Spaces:
Sleeping
Sleeping
File size: 8,205 Bytes
a18d1e2 d0a7bdc a18d1e2 0bb5fec a18d1e2 0bb5fec a18d1e2 f6a6a4d a18d1e2 0bb5fec a18d1e2 0bb5fec a18d1e2 0bb5fec a18d1e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
import gradio as gr
from mistralai import Mistral
from langchain_community.tools import TavilySearchResults, JinaSearch
import concurrent.futures
import json
import os
import arxiv
from docx import Document
from PIL import Image
import io
import base64
# Set environment variables for Tavily API
os.environ["TAVILY_API_KEY"] = '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'
# Mistral client API keys
client_1 = Mistral(api_key='eLES5HrVqduOE1OSWG6C5XyEUeR7qpXQ')
client_2 = Mistral(api_key='VPqG8sCy3JX5zFkpdiZ7bRSnTLKwngFJ')
client_3 = Mistral(api_key='cvyu5Rdk2lS026epqL4VB6BMPUcUMSgt')
# Function to encode images in base64
def encode_image_bytes(image_bytes):
return base64.b64encode(image_bytes).decode('utf-8')
# Function to decode base64 images
def decode_base64_image(base64_str):
image_data = base64.b64decode(base64_str)
return Image.open(io.BytesIO(image_data))
# Process text and images provided by the user
def process_input(text_input, images_base64):
images = []
if images_base64:
for img_data in images_base64:
try:
img = decode_base64_image(img_data)
buffered = io.BytesIO()
img.save(buffered, format="JPEG")
image_base64 = encode_image_bytes(buffered.getvalue())
images.append({"type": "image_url", "image_url": f"data:image/jpeg;base64,{image_base64}"})
except Exception as e:
print(f"Error decoding image: {e}")
return text_input, images
# Search setup function
def setup_search(question):
try:
tavily_tool = TavilySearchResults(max_results=20)
results = tavily_tool.invoke({"query": f"{question}"})
if isinstance(results, list):
return results, 'tavily_tool'
except Exception as e:
print("Error with TavilySearchResults:", e)
try:
jina_tool = JinaSearch()
results = json.loads(str(jina_tool.invoke({"query": f"{question}"})))
if isinstance(results, list):
return results, 'jina_tool'
except Exception as e:
print("Error with JinaSearch:", e)
return [], ''
# Function to extract key topics
def extract_key_topics(content, images=[]):
prompt = f"""
Extract the primary themes from the text below. List each theme in as few words as possible, focusing on essential concepts only. Format as a concise, unordered list with no extraneous words.
```{content}```
LIST IN ENGLISH:
-
"""
message_content = [{"type": "text", "text": prompt}] + images
response = client_1.chat.complete(
model="pixtral-12b-2409",
messages=[{"role": "user", "content": message_content}]
)
return response.choