |
-
|
296 |
-
def is_local_master(args):
|
297 |
-
return args.local_rank == 0
|
298 |
-
|
299 |
-
def is_master(args, local=False):
|
300 |
-
return is_local_master(args) if local else is_global_master(args)
|
301 |
-
return is_master
|
302 |
-
|
303 |
-
|
304 |
-
class AllGather(torch.autograd.Function):
|
305 |
-
"""An autograd function that performs allgather on a tensor.
|
306 |
-
Performs all_gather operation on the provided tensors.
|
307 |
-
*** Warning ***: torch.distributed.all_gather has no gradient.
|
308 |
-
"""
|
309 |
-
|
310 |
-
@staticmethod
|
311 |
-
def forward(ctx, tensor, rank, world_size):
|
312 |
-
tensors_gather = [torch.empty_like(tensor) for _ in range(world_size)]
|
313 |
-
torch.distributed.all_gather(tensors_gather, tensor)
|
314 |
-
ctx.rank = rank
|
315 |
-
ctx.batch_size = tensor.shape[0]
|
316 |
-
return torch.cat(tensors_gather, 0)
|
317 |
-
|
318 |
-
@staticmethod
|
319 |
-
def backward(ctx, grad_output):
|
320 |
-
return (
|
321 |
-
grad_output[ctx.batch_size * ctx.rank: ctx.batch_size * (ctx.rank + 1)],
|
322 |
-
None,
|
323 |
-
None
|
324 |
-
)
|
325 |
-
|
326 |
-
allgather = AllGather.apply
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/eva_clip/utils_qformer.py
DELETED
@@ -1,166 +0,0 @@
|
|
1 |
-
import importlib
|
2 |
-
import math
|
3 |
-
import os
|
4 |
-
import random
|
5 |
-
|
6 |
-
import cv2
|
7 |
-
import numpy as np
|
8 |
-
import torch
|
9 |
-
import torch.nn.functional as F
|
10 |
-
from torchvision.utils import make_grid
|
11 |
-
from transformers import PretrainedConfig
|
12 |
-
|
13 |
-
|
14 |
-
def seed_everything(seed):
|
15 |
-
os.environ["PL_GLOBAL_SEED"] = str(seed)
|
16 |
-
random.seed(seed)
|
17 |
-
np.random.seed(seed)
|
18 |
-
torch.manual_seed(seed)
|
19 |
-
torch.cuda.manual_seed_all(seed)
|
20 |
-
|
21 |
-
|
22 |
-
def is_torch2_available():
|
23 |
-
return hasattr(F, "scaled_dot_product_attention")
|
24 |
-
|
25 |
-
|
26 |
-
def instantiate_from_config(config):
|
27 |
-
if "target" not in config:
|
28 |
-
if config == '__is_first_stage__' or config == "__is_unconditional__":
|
29 |
-
return None
|
30 |
-
raise KeyError("Expected key `target` to instantiate.")
|
31 |
-
return get_obj_from_str(config["target"])(**config.get("params", {}))
|
32 |
-
|
33 |
-
|
34 |
-
def get_obj_from_str(string, reload=False):
|
35 |
-
module, cls = string.rsplit(".", 1)
|
36 |
-
if reload:
|
37 |
-
module_imp = importlib.import_module(module)
|
38 |
-
importlib.reload(module_imp)
|
39 |
-
return getattr(importlib.import_module(module, package=None), cls)
|
40 |
-
|
41 |
-
|
42 |
-
def drop_seq_token(seq, drop_rate=0.5):
|
43 |
-
idx = torch.randperm(seq.size(1))
|
44 |
-
num_keep_tokens = int(len(idx) * (1 - drop_rate))
|
45 |
-
idx = idx[:num_keep_tokens]
|
46 |
-
seq = seq[:, idx]
|
47 |
-
return seq
|
48 |
-
|
49 |
-
|
50 |
-
def import_model_class_from_model_name_or_path(
|
51 |
-
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"
|
52 |
-
):
|
53 |
-
text_encoder_config = PretrainedConfig.from_pretrained(
|
54 |
-
pretrained_model_name_or_path, subfolder=subfolder, revision=revision
|
55 |
-
)
|
56 |
-
model_class = text_encoder_config.architectures[0]
|
57 |
-
|
58 |
-
if model_class == "CLIPTextModel":
|
59 |
-
from transformers import CLIPTextModel
|
60 |
-
|
61 |
-
return CLIPTextModel
|
62 |
-
elif model_class == "CLIPTextModelWithProjection": # noqa RET505
|
63 |
-
from transformers import CLIPTextModelWithProjection
|
64 |
-
|
65 |
-
return CLIPTextModelWithProjection
|
66 |
-
else:
|
67 |
-
raise ValueError(f"{model_class} is not supported.")
|
68 |
-
|
69 |
-
|
70 |
-
def resize_numpy_image_long(image, resize_long_edge=768):
|
71 |
-
h, w = image.shape[:2]
|
72 |
-
if max(h, w) <= resize_long_edge:
|
73 |
-
return image
|
74 |
-
k = resize_long_edge / max(h, w)
|
75 |
-
h = int(h * k)
|
76 |
-
w = int(w * k)
|
77 |
-
image = cv2.resize(image, (w, h), interpolation=cv2.INTER_LANCZOS4)
|
78 |
-
return image
|
79 |
-
|
80 |
-
|
81 |
-
# from basicsr
|
82 |
-
def img2tensor(imgs, bgr2rgb=True, float32=True):
|
83 |
-
"""Numpy array to tensor.
|
84 |
-
|
85 |
-
Args:
|
86 |
-
imgs (list[ndarray] | ndarray): Input images.
|
87 |
-
bgr2rgb (bool): Whether to change bgr to rgb.
|
88 |
-
float32 (bool): Whether to change to float32.
|
89 |
-
|
90 |
-
Returns:
|
91 |
-
list[tensor] | tensor: Tensor images. If returned results only have
|
92 |
-
one element, just return tensor.
|
93 |
-
"""
|
94 |
-
|
95 |
-
def _totensor(img, bgr2rgb, float32):
|
96 |
-
if img.shape[2] == 3 and bgr2rgb:
|
97 |
-
if img.dtype == 'float64':
|
98 |
-
img = img.astype('float32')
|
99 |
-
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
100 |
-
img = torch.from_numpy(img.transpose(2, 0, 1))
|
101 |
-
if float32:
|
102 |
-
img = img.float()
|
103 |
-
return img
|
104 |
-
|
105 |
-
if isinstance(imgs, list):
|
106 |
-
return [_totensor(img, bgr2rgb, float32) for img in imgs]
|
107 |
-
return _totensor(imgs, bgr2rgb, float32)
|
108 |
-
|
109 |
-
|
110 |
-
def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)):
|
111 |
-
"""Convert torch Tensors into image numpy arrays.
|
112 |
-
|
113 |
-
After clamping to [min, max], values will be normalized to [0, 1].
|
114 |
-
|
115 |
-
Args:
|
116 |
-
tensor (Tensor or list[Tensor]): Accept shapes:
|
117 |
-
1) 4D mini-batch Tensor of shape (B x 3/1 x H x W);
|
118 |
-
2) 3D Tensor of shape (3/1 x H x W);
|
119 |
-
3) 2D Tensor of shape (H x W).
|
120 |
-
Tensor channel should be in RGB order.
|
121 |
-
rgb2bgr (bool): Whether to change rgb to bgr.
|
122 |
-
out_type (numpy type): output types. If ``np.uint8``, transform outputs
|
123 |
-
to uint8 type with range [0, 255]; otherwise, float type with
|
124 |
-
range [0, 1]. Default: ``np.uint8``.
|
125 |
-
min_max (tuple[int]): min and max values for clamp.
|
126 |
-
|
127 |
-
Returns:
|
128 |
-
(Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of
|
129 |
-
shape (H x W). The channel order is BGR.
|
130 |
-
"""
|
131 |
-
if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))):
|
132 |
-
raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}')
|
133 |
-
|
134 |
-
if torch.is_tensor(tensor):
|
135 |
-
tensor = [tensor]
|
136 |
-
result = []
|
137 |
-
for _tensor in tensor:
|
138 |
-
_tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max)
|
139 |
-
_tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0])
|
140 |
-
|
141 |
-
n_dim = _tensor.dim()
|
142 |
-
if n_dim == 4:
|
143 |
-
img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy()
|
144 |
-
img_np = img_np.transpose(1, 2, 0)
|
145 |
-
if rgb2bgr:
|
146 |
-
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
|
147 |
-
elif n_dim == 3:
|
148 |
-
img_np = _tensor.numpy()
|
149 |
-
img_np = img_np.transpose(1, 2, 0)
|
150 |
-
if img_np.shape[2] == 1: # gray image
|
151 |
-
img_np = np.squeeze(img_np, axis=2)
|
152 |
-
else:
|
153 |
-
if rgb2bgr:
|
154 |
-
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
|
155 |
-
elif n_dim == 2:
|
156 |
-
img_np = _tensor.numpy()
|
157 |
-
else:
|
158 |
-
raise TypeError(f'Only support 4D, 3D or 2D tensor. But received with dimension: {n_dim}')
|
159 |
-
if out_type == np.uint8:
|
160 |
-
# Unlike MATLAB, numpy.unit8() WILL NOT round by default.
|
161 |
-
img_np = (img_np * 255.0).round()
|
162 |
-
img_np = img_np.astype(out_type)
|
163 |
-
result.append(img_np)
|
164 |
-
if len(result) == 1:
|
165 |
-
result = result[0]
|
166 |
-
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/local_facial_extractor.py
DELETED
@@ -1,309 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
import torch
|
3 |
-
import torch.nn as nn
|
4 |
-
|
5 |
-
|
6 |
-
# FFN
|
7 |
-
def ConsisIDFeedForward(dim, mult=4):
|
8 |
-
"""
|
9 |
-
Creates a consistent ID feedforward block consisting of layer normalization,
|
10 |
-
two linear layers, and a GELU activation.
|
11 |
-
|
12 |
-
Args:
|
13 |
-
dim (int): The input dimension of the tensor.
|
14 |
-
mult (int, optional): Multiplier for the inner dimension. Default is 4.
|
15 |
-
|
16 |
-
Returns:
|
17 |
-
nn.Sequential: A sequence of layers comprising LayerNorm, Linear layers, and GELU.
|
18 |
-
"""
|
19 |
-
inner_dim = int(dim * mult)
|
20 |
-
return nn.Sequential(
|
21 |
-
nn.LayerNorm(dim),
|
22 |
-
nn.Linear(dim, inner_dim, bias=False),
|
23 |
-
nn.GELU(),
|
24 |
-
nn.Linear(inner_dim, dim, bias=False),
|
25 |
-
)
|
26 |
-
|
27 |
-
|
28 |
-
def reshape_tensor(x, heads):
|
29 |
-
"""
|
30 |
-
Reshapes the input tensor for multi-head attention.
|
31 |
-
|
32 |
-
Args:
|
33 |
-
x (torch.Tensor): The input tensor with shape (batch_size, length, width).
|
34 |
-
heads (int): The number of attention heads.
|
35 |
-
|
36 |
-
Returns:
|
37 |
-
torch.Tensor: The reshaped tensor, with shape (batch_size, heads, length, width).
|
38 |
-
"""
|
39 |
-
bs, length, width = x.shape
|
40 |
-
x = x.view(bs, length, heads, -1)
|
41 |
-
x = x.transpose(1, 2)
|
42 |
-
x = x.reshape(bs, heads, length, -1)
|
43 |
-
return x
|
44 |
-
|
45 |
-
|
46 |
-
class PerceiverAttention(nn.Module):
|
47 |
-
"""
|
48 |
-
Implements the Perceiver attention mechanism with multi-head attention.
|
49 |
-
|
50 |
-
This layer takes two inputs: 'x' (image features) and 'latents' (latent features),
|
51 |
-
applying multi-head attention to both and producing an output tensor with the same
|
52 |
-
dimension as the input tensor 'x'.
|
53 |
-
|
54 |
-
Args:
|
55 |
-
dim (int): The input dimension.
|
56 |
-
dim_head (int, optional): The dimension of each attention head. Default is 64.
|
57 |
-
heads (int, optional): The number of attention heads. Default is 8.
|
58 |
-
kv_dim (int, optional): The key-value dimension. If None, `dim` is used for both keys and values.
|
59 |
-
"""
|
60 |
-
|
61 |
-
def __init__(self, *, dim, dim_head=64, heads=8, kv_dim=None):
|
62 |
-
super().__init__()
|
63 |
-
self.scale = dim_head**-0.5
|
64 |
-
self.dim_head = dim_head
|
65 |
-
self.heads = heads
|
66 |
-
inner_dim = dim_head * heads
|
67 |
-
|
68 |
-
self.norm1 = nn.LayerNorm(dim if kv_dim is None else kv_dim)
|
69 |
-
self.norm2 = nn.LayerNorm(dim)
|
70 |
-
|
71 |
-
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
72 |
-
self.to_kv = nn.Linear(dim if kv_dim is None else kv_dim, inner_dim * 2, bias=False)
|
73 |
-
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
74 |
-
|
75 |
-
def forward(self, x, latents):
|
76 |
-
"""
|
77 |
-
Forward pass for Perceiver attention.
|
78 |
-
|
79 |
-
Args:
|
80 |
-
x (torch.Tensor): Image features tensor with shape (batch_size, num_pixels, D).
|
81 |
-
latents (torch.Tensor): Latent features tensor with shape (batch_size, num_latents, D).
|
82 |
-
|
83 |
-
Returns:
|
84 |
-
torch.Tensor: Output tensor after applying attention and transformation.
|
85 |
-
"""
|
86 |
-
# Apply normalization
|
87 |
-
x = self.norm1(x)
|
88 |
-
latents = self.norm2(latents)
|
89 |
-
|
90 |
-
b, seq_len, _ = latents.shape # Get batch size and sequence length
|
91 |
-
|
92 |
-
# Compute query, key, and value matrices
|
93 |
-
q = self.to_q(latents)
|
94 |
-
kv_input = torch.cat((x, latents), dim=-2)
|
95 |
-
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
96 |
-
|
97 |
-
# Reshape the tensors for multi-head attention
|
98 |
-
q = reshape_tensor(q, self.heads)
|
99 |
-
k = reshape_tensor(k, self.heads)
|
100 |
-
v = reshape_tensor(v, self.heads)
|
101 |
-
|
102 |
-
# attention
|
103 |
-
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
104 |
-
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
|
105 |
-
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
106 |
-
out = weight @ v
|
107 |
-
|
108 |
-
# Reshape and return the final output
|
109 |
-
out = out.permute(0, 2, 1, 3).reshape(b, seq_len, -1)
|
110 |
-
|
111 |
-
return self.to_out(out)
|
112 |
-
|
113 |
-
|
114 |
-
class LocalFacialExtractor(nn.Module):
|
115 |
-
def __init__(
|
116 |
-
self,
|
117 |
-
dim=1024,
|
118 |
-
depth=10,
|
119 |
-
dim_head=64,
|
120 |
-
heads=16,
|
121 |
-
num_id_token=5,
|
122 |
-
num_queries=32,
|
123 |
-
output_dim=2048,
|
124 |
-
ff_mult=4,
|
125 |
-
):
|
126 |
-
"""
|
127 |
-
Initializes the LocalFacialExtractor class.
|
128 |
-
|
129 |
-
Parameters:
|
130 |
-
- dim (int): The dimensionality of latent features.
|
131 |
-
- depth (int): Total number of PerceiverAttention and ConsisIDFeedForward layers.
|
132 |
-
- dim_head (int): Dimensionality of each attention head.
|
133 |
-
- heads (int): Number of attention heads.
|
134 |
-
- num_id_token (int): Number of tokens used for identity features.
|
135 |
-
- num_queries (int): Number of query tokens for the latent representation.
|
136 |
-
- output_dim (int): Output dimension after projection.
|
137 |
-
- ff_mult (int): Multiplier for the feed-forward network hidden dimension.
|
138 |
-
"""
|
139 |
-
super().__init__()
|
140 |
-
|
141 |
-
# Storing identity token and query information
|
142 |
-
self.num_id_token = num_id_token
|
143 |
-
self.dim = dim
|
144 |
-
self.num_queries = num_queries
|
145 |
-
assert depth % 5 == 0
|
146 |
-
self.depth = depth // 5
|
147 |
-
scale = dim**-0.5
|
148 |
-
|
149 |
-
# Learnable latent query embeddings
|
150 |
-
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) * scale)
|
151 |
-
# Projection layer to map the latent output to the desired dimension
|
152 |
-
self.proj_out = nn.Parameter(scale * torch.randn(dim, output_dim))
|
153 |
-
|
154 |
-
# Attention and ConsisIDFeedForward layer stack
|
155 |
-
self.layers = nn.ModuleList([])
|
156 |
-
for _ in range(depth):
|
157 |
-
self.layers.append(
|
158 |
-
nn.ModuleList(
|
159 |
-
[
|
160 |
-
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads), # Perceiver Attention layer
|
161 |
-
ConsisIDFeedForward(dim=dim, mult=ff_mult), # ConsisIDFeedForward layer
|
162 |
-
]
|
163 |
-
)
|
164 |
-
)
|
165 |
-
|
166 |
-
# Mappings for each of the 5 different ViT features
|
167 |
-
for i in range(5):
|
168 |
-
setattr(
|
169 |
-
self,
|
170 |
-
f"mapping_{i}",
|
171 |
-
nn.Sequential(
|
172 |
-
nn.Linear(1024, 1024),
|
173 |
-
nn.LayerNorm(1024),
|
174 |
-
nn.LeakyReLU(),
|
175 |
-
nn.Linear(1024, 1024),
|
176 |
-
nn.LayerNorm(1024),
|
177 |
-
nn.LeakyReLU(),
|
178 |
-
nn.Linear(1024, dim),
|
179 |
-
),
|
180 |
-
)
|
181 |
-
|
182 |
-
# Mapping for identity embedding vectors
|
183 |
-
self.id_embedding_mapping = nn.Sequential(
|
184 |
-
nn.Linear(1280, 1024),
|
185 |
-
nn.LayerNorm(1024),
|
186 |
-
nn.LeakyReLU(),
|
187 |
-
nn.Linear(1024, 1024),
|
188 |
-
nn.LayerNorm(1024),
|
189 |
-
nn.LeakyReLU(),
|
190 |
-
nn.Linear(1024, dim * num_id_token),
|
191 |
-
)
|
192 |
-
|
193 |
-
def forward(self, x, y):
|
194 |
-
"""
|
195 |
-
Forward pass for LocalFacialExtractor.
|
196 |
-
|
197 |
-
Parameters:
|
198 |
-
- x (Tensor): The input identity embedding tensor of shape (batch_size, 1280).
|
199 |
-
- y (list of Tensor): A list of 5 visual feature tensors each of shape (batch_size, 1024).
|
200 |
-
|
201 |
-
Returns:
|
202 |
-
- Tensor: The extracted latent features of shape (batch_size, num_queries, output_dim).
|
203 |
-
"""
|
204 |
-
|
205 |
-
# Repeat latent queries for the batch size
|
206 |
-
latents = self.latents.repeat(x.size(0), 1, 1)
|
207 |
-
|
208 |
-
# Map the identity embedding to tokens
|
209 |
-
x = self.id_embedding_mapping(x)
|
210 |
-
x = x.reshape(-1, self.num_id_token, self.dim)
|
211 |
-
|
212 |
-
# Concatenate identity tokens with the latent queries
|
213 |
-
latents = torch.cat((latents, x), dim=1)
|
214 |
-
|
215 |
-
# Process each of the 5 visual feature inputs
|
216 |
-
for i in range(5):
|
217 |
-
vit_feature = getattr(self, f"mapping_{i}")(y[i])
|
218 |
-
ctx_feature = torch.cat((x, vit_feature), dim=1)
|
219 |
-
|
220 |
-
# Pass through the PerceiverAttention and ConsisIDFeedForward layers
|
221 |
-
for attn, ff in self.layers[i * self.depth : (i + 1) * self.depth]:
|
222 |
-
latents = attn(ctx_feature, latents) + latents
|
223 |
-
latents = ff(latents) + latents
|
224 |
-
|
225 |
-
# Retain only the query latents
|
226 |
-
latents = latents[:, : self.num_queries]
|
227 |
-
# Project the latents to the output dimension
|
228 |
-
latents = latents @ self.proj_out
|
229 |
-
return latents
|
230 |
-
|
231 |
-
|
232 |
-
class PerceiverCrossAttention(nn.Module):
|
233 |
-
"""
|
234 |
-
|
235 |
-
Args:
|
236 |
-
dim (int): Dimension of the input latent and output. Default is 3072.
|
237 |
-
dim_head (int): Dimension of each attention head. Default is 128.
|
238 |
-
heads (int): Number of attention heads. Default is 16.
|
239 |
-
kv_dim (int): Dimension of the key/value input, allowing flexible cross-attention. Default is 2048.
|
240 |
-
|
241 |
-
Attributes:
|
242 |
-
scale (float): Scaling factor used in dot-product attention for numerical stability.
|
243 |
-
norm1 (nn.LayerNorm): Layer normalization applied to the input image features.
|
244 |
-
norm2 (nn.LayerNorm): Layer normalization applied to the latent features.
|
245 |
-
to_q (nn.Linear): Linear layer for projecting the latent features into queries.
|
246 |
-
to_kv (nn.Linear): Linear layer for projecting the input features into keys and values.
|
247 |
-
to_out (nn.Linear): Linear layer for outputting the final result after attention.
|
248 |
-
|
249 |
-
"""
|
250 |
-
|
251 |
-
def __init__(self, *, dim=3072, dim_head=128, heads=16, kv_dim=2048):
|
252 |
-
super().__init__()
|
253 |
-
self.scale = dim_head**-0.5
|
254 |
-
self.dim_head = dim_head
|
255 |
-
self.heads = heads
|
256 |
-
inner_dim = dim_head * heads
|
257 |
-
|
258 |
-
# Layer normalization to stabilize training
|
259 |
-
self.norm1 = nn.LayerNorm(dim if kv_dim is None else kv_dim)
|
260 |
-
self.norm2 = nn.LayerNorm(dim)
|
261 |
-
|
262 |
-
# Linear transformations to produce queries, keys, and values
|
263 |
-
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
264 |
-
self.to_kv = nn.Linear(dim if kv_dim is None else kv_dim, inner_dim * 2, bias=False)
|
265 |
-
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
266 |
-
|
267 |
-
def forward(self, x, latents):
|
268 |
-
"""
|
269 |
-
|
270 |
-
Args:
|
271 |
-
x (torch.Tensor): Input image features with shape (batch_size, n1, D), where:
|
272 |
-
- batch_size (b): Number of samples in the batch.
|
273 |
-
- n1: Sequence length (e.g., number of patches or tokens).
|
274 |
-
- D: Feature dimension.
|
275 |
-
|
276 |
-
latents (torch.Tensor): Latent feature representations with shape (batch_size, n2, D), where:
|
277 |
-
- n2: Number of latent elements.
|
278 |
-
|
279 |
-
Returns:
|
280 |
-
torch.Tensor: Attention-modulated features with shape (batch_size, n2, D).
|
281 |
-
|
282 |
-
"""
|
283 |
-
# Apply layer normalization to the input image and latent features
|
284 |
-
x = self.norm1(x)
|
285 |
-
latents = self.norm2(latents)
|
286 |
-
|
287 |
-
b, seq_len, _ = latents.shape
|
288 |
-
|
289 |
-
# Compute queries, keys, and values
|
290 |
-
q = self.to_q(latents)
|
291 |
-
k, v = self.to_kv(x).chunk(2, dim=-1)
|
292 |
-
|
293 |
-
# Reshape tensors to split into attention heads
|
294 |
-
q = reshape_tensor(q, self.heads)
|
295 |
-
k = reshape_tensor(k, self.heads)
|
296 |
-
v = reshape_tensor(v, self.heads)
|
297 |
-
|
298 |
-
# Compute attention weights
|
299 |
-
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
300 |
-
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable scaling than post-division
|
301 |
-
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
302 |
-
|
303 |
-
# Compute the output via weighted combination of values
|
304 |
-
out = weight @ v
|
305 |
-
|
306 |
-
# Reshape and permute to prepare for final linear transformation
|
307 |
-
out = out.permute(0, 2, 1, 3).reshape(b, seq_len, -1)
|
308 |
-
|
309 |
-
return self.to_out(out)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/pipeline_cogvideox.py
DELETED
@@ -1,748 +0,0 @@
|
|
1 |
-
# Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team.
|
2 |
-
# All rights reserved.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
import inspect
|
17 |
-
import math
|
18 |
-
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
19 |
-
|
20 |
-
import torch
|
21 |
-
from transformers import T5EncoderModel, T5Tokenizer
|
22 |
-
|
23 |
-
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
24 |
-
from diffusers.loaders import CogVideoXLoraLoaderMixin
|
25 |
-
from diffusers.models import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel
|
26 |
-
from diffusers.models.embeddings import get_3d_rotary_pos_embed
|
27 |
-
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
28 |
-
from diffusers.schedulers import CogVideoXDDIMScheduler, CogVideoXDPMScheduler
|
29 |
-
from diffusers.utils import logging, replace_example_docstring
|
30 |
-
from diffusers.utils.torch_utils import randn_tensor
|
31 |
-
from diffusers.video_processor import VideoProcessor
|
32 |
-
from diffusers.pipelines.cogvideo.pipeline_output import CogVideoXPipelineOutput
|
33 |
-
|
34 |
-
|
35 |
-
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
36 |
-
|
37 |
-
|
38 |
-
EXAMPLE_DOC_STRING = """
|
39 |
-
Examples:
|
40 |
-
```python
|
41 |
-
>>> import torch
|
42 |
-
>>> from diffusers import CogVideoXPipeline
|
43 |
-
>>> from diffusers.utils import export_to_video
|
44 |
-
|
45 |
-
>>> # Models: "THUDM/CogVideoX-2b" or "THUDM/CogVideoX-5b"
|
46 |
-
>>> pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-2b", torch_dtype=torch.float16).to("cuda")
|
47 |
-
>>> prompt = (
|
48 |
-
... "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. "
|
49 |
-
... "The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other "
|
50 |
-
... "pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, "
|
51 |
-
... "casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. "
|
52 |
-
... "The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical "
|
53 |
-
... "atmosphere of this unique musical performance."
|
54 |
-
... )
|
55 |
-
>>> video = pipe(prompt=prompt, guidance_scale=6, num_inference_steps=50).frames[0]
|
56 |
-
>>> export_to_video(video, "output.mp4", fps=8)
|
57 |
-
```
|
58 |
-
"""
|
59 |
-
|
60 |
-
|
61 |
-
# Similar to diffusers.pipelines.hunyuandit.pipeline_hunyuandit.get_resize_crop_region_for_grid
|
62 |
-
def get_resize_crop_region_for_grid(src, tgt_width, tgt_height):
|
63 |
-
tw = tgt_width
|
64 |
-
th = tgt_height
|
65 |
-
h, w = src
|
66 |
-
r = h / w
|
67 |
-
if r > (th / tw):
|
68 |
-
resize_height = th
|
69 |
-
resize_width = int(round(th / h * w))
|
70 |
-
else:
|
71 |
-
resize_width = tw
|
72 |
-
resize_height = int(round(tw / w * h))
|
73 |
-
|
74 |
-
crop_top = int(round((th - resize_height) / 2.0))
|
75 |
-
crop_left = int(round((tw - resize_width) / 2.0))
|
76 |
-
|
77 |
-
return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)
|
78 |
-
|
79 |
-
|
80 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
81 |
-
def retrieve_timesteps(
|
82 |
-
scheduler,
|
83 |
-
num_inference_steps: Optional[int] = None,
|
84 |
-
device: Optional[Union[str, torch.device]] = None,
|
85 |
-
timesteps: Optional[List[int]] = None,
|
86 |
-
sigmas: Optional[List[float]] = None,
|
87 |
-
**kwargs,
|
88 |
-
):
|
89 |
-
"""
|
90 |
-
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
91 |
-
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
92 |
-
|
93 |
-
Args:
|
94 |
-
scheduler (`SchedulerMixin`):
|
95 |
-
The scheduler to get timesteps from.
|
96 |
-
num_inference_steps (`int`):
|
97 |
-
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
98 |
-
must be `None`.
|
99 |
-
device (`str` or `torch.device`, *optional*):
|
100 |
-
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
101 |
-
timesteps (`List[int]`, *optional*):
|
102 |
-
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
103 |
-
`num_inference_steps` and `sigmas` must be `None`.
|
104 |
-
sigmas (`List[float]`, *optional*):
|
105 |
-
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
106 |
-
`num_inference_steps` and `timesteps` must be `None`.
|
107 |
-
|
108 |
-
Returns:
|
109 |
-
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
110 |
-
second element is the number of inference steps.
|
111 |
-
"""
|
112 |
-
if timesteps is not None and sigmas is not None:
|
113 |
-
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
114 |
-
if timesteps is not None:
|
115 |
-
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
116 |
-
if not accepts_timesteps:
|
117 |
-
raise ValueError(
|
118 |
-
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
119 |
-
f" timestep schedules. Please check whether you are using the correct scheduler."
|
120 |
-
)
|
121 |
-
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
122 |
-
timesteps = scheduler.timesteps
|
123 |
-
num_inference_steps = len(timesteps)
|
124 |
-
elif sigmas is not None:
|
125 |
-
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
126 |
-
if not accept_sigmas:
|
127 |
-
raise ValueError(
|
128 |
-
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
129 |
-
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
130 |
-
)
|
131 |
-
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
132 |
-
timesteps = scheduler.timesteps
|
133 |
-
num_inference_steps = len(timesteps)
|
134 |
-
else:
|
135 |
-
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
136 |
-
timesteps = scheduler.timesteps
|
137 |
-
return timesteps, num_inference_steps
|
138 |
-
|
139 |
-
|
140 |
-
class CogVideoXPipeline(DiffusionPipeline, CogVideoXLoraLoaderMixin):
|
141 |
-
r"""
|
142 |
-
Pipeline for text-to-video generation using CogVideoX.
|
143 |
-
|
144 |
-
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
145 |
-
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
146 |
-
|
147 |
-
Args:
|
148 |
-
vae ([`AutoencoderKL`]):
|
149 |
-
Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
|
150 |
-
text_encoder ([`T5EncoderModel`]):
|
151 |
-
Frozen text-encoder. CogVideoX uses
|
152 |
-
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel); specifically the
|
153 |
-
[t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant.
|
154 |
-
tokenizer (`T5Tokenizer`):
|
155 |
-
Tokenizer of class
|
156 |
-
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
|
157 |
-
transformer ([`CogVideoXTransformer3DModel`]):
|
158 |
-
A text conditioned `CogVideoXTransformer3DModel` to denoise the encoded video latents.
|
159 |
-
scheduler ([`SchedulerMixin`]):
|
160 |
-
A scheduler to be used in combination with `transformer` to denoise the encoded video latents.
|
161 |
-
"""
|
162 |
-
|
163 |
-
_optional_components = []
|
164 |
-
model_cpu_offload_seq = "text_encoder->transformer->vae"
|
165 |
-
|
166 |
-
_callback_tensor_inputs = [
|
167 |
-
"latents",
|
168 |
-
"prompt_embeds",
|
169 |
-
"negative_prompt_embeds",
|
170 |
-
]
|
171 |
-
|
172 |
-
def __init__(
|
173 |
-
self,
|
174 |
-
tokenizer: T5Tokenizer,
|
175 |
-
text_encoder: T5EncoderModel,
|
176 |
-
vae: AutoencoderKLCogVideoX,
|
177 |
-
transformer: CogVideoXTransformer3DModel,
|
178 |
-
scheduler: Union[CogVideoXDDIMScheduler, CogVideoXDPMScheduler],
|
179 |
-
):
|
180 |
-
super().__init__()
|
181 |
-
|
182 |
-
self.register_modules(
|
183 |
-
tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
|
184 |
-
)
|
185 |
-
self.vae_scale_factor_spatial = (
|
186 |
-
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
|
187 |
-
)
|
188 |
-
self.vae_scale_factor_temporal = (
|
189 |
-
self.vae.config.temporal_compression_ratio if hasattr(self, "vae") and self.vae is not None else 4
|
190 |
-
)
|
191 |
-
self.vae_scaling_factor_image = (
|
192 |
-
self.vae.config.scaling_factor if hasattr(self, "vae") and self.vae is not None else 0.7
|
193 |
-
)
|
194 |
-
|
195 |
-
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
|
196 |
-
|
197 |
-
def _get_t5_prompt_embeds(
|
198 |
-
self,
|
199 |
-
prompt: Union[str, List[str]] = None,
|
200 |
-
num_videos_per_prompt: int = 1,
|
201 |
-
max_sequence_length: int = 226,
|
202 |
-
device: Optional[torch.device] = None,
|
203 |
-
dtype: Optional[torch.dtype] = None,
|
204 |
-
):
|
205 |
-
device = device or self._execution_device
|
206 |
-
dtype = dtype or self.text_encoder.dtype
|
207 |
-
|
208 |
-
prompt = [prompt] if isinstance(prompt, str) else prompt
|
209 |
-
batch_size = len(prompt)
|
210 |
-
|
211 |
-
text_inputs = self.tokenizer(
|
212 |
-
prompt,
|
213 |
-
padding="max_length",
|
214 |
-
max_length=max_sequence_length,
|
215 |
-
truncation=True,
|
216 |
-
add_special_tokens=True,
|
217 |
-
return_tensors="pt",
|
218 |
-
)
|
219 |
-
text_input_ids = text_inputs.input_ids
|
220 |
-
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
221 |
-
|
222 |
-
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
223 |
-
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1])
|
224 |
-
logger.warning(
|
225 |
-
"The following part of your input was truncated because `max_sequence_length` is set to "
|
226 |
-
f" {max_sequence_length} tokens: {removed_text}"
|
227 |
-
)
|
228 |
-
|
229 |
-
prompt_embeds = self.text_encoder(text_input_ids.to(device))[0]
|
230 |
-
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
231 |
-
|
232 |
-
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
233 |
-
_, seq_len, _ = prompt_embeds.shape
|
234 |
-
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
|
235 |
-
prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
|
236 |
-
|
237 |
-
return prompt_embeds
|
238 |
-
|
239 |
-
def encode_prompt(
|
240 |
-
self,
|
241 |
-
prompt: Union[str, List[str]],
|
242 |
-
negative_prompt: Optional[Union[str, List[str]]] = None,
|
243 |
-
do_classifier_free_guidance: bool = True,
|
244 |
-
num_videos_per_prompt: int = 1,
|
245 |
-
prompt_embeds: Optional[torch.Tensor] = None,
|
246 |
-
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
247 |
-
max_sequence_length: int = 226,
|
248 |
-
device: Optional[torch.device] = None,
|
249 |
-
dtype: Optional[torch.dtype] = None,
|
250 |
-
):
|
251 |
-
r"""
|
252 |
-
Encodes the prompt into text encoder hidden states.
|
253 |
-
|
254 |
-
Args:
|
255 |
-
prompt (`str` or `List[str]`, *optional*):
|
256 |
-
prompt to be encoded
|
257 |
-
negative_prompt (`str` or `List[str]`, *optional*):
|
258 |
-
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
259 |
-
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
260 |
-
less than `1`).
|
261 |
-
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
|
262 |
-
Whether to use classifier free guidance or not.
|
263 |
-
num_videos_per_prompt (`int`, *optional*, defaults to 1):
|
264 |
-
Number of videos that should be generated per prompt. torch device to place the resulting embeddings on
|
265 |
-
prompt_embeds (`torch.Tensor`, *optional*):
|
266 |
-
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
267 |
-
provided, text embeddings will be generated from `prompt` input argument.
|
268 |
-
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
269 |
-
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
270 |
-
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
271 |
-
argument.
|
272 |
-
device: (`torch.device`, *optional*):
|
273 |
-
torch device
|
274 |
-
dtype: (`torch.dtype`, *optional*):
|
275 |
-
torch dtype
|
276 |
-
"""
|
277 |
-
device = device or self._execution_device
|
278 |
-
|
279 |
-
prompt = [prompt] if isinstance(prompt, str) else prompt
|
280 |
-
if prompt is not None:
|
281 |
-
batch_size = len(prompt)
|
282 |
-
else:
|
283 |
-
batch_size = prompt_embeds.shape[0]
|
284 |
-
|
285 |
-
if prompt_embeds is None:
|
286 |
-
prompt_embeds = self._get_t5_prompt_embeds(
|
287 |
-
prompt=prompt,
|
288 |
-
num_videos_per_prompt=num_videos_per_prompt,
|
289 |
-
max_sequence_length=max_sequence_length,
|
290 |
-
device=device,
|
291 |
-
dtype=dtype,
|
292 |
-
)
|
293 |
-
|
294 |
-
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
295 |
-
negative_prompt = negative_prompt or ""
|
296 |
-
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
297 |
-
|
298 |
-
if prompt is not None and type(prompt) is not type(negative_prompt):
|
299 |
-
raise TypeError(
|
300 |
-
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
301 |
-
f" {type(prompt)}."
|
302 |
-
)
|
303 |
-
elif batch_size != len(negative_prompt):
|
304 |
-
raise ValueError(
|
305 |
-
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
306 |
-
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
307 |
-
" the batch size of `prompt`."
|
308 |
-
)
|
309 |
-
|
310 |
-
negative_prompt_embeds = self._get_t5_prompt_embeds(
|
311 |
-
prompt=negative_prompt,
|
312 |
-
num_videos_per_prompt=num_videos_per_prompt,
|
313 |
-
max_sequence_length=max_sequence_length,
|
314 |
-
device=device,
|
315 |
-
dtype=dtype,
|
316 |
-
)
|
317 |
-
|
318 |
-
return prompt_embeds, negative_prompt_embeds
|
319 |
-
|
320 |
-
def prepare_latents(
|
321 |
-
self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None
|
322 |
-
):
|
323 |
-
if isinstance(generator, list) and len(generator) != batch_size:
|
324 |
-
raise ValueError(
|
325 |
-
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
326 |
-
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
327 |
-
)
|
328 |
-
|
329 |
-
shape = (
|
330 |
-
batch_size,
|
331 |
-
(num_frames - 1) // self.vae_scale_factor_temporal + 1,
|
332 |
-
num_channels_latents,
|
333 |
-
height // self.vae_scale_factor_spatial,
|
334 |
-
width // self.vae_scale_factor_spatial,
|
335 |
-
)
|
336 |
-
|
337 |
-
if latents is None:
|
338 |
-
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
339 |
-
else:
|
340 |
-
latents = latents.to(device)
|
341 |
-
|
342 |
-
# scale the initial noise by the standard deviation required by the scheduler
|
343 |
-
latents = latents * self.scheduler.init_noise_sigma
|
344 |
-
return latents
|
345 |
-
|
346 |
-
def decode_latents(self, latents: torch.Tensor) -> torch.Tensor:
|
347 |
-
latents = latents.permute(0, 2, 1, 3, 4) # [batch_size, num_channels, num_frames, height, width]
|
348 |
-
latents = 1 / self.vae_scaling_factor_image * latents
|
349 |
-
|
350 |
-
frames = self.vae.decode(latents).sample
|
351 |
-
return frames
|
352 |
-
|
353 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
354 |
-
def prepare_extra_step_kwargs(self, generator, eta):
|
355 |
-
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
356 |
-
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
357 |
-
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
358 |
-
# and should be between [0, 1]
|
359 |
-
|
360 |
-
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
361 |
-
extra_step_kwargs = {}
|
362 |
-
if accepts_eta:
|
363 |
-
extra_step_kwargs["eta"] = eta
|
364 |
-
|
365 |
-
# check if the scheduler accepts generator
|
366 |
-
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
367 |
-
if accepts_generator:
|
368 |
-
extra_step_kwargs["generator"] = generator
|
369 |
-
return extra_step_kwargs
|
370 |
-
|
371 |
-
# Copied from diffusers.pipelines.latte.pipeline_latte.LattePipeline.check_inputs
|
372 |
-
def check_inputs(
|
373 |
-
self,
|
374 |
-
prompt,
|
375 |
-
height,
|
376 |
-
width,
|
377 |
-
negative_prompt,
|
378 |
-
callback_on_step_end_tensor_inputs,
|
379 |
-
prompt_embeds=None,
|
380 |
-
negative_prompt_embeds=None,
|
381 |
-
):
|
382 |
-
if height % 8 != 0 or width % 8 != 0:
|
383 |
-
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
384 |
-
|
385 |
-
if callback_on_step_end_tensor_inputs is not None and not all(
|
386 |
-
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
387 |
-
):
|
388 |
-
raise ValueError(
|
389 |
-
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
390 |
-
)
|
391 |
-
if prompt is not None and prompt_embeds is not None:
|
392 |
-
raise ValueError(
|
393 |
-
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
394 |
-
" only forward one of the two."
|
395 |
-
)
|
396 |
-
elif prompt is None and prompt_embeds is None:
|
397 |
-
raise ValueError(
|
398 |
-
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
399 |
-
)
|
400 |
-
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
401 |
-
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
402 |
-
|
403 |
-
if prompt is not None and negative_prompt_embeds is not None:
|
404 |
-
raise ValueError(
|
405 |
-
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
|
406 |
-
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
407 |
-
)
|
408 |
-
|
409 |
-
if negative_prompt is not None and negative_prompt_embeds is not None:
|
410 |
-
raise ValueError(
|
411 |
-
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
412 |
-
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
413 |
-
)
|
414 |
-
|
415 |
-
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
416 |
-
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
417 |
-
raise ValueError(
|
418 |
-
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
419 |
-
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
420 |
-
f" {negative_prompt_embeds.shape}."
|
421 |
-
)
|
422 |
-
|
423 |
-
def fuse_qkv_projections(self) -> None:
|
424 |
-
r"""Enables fused QKV projections."""
|
425 |
-
self.fusing_transformer = True
|
426 |
-
self.transformer.fuse_qkv_projections()
|
427 |
-
|
428 |
-
def unfuse_qkv_projections(self) -> None:
|
429 |
-
r"""Disable QKV projection fusion if enabled."""
|
430 |
-
if not self.fusing_transformer:
|
431 |
-
logger.warning("The Transformer was not initially fused for QKV projections. Doing nothing.")
|
432 |
-
else:
|
433 |
-
self.transformer.unfuse_qkv_projections()
|
434 |
-
self.fusing_transformer = False
|
435 |
-
|
436 |
-
def _prepare_rotary_positional_embeddings(
|
437 |
-
self,
|
438 |
-
height: int,
|
439 |
-
width: int,
|
440 |
-
num_frames: int,
|
441 |
-
device: torch.device,
|
442 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
443 |
-
grid_height = height // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
|
444 |
-
grid_width = width // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
|
445 |
-
base_size_width = 720 // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
|
446 |
-
base_size_height = 480 // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
|
447 |
-
|
448 |
-
grid_crops_coords = get_resize_crop_region_for_grid(
|
449 |
-
(grid_height, grid_width), base_size_width, base_size_height
|
450 |
-
)
|
451 |
-
freqs_cos, freqs_sin = get_3d_rotary_pos_embed(
|
452 |
-
embed_dim=self.transformer.config.attention_head_dim,
|
453 |
-
crops_coords=grid_crops_coords,
|
454 |
-
grid_size=(grid_height, grid_width),
|
455 |
-
temporal_size=num_frames,
|
456 |
-
)
|
457 |
-
|
458 |
-
freqs_cos = freqs_cos.to(device=device)
|
459 |
-
freqs_sin = freqs_sin.to(device=device)
|
460 |
-
return freqs_cos, freqs_sin
|
461 |
-
|
462 |
-
@property
|
463 |
-
def guidance_scale(self):
|
464 |
-
return self._guidance_scale
|
465 |
-
|
466 |
-
@property
|
467 |
-
def num_timesteps(self):
|
468 |
-
return self._num_timesteps
|
469 |
-
|
470 |
-
@property
|
471 |
-
def attention_kwargs(self):
|
472 |
-
return self._attention_kwargs
|
473 |
-
|
474 |
-
@property
|
475 |
-
def interrupt(self):
|
476 |
-
return self._interrupt
|
477 |
-
|
478 |
-
@torch.no_grad()
|
479 |
-
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
480 |
-
def __call__(
|
481 |
-
self,
|
482 |
-
prompt: Optional[Union[str, List[str]]] = None,
|
483 |
-
negative_prompt: Optional[Union[str, List[str]]] = None,
|
484 |
-
height: int = 480,
|
485 |
-
width: int = 720,
|
486 |
-
num_frames: int = 49,
|
487 |
-
num_inference_steps: int = 50,
|
488 |
-
timesteps: Optional[List[int]] = None,
|
489 |
-
guidance_scale: float = 6,
|
490 |
-
use_dynamic_cfg: bool = False,
|
491 |
-
num_videos_per_prompt: int = 1,
|
492 |
-
eta: float = 0.0,
|
493 |
-
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
494 |
-
latents: Optional[torch.FloatTensor] = None,
|
495 |
-
prompt_embeds: Optional[torch.FloatTensor] = None,
|
496 |
-
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
497 |
-
output_type: str = "pil",
|
498 |
-
return_dict: bool = True,
|
499 |
-
attention_kwargs: Optional[Dict[str, Any]] = None,
|
500 |
-
callback_on_step_end: Optional[
|
501 |
-
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
502 |
-
] = None,
|
503 |
-
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
504 |
-
max_sequence_length: int = 226,
|
505 |
-
id_vit_hidden: Optional[torch.Tensor] = None,
|
506 |
-
id_cond: Optional[torch.Tensor] = None,
|
507 |
-
) -> Union[CogVideoXPipelineOutput, Tuple]:
|
508 |
-
"""
|
509 |
-
Function invoked when calling the pipeline for generation.
|
510 |
-
|
511 |
-
Args:
|
512 |
-
prompt (`str` or `List[str]`, *optional*):
|
513 |
-
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
514 |
-
instead.
|
515 |
-
negative_prompt (`str` or `List[str]`, *optional*):
|
516 |
-
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
517 |
-
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
518 |
-
less than `1`).
|
519 |
-
height (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial):
|
520 |
-
The height in pixels of the generated image. This is set to 480 by default for the best results.
|
521 |
-
width (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial):
|
522 |
-
The width in pixels of the generated image. This is set to 720 by default for the best results.
|
523 |
-
num_frames (`int`, defaults to `48`):
|
524 |
-
Number of frames to generate. Must be divisible by self.vae_scale_factor_temporal. Generated video will
|
525 |
-
contain 1 extra frame because CogVideoX is conditioned with (num_seconds * fps + 1) frames where
|
526 |
-
num_seconds is 6 and fps is 4. However, since videos can be saved at any fps, the only condition that
|
527 |
-
needs to be satisfied is that of divisibility mentioned above.
|
528 |
-
num_inference_steps (`int`, *optional*, defaults to 50):
|
529 |
-
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
530 |
-
expense of slower inference.
|
531 |
-
timesteps (`List[int]`, *optional*):
|
532 |
-
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
533 |
-
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
534 |
-
passed will be used. Must be in descending order.
|
535 |
-
guidance_scale (`float`, *optional*, defaults to 7.0):
|
536 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
537 |
-
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
538 |
-
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
539 |
-
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
540 |
-
usually at the expense of lower image quality.
|
541 |
-
num_videos_per_prompt (`int`, *optional*, defaults to 1):
|
542 |
-
The number of videos to generate per prompt.
|
543 |
-
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
544 |
-
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
545 |
-
to make generation deterministic.
|
546 |
-
latents (`torch.FloatTensor`, *optional*):
|
547 |
-
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
548 |
-
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
549 |
-
tensor will ge generated by sampling using the supplied random `generator`.
|
550 |
-
prompt_embeds (`torch.FloatTensor`, *optional*):
|
551 |
-
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
552 |
-
provided, text embeddings will be generated from `prompt` input argument.
|
553 |
-
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
554 |
-
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
555 |
-
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
556 |
-
argument.
|
557 |
-
output_type (`str`, *optional*, defaults to `"pil"`):
|
558 |
-
The output format of the generate image. Choose between
|
559 |
-
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
560 |
-
return_dict (`bool`, *optional*, defaults to `True`):
|
561 |
-
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
562 |
-
of a plain tuple.
|
563 |
-
attention_kwargs (`dict`, *optional*):
|
564 |
-
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
565 |
-
`self.processor` in
|
566 |
-
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
567 |
-
callback_on_step_end (`Callable`, *optional*):
|
568 |
-
A function that calls at the end of each denoising steps during the inference. The function is called
|
569 |
-
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
570 |
-
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
571 |
-
`callback_on_step_end_tensor_inputs`.
|
572 |
-
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
573 |
-
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
574 |
-
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
575 |
-
`._callback_tensor_inputs` attribute of your pipeline class.
|
576 |
-
max_sequence_length (`int`, defaults to `226`):
|
577 |
-
Maximum sequence length in encoded prompt. Must be consistent with
|
578 |
-
`self.transformer.config.max_text_seq_length` otherwise may lead to poor results.
|
579 |
-
|
580 |
-
Examples:
|
581 |
-
|
582 |
-
Returns:
|
583 |
-
[`~pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipelineOutput`] or `tuple`:
|
584 |
-
[`~pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipelineOutput`] if `return_dict` is True, otherwise a
|
585 |
-
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
586 |
-
"""
|
587 |
-
|
588 |
-
if num_frames > 49:
|
589 |
-
raise ValueError(
|
590 |
-
"The number of frames must be less than 49 for now due to static positional embeddings. This will be updated in the future to remove this limitation."
|
591 |
-
)
|
592 |
-
|
593 |
-
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
594 |
-
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
595 |
-
|
596 |
-
num_videos_per_prompt = 1
|
597 |
-
|
598 |
-
# 1. Check inputs. Raise error if not correct
|
599 |
-
self.check_inputs(
|
600 |
-
prompt,
|
601 |
-
height,
|
602 |
-
width,
|
603 |
-
negative_prompt,
|
604 |
-
callback_on_step_end_tensor_inputs,
|
605 |
-
prompt_embeds,
|
606 |
-
negative_prompt_embeds,
|
607 |
-
)
|
608 |
-
self._guidance_scale = guidance_scale
|
609 |
-
self._attention_kwargs = attention_kwargs
|
610 |
-
self._interrupt = False
|
611 |
-
|
612 |
-
# 2. Default call parameters
|
613 |
-
if prompt is not None and isinstance(prompt, str):
|
614 |
-
batch_size = 1
|
615 |
-
elif prompt is not None and isinstance(prompt, list):
|
616 |
-
batch_size = len(prompt)
|
617 |
-
else:
|
618 |
-
batch_size = prompt_embeds.shape[0]
|
619 |
-
|
620 |
-
device = self._execution_device
|
621 |
-
|
622 |
-
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
623 |
-
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
624 |
-
# corresponds to doing no classifier free guidance.
|
625 |
-
do_classifier_free_guidance = guidance_scale > 1.0
|
626 |
-
|
627 |
-
# 3. Encode input prompt
|
628 |
-
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
629 |
-
prompt,
|
630 |
-
negative_prompt,
|
631 |
-
do_classifier_free_guidance,
|
632 |
-
num_videos_per_prompt=num_videos_per_prompt,
|
633 |
-
prompt_embeds=prompt_embeds,
|
634 |
-
negative_prompt_embeds=negative_prompt_embeds,
|
635 |
-
max_sequence_length=max_sequence_length,
|
636 |
-
device=device,
|
637 |
-
)
|
638 |
-
if do_classifier_free_guidance:
|
639 |
-
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
640 |
-
|
641 |
-
# 4. Prepare timesteps
|
642 |
-
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
643 |
-
self._num_timesteps = len(timesteps)
|
644 |
-
|
645 |
-
# 5. Prepare latents.
|
646 |
-
latent_channels = self.transformer.config.in_channels
|
647 |
-
latents = self.prepare_latents(
|
648 |
-
batch_size * num_videos_per_prompt,
|
649 |
-
latent_channels,
|
650 |
-
num_frames,
|
651 |
-
height,
|
652 |
-
width,
|
653 |
-
prompt_embeds.dtype,
|
654 |
-
device,
|
655 |
-
generator,
|
656 |
-
latents,
|
657 |
-
)
|
658 |
-
|
659 |
-
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
660 |
-
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
661 |
-
|
662 |
-
# 7. Create rotary embeds if required
|
663 |
-
image_rotary_emb = (
|
664 |
-
self._prepare_rotary_positional_embeddings(height, width, latents.size(1), device)
|
665 |
-
if self.transformer.config.use_rotary_positional_embeddings
|
666 |
-
else None
|
667 |
-
)
|
668 |
-
|
669 |
-
# 8. Denoising loop
|
670 |
-
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
671 |
-
|
672 |
-
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
673 |
-
# for DPM-solver++
|
674 |
-
old_pred_original_sample = None
|
675 |
-
for i, t in enumerate(timesteps):
|
676 |
-
if self.interrupt:
|
677 |
-
continue
|
678 |
-
|
679 |
-
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
680 |
-
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
681 |
-
|
682 |
-
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
683 |
-
timestep = t.expand(latent_model_input.shape[0])
|
684 |
-
|
685 |
-
# predict noise model_output
|
686 |
-
noise_pred = self.transformer(
|
687 |
-
hidden_states=latent_model_input,
|
688 |
-
encoder_hidden_states=prompt_embeds,
|
689 |
-
timestep=timestep,
|
690 |
-
image_rotary_emb=image_rotary_emb,
|
691 |
-
attention_kwargs=attention_kwargs,
|
692 |
-
return_dict=False,
|
693 |
-
id_vit_hidden = id_vit_hidden,
|
694 |
-
id_cond = id_cond,
|
695 |
-
)[0]
|
696 |
-
noise_pred = noise_pred.float()
|
697 |
-
|
698 |
-
# perform guidance
|
699 |
-
if use_dynamic_cfg:
|
700 |
-
self._guidance_scale = 1 + guidance_scale * (
|
701 |
-
(1 - math.cos(math.pi * ((num_inference_steps - t.item()) / num_inference_steps) ** 5.0)) / 2
|
702 |
-
)
|
703 |
-
if do_classifier_free_guidance:
|
704 |
-
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
705 |
-
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
706 |
-
|
707 |
-
# compute the previous noisy sample x_t -> x_t-1
|
708 |
-
if not isinstance(self.scheduler, CogVideoXDPMScheduler):
|
709 |
-
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
710 |
-
else:
|
711 |
-
latents, old_pred_original_sample = self.scheduler.step(
|
712 |
-
noise_pred,
|
713 |
-
old_pred_original_sample,
|
714 |
-
t,
|
715 |
-
timesteps[i - 1] if i > 0 else None,
|
716 |
-
latents,
|
717 |
-
**extra_step_kwargs,
|
718 |
-
return_dict=False,
|
719 |
-
)
|
720 |
-
latents = latents.to(prompt_embeds.dtype)
|
721 |
-
|
722 |
-
# call the callback, if provided
|
723 |
-
if callback_on_step_end is not None:
|
724 |
-
callback_kwargs = {}
|
725 |
-
for k in callback_on_step_end_tensor_inputs:
|
726 |
-
callback_kwargs[k] = locals()[k]
|
727 |
-
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
728 |
-
|
729 |
-
latents = callback_outputs.pop("latents", latents)
|
730 |
-
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
731 |
-
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
732 |
-
|
733 |
-
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
734 |
-
progress_bar.update()
|
735 |
-
|
736 |
-
if not output_type == "latent":
|
737 |
-
video = self.decode_latents(latents)
|
738 |
-
video = self.video_processor.postprocess_video(video=video, output_type=output_type)
|
739 |
-
else:
|
740 |
-
video = latents
|
741 |
-
|
742 |
-
# Offload all models
|
743 |
-
self.maybe_free_model_hooks()
|
744 |
-
|
745 |
-
if not return_dict:
|
746 |
-
return (video,)
|
747 |
-
|
748 |
-
return CogVideoXPipelineOutput(frames=video)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/pipeline_consisid.py
CHANGED
@@ -16,31 +16,26 @@ import inspect
|
|
16 |
import math
|
17 |
from typing import Callable, Dict, List, Optional, Tuple, Union
|
18 |
|
19 |
-
import os
|
20 |
-
import sys
|
21 |
-
import PIL
|
22 |
-
import numpy as np
|
23 |
import cv2
|
|
|
|
|
24 |
import torch
|
25 |
-
from dataclasses import dataclass
|
26 |
from transformers import T5EncoderModel, T5Tokenizer
|
27 |
|
28 |
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
29 |
from diffusers.image_processor import PipelineImageInput
|
30 |
-
from diffusers.models import AutoencoderKLCogVideoX
|
31 |
from diffusers.models.embeddings import get_3d_rotary_pos_embed
|
|
|
32 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
33 |
from diffusers.schedulers import CogVideoXDDIMScheduler, CogVideoXDPMScheduler
|
34 |
-
from diffusers.utils import
|
|
|
|
|
|
|
35 |
from diffusers.utils.torch_utils import randn_tensor
|
36 |
from diffusers.video_processor import VideoProcessor
|
37 |
|
38 |
-
from models.transformer_consisid import ConsisIDTransformer3DModel
|
39 |
-
|
40 |
-
current_file_path = os.path.abspath(__file__)
|
41 |
-
project_roots = [os.path.dirname(os.path.dirname(current_file_path))]
|
42 |
-
for project_root in project_roots:
|
43 |
-
sys.path.insert(0, project_root) if project_root not in sys.path else None
|
44 |
|
45 |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
46 |
|
@@ -50,22 +45,64 @@ EXAMPLE_DOC_STRING = """
|
|
50 |
```py
|
51 |
>>> import torch
|
52 |
>>> from diffusers import ConsisIDPipeline
|
53 |
-
>>> from diffusers.
|
|
|
|
|
|
|
|
|
54 |
|
55 |
-
>>>
|
|
|
|
|
|
|
56 |
>>> pipe.to("cuda")
|
57 |
|
58 |
>>> prompt = "A woman adorned with a delicate flower crown, is standing amidst a field of gently swaying wildflowers. Her eyes sparkle with a serene gaze, and a faint smile graces her lips, suggesting a moment of peaceful contentment. The shot is framed from the waist up, highlighting the gentle breeze lightly tousling her hair. The background reveals an expansive meadow under a bright blue sky, capturing the tranquility of a sunny afternoon."
|
59 |
-
>>> image =
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
... )
|
62 |
-
>>> video = pipe(image, prompt, use_dynamic_cfg=True)
|
63 |
>>> export_to_video(video.frames[0], "output.mp4", fps=8)
|
64 |
```
|
65 |
"""
|
66 |
|
67 |
|
68 |
def draw_kps(image_pil, kps, color_list=[(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255)]):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
stickwidth = 4
|
70 |
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
|
71 |
kps = np.array(kps)
|
@@ -96,17 +133,23 @@ def draw_kps(image_pil, kps, color_list=[(255, 0, 0), (0, 255, 0), (0, 0, 255),
|
|
96 |
return out_img_pil
|
97 |
|
98 |
|
99 |
-
def process_image(image, vae):
|
100 |
-
image_noise_sigma = torch.normal(mean=-3.0, std=0.5, size=(1,), device=image.device)
|
101 |
-
image_noise_sigma = torch.exp(image_noise_sigma).to(dtype=image.dtype)
|
102 |
-
noisy_image = torch.randn_like(image) * image_noise_sigma[:, None, None, None, None]
|
103 |
-
input_image = image + noisy_image
|
104 |
-
image_latent_dist = vae.encode(input_image).latent_dist
|
105 |
-
return image_latent_dist
|
106 |
-
|
107 |
-
|
108 |
# Similar to diffusers.pipelines.hunyuandit.pipeline_hunyuandit.get_resize_crop_region_for_grid
|
109 |
def get_resize_crop_region_for_grid(src, tgt_width, tgt_height):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
tw = tgt_width
|
111 |
th = tgt_height
|
112 |
h, w = src
|
@@ -133,7 +176,7 @@ def retrieve_timesteps(
|
|
133 |
sigmas: Optional[List[float]] = None,
|
134 |
**kwargs,
|
135 |
):
|
136 |
-
"""
|
137 |
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
138 |
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
139 |
|
@@ -198,21 +241,6 @@ def retrieve_latents(
|
|
198 |
raise AttributeError("Could not access latents of provided encoder_output")
|
199 |
|
200 |
|
201 |
-
@dataclass
|
202 |
-
class ConsisIDPipelineOutput(BaseOutput):
|
203 |
-
r"""
|
204 |
-
Output class for ConsisID pipelines.
|
205 |
-
|
206 |
-
Args:
|
207 |
-
frames (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]):
|
208 |
-
List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing
|
209 |
-
denoised PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape
|
210 |
-
`(batch_size, num_frames, channels, height, width)`.
|
211 |
-
"""
|
212 |
-
|
213 |
-
frames: torch.Tensor
|
214 |
-
|
215 |
-
|
216 |
class ConsisIDPipeline(DiffusionPipeline):
|
217 |
r"""
|
218 |
Pipeline for image-to-video generation using ConsisID.
|
@@ -274,7 +302,7 @@ class ConsisIDPipeline(DiffusionPipeline):
|
|
274 |
|
275 |
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
|
276 |
|
277 |
-
# Copied from diffusers.pipelines.
|
278 |
def _get_t5_prompt_embeds(
|
279 |
self,
|
280 |
prompt: Union[str, List[str]] = None,
|
@@ -317,7 +345,7 @@ class ConsisIDPipeline(DiffusionPipeline):
|
|
317 |
|
318 |
return prompt_embeds
|
319 |
|
320 |
-
# Copied from diffusers.pipelines.
|
321 |
def encode_prompt(
|
322 |
self,
|
323 |
prompt: Union[str, List[str]],
|
@@ -484,7 +512,7 @@ class ConsisIDPipeline(DiffusionPipeline):
|
|
484 |
latents = latents * self.scheduler.init_noise_sigma
|
485 |
return latents, image_latents
|
486 |
|
487 |
-
# Copied from diffusers.pipelines.
|
488 |
def decode_latents(self, latents: torch.Tensor) -> torch.Tensor:
|
489 |
latents = latents.permute(0, 2, 1, 3, 4) # [batch_size, num_channels, num_frames, height, width]
|
490 |
latents = 1 / self.vae_scaling_factor_image * latents
|
@@ -583,13 +611,13 @@ class ConsisIDPipeline(DiffusionPipeline):
|
|
583 |
f" {negative_prompt_embeds.shape}."
|
584 |
)
|
585 |
|
586 |
-
# Copied from diffusers.pipelines.
|
587 |
def fuse_qkv_projections(self) -> None:
|
588 |
r"""Enables fused QKV projections."""
|
589 |
self.fusing_transformer = True
|
590 |
self.transformer.fuse_qkv_projections()
|
591 |
|
592 |
-
# Copied from diffusers.pipelines.
|
593 |
def unfuse_qkv_projections(self) -> None:
|
594 |
r"""Disable QKV projection fusion if enabled."""
|
595 |
if not self.fusing_transformer:
|
@@ -598,7 +626,6 @@ class ConsisIDPipeline(DiffusionPipeline):
|
|
598 |
self.transformer.unfuse_qkv_projections()
|
599 |
self.fusing_transformer = False
|
600 |
|
601 |
-
# Copied from diffusers.pipelines.consisid.pipeline_consisid.ConsisIDPipeline._prepare_rotary_positional_embeddings
|
602 |
def _prepare_rotary_positional_embeddings(
|
603 |
self,
|
604 |
height: int,
|
@@ -685,7 +712,7 @@ class ConsisIDPipeline(DiffusionPipeline):
|
|
685 |
The height in pixels of the generated image. This is set to 480 by default for the best results.
|
686 |
width (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial):
|
687 |
The width in pixels of the generated image. This is set to 720 by default for the best results.
|
688 |
-
num_frames (`int`, defaults to `
|
689 |
Number of frames to generate. Must be divisible by self.vae_scale_factor_temporal. Generated video will
|
690 |
contain 1 extra frame because ConsisID is conditioned with (num_seconds * fps + 1) frames where
|
691 |
num_seconds is 6 and fps is 4. However, since videos can be saved at any fps, the only condition that
|
@@ -697,7 +724,7 @@ class ConsisIDPipeline(DiffusionPipeline):
|
|
697 |
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
698 |
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
699 |
passed will be used. Must be in descending order.
|
700 |
-
guidance_scale (`float`, *optional*, defaults to
|
701 |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
702 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
703 |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
@@ -804,6 +831,8 @@ class ConsisIDPipeline(DiffusionPipeline):
|
|
804 |
self._num_timesteps = len(timesteps)
|
805 |
|
806 |
# 5. Prepare latents
|
|
|
|
|
807 |
if kps_cond is not None:
|
808 |
kps_cond = draw_kps(image, kps_cond)
|
809 |
kps_cond = self.video_processor.preprocess(kps_cond, height=height, width=width).to(
|
@@ -920,4 +949,4 @@ class ConsisIDPipeline(DiffusionPipeline):
|
|
920 |
if not return_dict:
|
921 |
return (video,)
|
922 |
|
923 |
-
return ConsisIDPipelineOutput(frames=video)
|
|
|
16 |
import math
|
17 |
from typing import Callable, Dict, List, Optional, Tuple, Union
|
18 |
|
|
|
|
|
|
|
|
|
19 |
import cv2
|
20 |
+
import numpy as np
|
21 |
+
import PIL
|
22 |
import torch
|
|
|
23 |
from transformers import T5EncoderModel, T5Tokenizer
|
24 |
|
25 |
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
26 |
from diffusers.image_processor import PipelineImageInput
|
27 |
+
from diffusers.models import AutoencoderKLCogVideoX, ConsisIDTransformer3DModel
|
28 |
from diffusers.models.embeddings import get_3d_rotary_pos_embed
|
29 |
+
from diffusers.pipelines.consisid.pipeline_output import ConsisIDPipelineOutput
|
30 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
31 |
from diffusers.schedulers import CogVideoXDDIMScheduler, CogVideoXDPMScheduler
|
32 |
+
from diffusers.utils import (
|
33 |
+
logging,
|
34 |
+
replace_example_docstring,
|
35 |
+
)
|
36 |
from diffusers.utils.torch_utils import randn_tensor
|
37 |
from diffusers.video_processor import VideoProcessor
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
41 |
|
|
|
45 |
```py
|
46 |
>>> import torch
|
47 |
>>> from diffusers import ConsisIDPipeline
|
48 |
+
>>> from diffusers.pipelines.consisid.consisid_utils import prepare_face_models, process_face_embeddings_infer
|
49 |
+
>>> from diffusers.utils import export_to_video
|
50 |
+
>>> from huggingface_hub import snapshot_download
|
51 |
+
|
52 |
+
>>> snapshot_download(repo_id="BestWishYsh/ConsisID-preview", local_dir="BestWishYsh/ConsisID-preview")
|
53 |
|
54 |
+
>>> face_helper_1, face_helper_2, face_clip_model, face_main_model, eva_transform_mean, eva_transform_std = (
|
55 |
+
... prepare_face_models("BestWishYsh/ConsisID-preview", device="cuda", dtype=torch.bfloat16)
|
56 |
+
... )
|
57 |
+
>>> pipe = ConsisIDPipeline.from_pretrained("BestWishYsh/ConsisID-preview", torch_dtype=torch.bfloat16)
|
58 |
>>> pipe.to("cuda")
|
59 |
|
60 |
>>> prompt = "A woman adorned with a delicate flower crown, is standing amidst a field of gently swaying wildflowers. Her eyes sparkle with a serene gaze, and a faint smile graces her lips, suggesting a moment of peaceful contentment. The shot is framed from the waist up, highlighting the gentle breeze lightly tousling her hair. The background reveals an expansive meadow under a bright blue sky, capturing the tranquility of a sunny afternoon."
|
61 |
+
>>> image = "https://github.com/PKU-YuanGroup/ConsisID/blob/main/asserts/example_images/1.png?raw=true"
|
62 |
+
|
63 |
+
>>> id_cond, id_vit_hidden, image, face_kps = process_face_embeddings_infer(
|
64 |
+
... face_helper_1,
|
65 |
+
... face_clip_model,
|
66 |
+
... face_helper_2,
|
67 |
+
... eva_transform_mean,
|
68 |
+
... eva_transform_std,
|
69 |
+
... face_main_model,
|
70 |
+
... "cuda",
|
71 |
+
... torch.bfloat16,
|
72 |
+
... image,
|
73 |
+
... is_align_face=True,
|
74 |
+
... )
|
75 |
+
|
76 |
+
>>> video = pipe(
|
77 |
+
... image=image,
|
78 |
+
... prompt=prompt,
|
79 |
+
... num_inference_steps=50,
|
80 |
+
... guidance_scale=6.0,
|
81 |
+
... use_dynamic_cfg=False,
|
82 |
+
... id_vit_hidden=id_vit_hidden,
|
83 |
+
... id_cond=id_cond,
|
84 |
+
... kps_cond=face_kps,
|
85 |
+
... generator=torch.Generator("cuda").manual_seed(42),
|
86 |
... )
|
|
|
87 |
>>> export_to_video(video.frames[0], "output.mp4", fps=8)
|
88 |
```
|
89 |
"""
|
90 |
|
91 |
|
92 |
def draw_kps(image_pil, kps, color_list=[(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255)]):
|
93 |
+
"""
|
94 |
+
This function draws keypoints and the limbs connecting them on an image.
|
95 |
+
|
96 |
+
Parameters:
|
97 |
+
- image_pil (PIL.Image): Input image as a PIL object.
|
98 |
+
- kps (list of tuples): A list of keypoints where each keypoint is a tuple of (x, y) coordinates.
|
99 |
+
- color_list (list of tuples, optional): List of colors (in RGB format) for each keypoint. Default is a set of five
|
100 |
+
colors.
|
101 |
+
|
102 |
+
Returns:
|
103 |
+
- PIL.Image: Image with the keypoints and limbs drawn.
|
104 |
+
"""
|
105 |
+
|
106 |
stickwidth = 4
|
107 |
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
|
108 |
kps = np.array(kps)
|
|
|
133 |
return out_img_pil
|
134 |
|
135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
# Similar to diffusers.pipelines.hunyuandit.pipeline_hunyuandit.get_resize_crop_region_for_grid
|
137 |
def get_resize_crop_region_for_grid(src, tgt_width, tgt_height):
|
138 |
+
"""
|
139 |
+
This function calculates the resize and crop region for an image to fit a target width and height while preserving
|
140 |
+
the aspect ratio.
|
141 |
+
|
142 |
+
Parameters:
|
143 |
+
- src (tuple): A tuple containing the source image's height (h) and width (w).
|
144 |
+
- tgt_width (int): The target width to resize the image.
|
145 |
+
- tgt_height (int): The target height to resize the image.
|
146 |
+
|
147 |
+
Returns:
|
148 |
+
- tuple: Two tuples representing the crop region:
|
149 |
+
1. The top-left coordinates of the crop region.
|
150 |
+
2. The bottom-right coordinates of the crop region.
|
151 |
+
"""
|
152 |
+
|
153 |
tw = tgt_width
|
154 |
th = tgt_height
|
155 |
h, w = src
|
|
|
176 |
sigmas: Optional[List[float]] = None,
|
177 |
**kwargs,
|
178 |
):
|
179 |
+
r"""
|
180 |
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
181 |
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
182 |
|
|
|
241 |
raise AttributeError("Could not access latents of provided encoder_output")
|
242 |
|
243 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
class ConsisIDPipeline(DiffusionPipeline):
|
245 |
r"""
|
246 |
Pipeline for image-to-video generation using ConsisID.
|
|
|
302 |
|
303 |
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
|
304 |
|
305 |
+
# Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline._get_t5_prompt_embeds
|
306 |
def _get_t5_prompt_embeds(
|
307 |
self,
|
308 |
prompt: Union[str, List[str]] = None,
|
|
|
345 |
|
346 |
return prompt_embeds
|
347 |
|
348 |
+
# Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline.encode_prompt
|
349 |
def encode_prompt(
|
350 |
self,
|
351 |
prompt: Union[str, List[str]],
|
|
|
512 |
latents = latents * self.scheduler.init_noise_sigma
|
513 |
return latents, image_latents
|
514 |
|
515 |
+
# Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline.decode_latents
|
516 |
def decode_latents(self, latents: torch.Tensor) -> torch.Tensor:
|
517 |
latents = latents.permute(0, 2, 1, 3, 4) # [batch_size, num_channels, num_frames, height, width]
|
518 |
latents = 1 / self.vae_scaling_factor_image * latents
|
|
|
611 |
f" {negative_prompt_embeds.shape}."
|
612 |
)
|
613 |
|
614 |
+
# Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline.fuse_qkv_projections
|
615 |
def fuse_qkv_projections(self) -> None:
|
616 |
r"""Enables fused QKV projections."""
|
617 |
self.fusing_transformer = True
|
618 |
self.transformer.fuse_qkv_projections()
|
619 |
|
620 |
+
# Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline.unfuse_qkv_projections
|
621 |
def unfuse_qkv_projections(self) -> None:
|
622 |
r"""Disable QKV projection fusion if enabled."""
|
623 |
if not self.fusing_transformer:
|
|
|
626 |
self.transformer.unfuse_qkv_projections()
|
627 |
self.fusing_transformer = False
|
628 |
|
|
|
629 |
def _prepare_rotary_positional_embeddings(
|
630 |
self,
|
631 |
height: int,
|
|
|
712 |
The height in pixels of the generated image. This is set to 480 by default for the best results.
|
713 |
width (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial):
|
714 |
The width in pixels of the generated image. This is set to 720 by default for the best results.
|
715 |
+
num_frames (`int`, defaults to `49`):
|
716 |
Number of frames to generate. Must be divisible by self.vae_scale_factor_temporal. Generated video will
|
717 |
contain 1 extra frame because ConsisID is conditioned with (num_seconds * fps + 1) frames where
|
718 |
num_seconds is 6 and fps is 4. However, since videos can be saved at any fps, the only condition that
|
|
|
724 |
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
725 |
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
726 |
passed will be used. Must be in descending order.
|
727 |
+
guidance_scale (`float`, *optional*, defaults to 6):
|
728 |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
729 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
730 |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
|
|
831 |
self._num_timesteps = len(timesteps)
|
832 |
|
833 |
# 5. Prepare latents
|
834 |
+
is_kps = getattr(self.transformer.config, "is_kps", False)
|
835 |
+
kps_cond = kps_cond if is_kps else None
|
836 |
if kps_cond is not None:
|
837 |
kps_cond = draw_kps(image, kps_cond)
|
838 |
kps_cond = self.video_processor.preprocess(kps_cond, height=height, width=width).to(
|
|
|
949 |
if not return_dict:
|
950 |
return (video,)
|
951 |
|
952 |
+
return ConsisIDPipelineOutput(frames=video)
|
models/transformer_consisid.py
CHANGED
@@ -12,39 +12,340 @@
|
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
|
15 |
-
from typing import Any, Dict, Optional, Tuple, Union
|
16 |
-
import os
|
17 |
-
import sys
|
18 |
-
import json
|
19 |
import glob
|
|
|
|
|
|
|
|
|
20 |
|
21 |
import torch
|
22 |
from torch import nn
|
23 |
-
from einops import rearrange, reduce
|
24 |
|
25 |
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
26 |
from diffusers.loaders import PeftAdapterMixin
|
27 |
-
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
|
28 |
-
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
29 |
from diffusers.models.attention import Attention, FeedForward
|
30 |
-
from diffusers.models.attention_processor import
|
|
|
|
|
|
|
|
|
31 |
from diffusers.models.embeddings import CogVideoXPatchEmbed, TimestepEmbedding, Timesteps
|
32 |
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
33 |
from diffusers.models.modeling_utils import ModelMixin
|
34 |
from diffusers.models.normalization import AdaLayerNorm, CogVideoXLayerNormZero
|
|
|
|
|
35 |
|
36 |
-
import os
|
37 |
-
import sys
|
38 |
-
current_file_path = os.path.abspath(__file__)
|
39 |
-
project_roots = [os.path.dirname(current_file_path)]
|
40 |
-
for project_root in project_roots:
|
41 |
-
sys.path.insert(0, project_root) if project_root not in sys.path else None
|
42 |
-
|
43 |
-
from local_facial_extractor import LocalFacialExtractor, PerceiverCrossAttention
|
44 |
|
45 |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
46 |
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
@maybe_allow_in_graph
|
49 |
class ConsisIDBlock(nn.Module):
|
50 |
r"""
|
@@ -189,7 +490,7 @@ class ConsisIDTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
|
|
189 |
dropout (`float`, defaults to `0.0`):
|
190 |
The dropout probability to use.
|
191 |
attention_bias (`bool`, defaults to `True`):
|
192 |
-
Whether
|
193 |
sample_width (`int`, defaults to `90`):
|
194 |
The width of the input latents.
|
195 |
sample_height (`int`, defaults to `60`):
|
@@ -210,7 +511,7 @@ class ConsisIDTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
|
|
210 |
timestep_activation_fn (`str`, defaults to `"silu"`):
|
211 |
Activation function to use when generating the timestep embeddings.
|
212 |
norm_elementwise_affine (`bool`, defaults to `True`):
|
213 |
-
Whether
|
214 |
norm_eps (`float`, defaults to `1e-5`):
|
215 |
The epsilon value to use in normalization layers.
|
216 |
spatial_interpolation_scale (`float`, defaults to `1.875`):
|
@@ -218,31 +519,57 @@ class ConsisIDTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
|
|
218 |
temporal_interpolation_scale (`float`, defaults to `1.0`):
|
219 |
Scaling factor to apply in 3D positional embeddings across temporal dimensions.
|
220 |
is_train_face (`bool`, defaults to `False`):
|
221 |
-
Whether to use enable the identity-preserving module during the training process.
|
222 |
-
|
223 |
is_kps (`bool`, defaults to `False`):
|
224 |
-
Whether to enable keypoint for global facial extractor.
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
of the
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
local_face_scale (`float`, defaults to `1.0`):
|
243 |
-
A scaling factor used to adjust the importance of local facial features
|
244 |
-
|
245 |
-
high frequency face-related content.
|
246 |
"""
|
247 |
|
248 |
_supports_gradient_checkpointing = True
|
@@ -277,10 +604,18 @@ class ConsisIDTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
|
|
277 |
use_learned_positional_embeddings: bool = False,
|
278 |
is_train_face: bool = False,
|
279 |
is_kps: bool = False,
|
280 |
-
cross_attn_interval: int =
|
281 |
-
|
282 |
-
|
283 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
local_face_scale: float = 1.0,
|
285 |
):
|
286 |
super().__init__()
|
@@ -352,14 +687,25 @@ class ConsisIDTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
|
|
352 |
|
353 |
# 5. Define identity-preserving config
|
354 |
if is_train_face:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
355 |
self.inner_dim = inner_dim
|
356 |
self.cross_attn_interval = cross_attn_interval
|
357 |
-
self.
|
358 |
-
self.
|
359 |
-
self.
|
360 |
-
self.
|
361 |
-
self.LFE_final_output_dim = int(self.inner_dim / 3 * 2)
|
362 |
self.local_face_scale = local_face_scale
|
|
|
363 |
self._init_face_inputs()
|
364 |
|
365 |
def _set_gradient_checkpointing(self, module, value=False):
|
@@ -367,15 +713,28 @@ class ConsisIDTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
|
|
367 |
|
368 |
def _init_face_inputs(self):
|
369 |
device = self.device
|
370 |
-
weight_dtype =
|
371 |
-
self.local_facial_extractor = LocalFacialExtractor(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
372 |
self.local_facial_extractor.to(device, dtype=weight_dtype)
|
373 |
self.perceiver_cross_attention = nn.ModuleList(
|
374 |
[
|
375 |
PerceiverCrossAttention(
|
376 |
-
dim=self.inner_dim,
|
|
|
|
|
|
|
377 |
).to(device, dtype=weight_dtype)
|
378 |
-
for _ in range(self.
|
379 |
]
|
380 |
)
|
381 |
|
@@ -604,7 +963,7 @@ class ConsisIDTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
|
|
604 |
if not return_dict:
|
605 |
return (output,)
|
606 |
return Transformer2DModelOutput(sample=output)
|
607 |
-
|
608 |
@classmethod
|
609 |
def from_pretrained_cus(cls, pretrained_model_path, subfolder=None, config_path=None, transformer_additional_kwargs={}):
|
610 |
if subfolder:
|
@@ -656,7 +1015,7 @@ class ConsisIDTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
|
|
656 |
model.state_dict()['patch_embed.proj.weight'][:, :, :, :] = state_dict['patch_embed.proj.weight'][:, :model.state_dict()['patch_embed.proj.weight'].size()[1], :, :]
|
657 |
state_dict['patch_embed.proj.weight'] = model.state_dict()['patch_embed.proj.weight']
|
658 |
|
659 |
-
tmp_state_dict = {}
|
660 |
for key in state_dict:
|
661 |
if key in model.state_dict().keys() and model.state_dict()[key].size() == state_dict[key].size():
|
662 |
tmp_state_dict[key] = state_dict[key]
|
@@ -667,20 +1026,20 @@ class ConsisIDTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
|
|
667 |
m, u = model.load_state_dict(state_dict, strict=False)
|
668 |
print(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};")
|
669 |
print(m)
|
670 |
-
|
671 |
params = [p.numel() if "mamba" in n else 0 for n, p in model.named_parameters()]
|
672 |
print(f"### Mamba Parameters: {sum(params) / 1e6} M")
|
673 |
|
674 |
params = [p.numel() if "attn1." in n else 0 for n, p in model.named_parameters()]
|
675 |
print(f"### attn1 Parameters: {sum(params) / 1e6} M")
|
676 |
-
|
677 |
return model
|
678 |
-
|
679 |
if __name__ == '__main__':
|
680 |
device = "cuda:0"
|
681 |
weight_dtype = torch.bfloat16
|
682 |
pretrained_model_name_or_path = "BestWishYsh/ConsisID-preview"
|
683 |
-
|
684 |
transformer_additional_kwargs={
|
685 |
'torch_dtype': weight_dtype,
|
686 |
'revision': None,
|
@@ -690,7 +1049,7 @@ if __name__ == '__main__':
|
|
690 |
'LFE_num_tokens': 32,
|
691 |
'LFE_output_dim': 768,
|
692 |
'LFE_heads': 12,
|
693 |
-
'cross_attn_interval': 2,
|
694 |
}
|
695 |
|
696 |
transformer = ConsisIDTransformer3DModel.from_pretrained_cus(
|
@@ -723,10 +1082,8 @@ if __name__ == '__main__':
|
|
723 |
timestep=timesteps,
|
724 |
image_rotary_emb=image_rotary_emb,
|
725 |
return_dict=False,
|
726 |
-
id_vit_hidden=id_vit_hidden if id_vit_hidden is not None else None,
|
727 |
id_cond=id_cond if id_cond is not None else None,
|
728 |
)[0]
|
729 |
-
|
730 |
print(model_output)
|
731 |
-
# transformer.save_pretrained(os.path.join("./test_ckpt", "transformer"))
|
732 |
-
|
|
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
|
|
|
|
|
|
|
|
|
15 |
import glob
|
16 |
+
import json
|
17 |
+
import math
|
18 |
+
import os
|
19 |
+
from typing import Any, Dict, Optional, Tuple, Union
|
20 |
|
21 |
import torch
|
22 |
from torch import nn
|
|
|
23 |
|
24 |
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
25 |
from diffusers.loaders import PeftAdapterMixin
|
|
|
|
|
26 |
from diffusers.models.attention import Attention, FeedForward
|
27 |
+
from diffusers.models.attention_processor import (
|
28 |
+
AttentionProcessor,
|
29 |
+
CogVideoXAttnProcessor2_0,
|
30 |
+
FusedCogVideoXAttnProcessor2_0,
|
31 |
+
)
|
32 |
from diffusers.models.embeddings import CogVideoXPatchEmbed, TimestepEmbedding, Timesteps
|
33 |
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
34 |
from diffusers.models.modeling_utils import ModelMixin
|
35 |
from diffusers.models.normalization import AdaLayerNorm, CogVideoXLayerNormZero
|
36 |
+
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
|
37 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
41 |
|
42 |
|
43 |
+
def ConsisIDFeedForward(dim, mult=4):
|
44 |
+
"""
|
45 |
+
Creates a consistent ID feedforward block consisting of layer normalization, two linear layers, and a GELU
|
46 |
+
activation.
|
47 |
+
|
48 |
+
Args:
|
49 |
+
dim (int): The input dimension of the tensor.
|
50 |
+
mult (int, optional): Multiplier for the inner dimension. Default is 4.
|
51 |
+
|
52 |
+
Returns:
|
53 |
+
nn.Sequential: A sequence of layers comprising LayerNorm, Linear layers, and GELU.
|
54 |
+
"""
|
55 |
+
inner_dim = int(dim * mult)
|
56 |
+
return nn.Sequential(
|
57 |
+
nn.LayerNorm(dim),
|
58 |
+
nn.Linear(dim, inner_dim, bias=False),
|
59 |
+
nn.GELU(),
|
60 |
+
nn.Linear(inner_dim, dim, bias=False),
|
61 |
+
)
|
62 |
+
|
63 |
+
|
64 |
+
def reshape_tensor(x, heads):
|
65 |
+
"""
|
66 |
+
Reshapes the input tensor for multi-head attention.
|
67 |
+
|
68 |
+
Args:
|
69 |
+
x (torch.Tensor): The input tensor with shape (batch_size, length, width).
|
70 |
+
heads (int): The number of attention heads.
|
71 |
+
|
72 |
+
Returns:
|
73 |
+
torch.Tensor: The reshaped tensor, with shape (batch_size, heads, length, width).
|
74 |
+
"""
|
75 |
+
bs, length, width = x.shape
|
76 |
+
x = x.view(bs, length, heads, -1)
|
77 |
+
x = x.transpose(1, 2)
|
78 |
+
x = x.reshape(bs, heads, length, -1)
|
79 |
+
return x
|
80 |
+
|
81 |
+
|
82 |
+
class PerceiverAttention(nn.Module):
|
83 |
+
"""
|
84 |
+
Implements the Perceiver attention mechanism with multi-head attention.
|
85 |
+
|
86 |
+
This layer takes two inputs: 'x' (image features) and 'latents' (latent features), applying multi-head attention to
|
87 |
+
both and producing an output tensor with the same dimension as the input tensor 'x'.
|
88 |
+
|
89 |
+
Args:
|
90 |
+
dim (int): The input dimension.
|
91 |
+
dim_head (int, optional): The dimension of each attention head. Default is 64.
|
92 |
+
heads (int, optional): The number of attention heads. Default is 8.
|
93 |
+
kv_dim (int, optional): The key-value dimension. If None, `dim` is used for both keys and values.
|
94 |
+
"""
|
95 |
+
|
96 |
+
def __init__(self, *, dim, dim_head=64, heads=8, kv_dim=None):
|
97 |
+
super().__init__()
|
98 |
+
self.scale = dim_head**-0.5
|
99 |
+
self.dim_head = dim_head
|
100 |
+
self.heads = heads
|
101 |
+
inner_dim = dim_head * heads
|
102 |
+
|
103 |
+
self.norm1 = nn.LayerNorm(dim if kv_dim is None else kv_dim)
|
104 |
+
self.norm2 = nn.LayerNorm(dim)
|
105 |
+
|
106 |
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
107 |
+
self.to_kv = nn.Linear(dim if kv_dim is None else kv_dim, inner_dim * 2, bias=False)
|
108 |
+
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
109 |
+
|
110 |
+
def forward(self, x, latents):
|
111 |
+
"""
|
112 |
+
Forward pass for Perceiver attention.
|
113 |
+
|
114 |
+
Args:
|
115 |
+
x (torch.Tensor): Image features tensor with shape (batch_size, num_pixels, D).
|
116 |
+
latents (torch.Tensor): Latent features tensor with shape (batch_size, num_latents, D).
|
117 |
+
|
118 |
+
Returns:
|
119 |
+
torch.Tensor: Output tensor after applying attention and transformation.
|
120 |
+
"""
|
121 |
+
# Apply normalization
|
122 |
+
x = self.norm1(x)
|
123 |
+
latents = self.norm2(latents)
|
124 |
+
|
125 |
+
b, seq_len, _ = latents.shape # Get batch size and sequence length
|
126 |
+
|
127 |
+
# Compute query, key, and value matrices
|
128 |
+
q = self.to_q(latents)
|
129 |
+
kv_input = torch.cat((x, latents), dim=-2)
|
130 |
+
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
131 |
+
|
132 |
+
# Reshape the tensors for multi-head attention
|
133 |
+
q = reshape_tensor(q, self.heads)
|
134 |
+
k = reshape_tensor(k, self.heads)
|
135 |
+
v = reshape_tensor(v, self.heads)
|
136 |
+
|
137 |
+
# attention
|
138 |
+
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
139 |
+
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
|
140 |
+
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
141 |
+
out = weight @ v
|
142 |
+
|
143 |
+
# Reshape and return the final output
|
144 |
+
out = out.permute(0, 2, 1, 3).reshape(b, seq_len, -1)
|
145 |
+
|
146 |
+
return self.to_out(out)
|
147 |
+
|
148 |
+
|
149 |
+
class LocalFacialExtractor(nn.Module):
|
150 |
+
def __init__(
|
151 |
+
self,
|
152 |
+
id_dim=1280,
|
153 |
+
vit_dim=1024,
|
154 |
+
depth=10,
|
155 |
+
dim_head=64,
|
156 |
+
heads=16,
|
157 |
+
num_id_token=5,
|
158 |
+
num_queries=32,
|
159 |
+
output_dim=2048,
|
160 |
+
ff_mult=4,
|
161 |
+
):
|
162 |
+
"""
|
163 |
+
Initializes the LocalFacialExtractor class.
|
164 |
+
|
165 |
+
Parameters:
|
166 |
+
- id_dim (int): The dimensionality of id features.
|
167 |
+
- vit_dim (int): The dimensionality of vit features.
|
168 |
+
- depth (int): Total number of PerceiverAttention and ConsisIDFeedForward layers.
|
169 |
+
- dim_head (int): Dimensionality of each attention head.
|
170 |
+
- heads (int): Number of attention heads.
|
171 |
+
- num_id_token (int): Number of tokens used for identity features.
|
172 |
+
- num_queries (int): Number of query tokens for the latent representation.
|
173 |
+
- output_dim (int): Output dimension after projection.
|
174 |
+
- ff_mult (int): Multiplier for the feed-forward network hidden dimension.
|
175 |
+
"""
|
176 |
+
super().__init__()
|
177 |
+
|
178 |
+
# Storing identity token and query information
|
179 |
+
self.num_id_token = num_id_token
|
180 |
+
self.vit_dim = vit_dim
|
181 |
+
self.num_queries = num_queries
|
182 |
+
assert depth % 5 == 0
|
183 |
+
self.depth = depth // 5
|
184 |
+
scale = vit_dim**-0.5
|
185 |
+
|
186 |
+
# Learnable latent query embeddings
|
187 |
+
self.latents = nn.Parameter(torch.randn(1, num_queries, vit_dim) * scale)
|
188 |
+
# Projection layer to map the latent output to the desired dimension
|
189 |
+
self.proj_out = nn.Parameter(scale * torch.randn(vit_dim, output_dim))
|
190 |
+
|
191 |
+
# Attention and ConsisIDFeedForward layer stack
|
192 |
+
self.layers = nn.ModuleList([])
|
193 |
+
for _ in range(depth):
|
194 |
+
self.layers.append(
|
195 |
+
nn.ModuleList(
|
196 |
+
[
|
197 |
+
PerceiverAttention(dim=vit_dim, dim_head=dim_head, heads=heads), # Perceiver Attention layer
|
198 |
+
ConsisIDFeedForward(dim=vit_dim, mult=ff_mult), # ConsisIDFeedForward layer
|
199 |
+
]
|
200 |
+
)
|
201 |
+
)
|
202 |
+
|
203 |
+
# Mappings for each of the 5 different ViT features
|
204 |
+
for i in range(5):
|
205 |
+
setattr(
|
206 |
+
self,
|
207 |
+
f"mapping_{i}",
|
208 |
+
nn.Sequential(
|
209 |
+
nn.Linear(vit_dim, vit_dim),
|
210 |
+
nn.LayerNorm(vit_dim),
|
211 |
+
nn.LeakyReLU(),
|
212 |
+
nn.Linear(vit_dim, vit_dim),
|
213 |
+
nn.LayerNorm(vit_dim),
|
214 |
+
nn.LeakyReLU(),
|
215 |
+
nn.Linear(vit_dim, vit_dim),
|
216 |
+
),
|
217 |
+
)
|
218 |
+
|
219 |
+
# Mapping for identity embedding vectors
|
220 |
+
self.id_embedding_mapping = nn.Sequential(
|
221 |
+
nn.Linear(id_dim, vit_dim),
|
222 |
+
nn.LayerNorm(vit_dim),
|
223 |
+
nn.LeakyReLU(),
|
224 |
+
nn.Linear(vit_dim, vit_dim),
|
225 |
+
nn.LayerNorm(vit_dim),
|
226 |
+
nn.LeakyReLU(),
|
227 |
+
nn.Linear(vit_dim, vit_dim * num_id_token),
|
228 |
+
)
|
229 |
+
|
230 |
+
def forward(self, x, y):
|
231 |
+
"""
|
232 |
+
Forward pass for LocalFacialExtractor.
|
233 |
+
|
234 |
+
Parameters:
|
235 |
+
- x (Tensor): The input identity embedding tensor of shape (batch_size, id_dim).
|
236 |
+
- y (list of Tensor): A list of 5 visual feature tensors each of shape (batch_size, vit_dim).
|
237 |
+
|
238 |
+
Returns:
|
239 |
+
- Tensor: The extracted latent features of shape (batch_size, num_queries, output_dim).
|
240 |
+
"""
|
241 |
+
|
242 |
+
# Repeat latent queries for the batch size
|
243 |
+
latents = self.latents.repeat(x.size(0), 1, 1)
|
244 |
+
|
245 |
+
# Map the identity embedding to tokens
|
246 |
+
x = self.id_embedding_mapping(x)
|
247 |
+
x = x.reshape(-1, self.num_id_token, self.vit_dim)
|
248 |
+
|
249 |
+
# Concatenate identity tokens with the latent queries
|
250 |
+
latents = torch.cat((latents, x), dim=1)
|
251 |
+
|
252 |
+
# Process each of the 5 visual feature inputs
|
253 |
+
for i in range(5):
|
254 |
+
vit_feature = getattr(self, f"mapping_{i}")(y[i])
|
255 |
+
ctx_feature = torch.cat((x, vit_feature), dim=1)
|
256 |
+
|
257 |
+
# Pass through the PerceiverAttention and ConsisIDFeedForward layers
|
258 |
+
for attn, ff in self.layers[i * self.depth : (i + 1) * self.depth]:
|
259 |
+
latents = attn(ctx_feature, latents) + latents
|
260 |
+
latents = ff(latents) + latents
|
261 |
+
|
262 |
+
# Retain only the query latents
|
263 |
+
latents = latents[:, : self.num_queries]
|
264 |
+
# Project the latents to the output dimension
|
265 |
+
latents = latents @ self.proj_out
|
266 |
+
return latents
|
267 |
+
|
268 |
+
|
269 |
+
class PerceiverCrossAttention(nn.Module):
|
270 |
+
"""
|
271 |
+
|
272 |
+
Args:
|
273 |
+
dim (int): Dimension of the input latent and output. Default is 3072.
|
274 |
+
dim_head (int): Dimension of each attention head. Default is 128.
|
275 |
+
heads (int): Number of attention heads. Default is 16.
|
276 |
+
kv_dim (int): Dimension of the key/value input, allowing flexible cross-attention. Default is 2048.
|
277 |
+
|
278 |
+
Attributes:
|
279 |
+
scale (float): Scaling factor used in dot-product attention for numerical stability.
|
280 |
+
norm1 (nn.LayerNorm): Layer normalization applied to the input image features.
|
281 |
+
norm2 (nn.LayerNorm): Layer normalization applied to the latent features.
|
282 |
+
to_q (nn.Linear): Linear layer for projecting the latent features into queries.
|
283 |
+
to_kv (nn.Linear): Linear layer for projecting the input features into keys and values.
|
284 |
+
to_out (nn.Linear): Linear layer for outputting the final result after attention.
|
285 |
+
|
286 |
+
"""
|
287 |
+
|
288 |
+
def __init__(self, *, dim=3072, dim_head=128, heads=16, kv_dim=2048):
|
289 |
+
super().__init__()
|
290 |
+
self.scale = dim_head**-0.5
|
291 |
+
self.dim_head = dim_head
|
292 |
+
self.heads = heads
|
293 |
+
inner_dim = dim_head * heads
|
294 |
+
|
295 |
+
# Layer normalization to stabilize training
|
296 |
+
self.norm1 = nn.LayerNorm(dim if kv_dim is None else kv_dim)
|
297 |
+
self.norm2 = nn.LayerNorm(dim)
|
298 |
+
|
299 |
+
# Linear transformations to produce queries, keys, and values
|
300 |
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
301 |
+
self.to_kv = nn.Linear(dim if kv_dim is None else kv_dim, inner_dim * 2, bias=False)
|
302 |
+
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
303 |
+
|
304 |
+
def forward(self, x, latents):
|
305 |
+
"""
|
306 |
+
|
307 |
+
Args:
|
308 |
+
x (torch.Tensor): Input image features with shape (batch_size, n1, D), where:
|
309 |
+
- batch_size (b): Number of samples in the batch.
|
310 |
+
- n1: Sequence length (e.g., number of patches or tokens).
|
311 |
+
- D: Feature dimension.
|
312 |
+
|
313 |
+
latents (torch.Tensor): Latent feature representations with shape (batch_size, n2, D), where:
|
314 |
+
- n2: Number of latent elements.
|
315 |
+
|
316 |
+
Returns:
|
317 |
+
torch.Tensor: Attention-modulated features with shape (batch_size, n2, D).
|
318 |
+
|
319 |
+
"""
|
320 |
+
# Apply layer normalization to the input image and latent features
|
321 |
+
x = self.norm1(x)
|
322 |
+
latents = self.norm2(latents)
|
323 |
+
|
324 |
+
b, seq_len, _ = latents.shape
|
325 |
+
|
326 |
+
# Compute queries, keys, and values
|
327 |
+
q = self.to_q(latents)
|
328 |
+
k, v = self.to_kv(x).chunk(2, dim=-1)
|
329 |
+
|
330 |
+
# Reshape tensors to split into attention heads
|
331 |
+
q = reshape_tensor(q, self.heads)
|
332 |
+
k = reshape_tensor(k, self.heads)
|
333 |
+
v = reshape_tensor(v, self.heads)
|
334 |
+
|
335 |
+
# Compute attention weights
|
336 |
+
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
337 |
+
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable scaling than post-division
|
338 |
+
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
339 |
+
|
340 |
+
# Compute the output via weighted combination of values
|
341 |
+
out = weight @ v
|
342 |
+
|
343 |
+
# Reshape and permute to prepare for final linear transformation
|
344 |
+
out = out.permute(0, 2, 1, 3).reshape(b, seq_len, -1)
|
345 |
+
|
346 |
+
return self.to_out(out)
|
347 |
+
|
348 |
+
|
349 |
@maybe_allow_in_graph
|
350 |
class ConsisIDBlock(nn.Module):
|
351 |
r"""
|
|
|
490 |
dropout (`float`, defaults to `0.0`):
|
491 |
The dropout probability to use.
|
492 |
attention_bias (`bool`, defaults to `True`):
|
493 |
+
Whether to use bias in the attention projection layers.
|
494 |
sample_width (`int`, defaults to `90`):
|
495 |
The width of the input latents.
|
496 |
sample_height (`int`, defaults to `60`):
|
|
|
511 |
timestep_activation_fn (`str`, defaults to `"silu"`):
|
512 |
Activation function to use when generating the timestep embeddings.
|
513 |
norm_elementwise_affine (`bool`, defaults to `True`):
|
514 |
+
Whether to use elementwise affine in normalization layers.
|
515 |
norm_eps (`float`, defaults to `1e-5`):
|
516 |
The epsilon value to use in normalization layers.
|
517 |
spatial_interpolation_scale (`float`, defaults to `1.875`):
|
|
|
519 |
temporal_interpolation_scale (`float`, defaults to `1.0`):
|
520 |
Scaling factor to apply in 3D positional embeddings across temporal dimensions.
|
521 |
is_train_face (`bool`, defaults to `False`):
|
522 |
+
Whether to use enable the identity-preserving module during the training process. When set to `True`, the
|
523 |
+
model will focus on identity-preserving tasks.
|
524 |
is_kps (`bool`, defaults to `False`):
|
525 |
+
Whether to enable keypoint for global facial extractor. If `True`, keypoints will be in the model.
|
526 |
+
cross_attn_interval (`int`, defaults to `2`):
|
527 |
+
The interval between cross-attention layers in the Transformer architecture. A larger value may reduce the
|
528 |
+
frequency of cross-attention computations, which can help reduce computational overhead.
|
529 |
+
cross_attn_dim_head (`int`, optional, defaults to `128`):
|
530 |
+
The dimensionality of each attention head in the cross-attention layers of the Transformer architecture. A
|
531 |
+
larger value increases the capacity to attend to more complex patterns, but also increases memory and
|
532 |
+
computation costs.
|
533 |
+
cross_attn_num_heads (`int`, optional, defaults to `16`):
|
534 |
+
The number of attention heads in the cross-attention layers. More heads allow for more parallel attention
|
535 |
+
mechanisms, capturing diverse relationships between different components of the input, but can also
|
536 |
+
increase computational requirements.
|
537 |
+
LFE_id_dim (`int`, optional, defaults to `1280`):
|
538 |
+
The dimensionality of the identity vector used in the Local Facial Extractor (LFE). This vector represents
|
539 |
+
the identity features of a face, which are important for tasks like face recognition and identity
|
540 |
+
preservation across different frames.
|
541 |
+
LFE_vit_dim (`int`, optional, defaults to `1024`):
|
542 |
+
The dimension of the vision transformer (ViT) output used in the Local Facial Extractor (LFE). This value
|
543 |
+
dictates the size of the transformer-generated feature vectors that will be processed for facial feature
|
544 |
+
extraction.
|
545 |
+
LFE_depth (`int`, optional, defaults to `10`):
|
546 |
+
The number of layers in the Local Facial Extractor (LFE). Increasing the depth allows the model to capture
|
547 |
+
more complex representations of facial features, but also increases the computational load.
|
548 |
+
LFE_dim_head (`int`, optional, defaults to `64`):
|
549 |
+
The dimensionality of each attention head in the Local Facial Extractor (LFE). This parameter affects how
|
550 |
+
finely the model can process and focus on different parts of the facial features during the extraction
|
551 |
+
process.
|
552 |
+
LFE_num_heads (`int`, optional, defaults to `16`):
|
553 |
+
The number of attention heads in the Local Facial Extractor (LFE). More heads can improve the model's
|
554 |
+
ability to capture diverse facial features, but at the cost of increased computational complexity.
|
555 |
+
LFE_num_id_token (`int`, optional, defaults to `5`):
|
556 |
+
The number of identity tokens used in the Local Facial Extractor (LFE). This defines how many
|
557 |
+
identity-related tokens the model will process to ensure face identity preservation during feature
|
558 |
+
extraction.
|
559 |
+
LFE_num_querie (`int`, optional, defaults to `32`):
|
560 |
+
The number of query tokens used in the Local Facial Extractor (LFE). These tokens are used to capture
|
561 |
+
high-frequency face-related information that aids in accurate facial feature extraction.
|
562 |
+
LFE_output_dim (`int`, optional, defaults to `2048`):
|
563 |
+
The output dimension of the Local Facial Extractor (LFE). This dimension determines the size of the feature
|
564 |
+
vectors produced by the LFE module, which will be used for subsequent tasks such as face recognition or
|
565 |
+
tracking.
|
566 |
+
LFE_ff_mult (`int`, optional, defaults to `4`):
|
567 |
+
The multiplication factor applied to the feed-forward network's hidden layer size in the Local Facial
|
568 |
+
Extractor (LFE). A higher value increases the model's capacity to learn more complex facial feature
|
569 |
+
transformations, but also increases the computation and memory requirements.
|
570 |
local_face_scale (`float`, defaults to `1.0`):
|
571 |
+
A scaling factor used to adjust the importance of local facial features in the model. This can influence
|
572 |
+
how strongly the model focuses on high frequency face-related content.
|
|
|
573 |
"""
|
574 |
|
575 |
_supports_gradient_checkpointing = True
|
|
|
604 |
use_learned_positional_embeddings: bool = False,
|
605 |
is_train_face: bool = False,
|
606 |
is_kps: bool = False,
|
607 |
+
cross_attn_interval: int = 2,
|
608 |
+
cross_attn_dim_head: int = 128,
|
609 |
+
cross_attn_num_heads: int = 16,
|
610 |
+
LFE_id_dim: int = 1280,
|
611 |
+
LFE_vit_dim: int = 1024,
|
612 |
+
LFE_depth: int = 10,
|
613 |
+
LFE_dim_head: int = 64,
|
614 |
+
LFE_num_heads: int = 16,
|
615 |
+
LFE_num_id_token: int = 5,
|
616 |
+
LFE_num_querie: int = 32,
|
617 |
+
LFE_output_dim: int = 2048,
|
618 |
+
LFE_ff_mult: int = 4,
|
619 |
local_face_scale: float = 1.0,
|
620 |
):
|
621 |
super().__init__()
|
|
|
687 |
|
688 |
# 5. Define identity-preserving config
|
689 |
if is_train_face:
|
690 |
+
# LFE configs
|
691 |
+
self.LFE_id_dim = LFE_id_dim
|
692 |
+
self.LFE_vit_dim = LFE_vit_dim
|
693 |
+
self.LFE_depth = LFE_depth
|
694 |
+
self.LFE_dim_head = LFE_dim_head
|
695 |
+
self.LFE_num_heads = LFE_num_heads
|
696 |
+
self.LFE_num_id_token = LFE_num_id_token
|
697 |
+
self.LFE_num_querie = LFE_num_querie
|
698 |
+
self.LFE_output_dim = LFE_output_dim
|
699 |
+
self.LFE_ff_mult = LFE_ff_mult
|
700 |
+
# cross configs
|
701 |
self.inner_dim = inner_dim
|
702 |
self.cross_attn_interval = cross_attn_interval
|
703 |
+
self.num_cross_attn = num_layers // cross_attn_interval
|
704 |
+
self.cross_attn_dim_head = cross_attn_dim_head
|
705 |
+
self.cross_attn_num_heads = cross_attn_num_heads
|
706 |
+
self.cross_attn_kv_dim = int(self.inner_dim / 3 * 2)
|
|
|
707 |
self.local_face_scale = local_face_scale
|
708 |
+
# face modules
|
709 |
self._init_face_inputs()
|
710 |
|
711 |
def _set_gradient_checkpointing(self, module, value=False):
|
|
|
713 |
|
714 |
def _init_face_inputs(self):
|
715 |
device = self.device
|
716 |
+
weight_dtype = self.dtype
|
717 |
+
self.local_facial_extractor = LocalFacialExtractor(
|
718 |
+
id_dim=self.LFE_id_dim,
|
719 |
+
vit_dim=self.LFE_vit_dim,
|
720 |
+
depth=self.LFE_depth,
|
721 |
+
dim_head=self.LFE_dim_head,
|
722 |
+
heads=self.LFE_num_heads,
|
723 |
+
num_id_token=self.LFE_num_id_token,
|
724 |
+
num_queries=self.LFE_num_querie,
|
725 |
+
output_dim=self.LFE_output_dim,
|
726 |
+
ff_mult=self.LFE_ff_mult,
|
727 |
+
)
|
728 |
self.local_facial_extractor.to(device, dtype=weight_dtype)
|
729 |
self.perceiver_cross_attention = nn.ModuleList(
|
730 |
[
|
731 |
PerceiverCrossAttention(
|
732 |
+
dim=self.inner_dim,
|
733 |
+
dim_head=self.cross_attn_dim_head,
|
734 |
+
heads=self.cross_attn_num_heads,
|
735 |
+
kv_dim=self.cross_attn_kv_dim,
|
736 |
).to(device, dtype=weight_dtype)
|
737 |
+
for _ in range(self.num_cross_attn)
|
738 |
]
|
739 |
)
|
740 |
|
|
|
963 |
if not return_dict:
|
964 |
return (output,)
|
965 |
return Transformer2DModelOutput(sample=output)
|
966 |
+
|
967 |
@classmethod
|
968 |
def from_pretrained_cus(cls, pretrained_model_path, subfolder=None, config_path=None, transformer_additional_kwargs={}):
|
969 |
if subfolder:
|
|
|
1015 |
model.state_dict()['patch_embed.proj.weight'][:, :, :, :] = state_dict['patch_embed.proj.weight'][:, :model.state_dict()['patch_embed.proj.weight'].size()[1], :, :]
|
1016 |
state_dict['patch_embed.proj.weight'] = model.state_dict()['patch_embed.proj.weight']
|
1017 |
|
1018 |
+
tmp_state_dict = {}
|
1019 |
for key in state_dict:
|
1020 |
if key in model.state_dict().keys() and model.state_dict()[key].size() == state_dict[key].size():
|
1021 |
tmp_state_dict[key] = state_dict[key]
|
|
|
1026 |
m, u = model.load_state_dict(state_dict, strict=False)
|
1027 |
print(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};")
|
1028 |
print(m)
|
1029 |
+
|
1030 |
params = [p.numel() if "mamba" in n else 0 for n, p in model.named_parameters()]
|
1031 |
print(f"### Mamba Parameters: {sum(params) / 1e6} M")
|
1032 |
|
1033 |
params = [p.numel() if "attn1." in n else 0 for n, p in model.named_parameters()]
|
1034 |
print(f"### attn1 Parameters: {sum(params) / 1e6} M")
|
1035 |
+
|
1036 |
return model
|
1037 |
+
|
1038 |
if __name__ == '__main__':
|
1039 |
device = "cuda:0"
|
1040 |
weight_dtype = torch.bfloat16
|
1041 |
pretrained_model_name_or_path = "BestWishYsh/ConsisID-preview"
|
1042 |
+
|
1043 |
transformer_additional_kwargs={
|
1044 |
'torch_dtype': weight_dtype,
|
1045 |
'revision': None,
|
|
|
1049 |
'LFE_num_tokens': 32,
|
1050 |
'LFE_output_dim': 768,
|
1051 |
'LFE_heads': 12,
|
1052 |
+
'cross_attn_interval': 2,
|
1053 |
}
|
1054 |
|
1055 |
transformer = ConsisIDTransformer3DModel.from_pretrained_cus(
|
|
|
1082 |
timestep=timesteps,
|
1083 |
image_rotary_emb=image_rotary_emb,
|
1084 |
return_dict=False,
|
1085 |
+
id_vit_hidden=id_vit_hidden if id_vit_hidden is not None else None,
|
1086 |
id_cond=id_cond if id_cond is not None else None,
|
1087 |
)[0]
|
1088 |
+
|
1089 |
print(model_output)
|
|
|
|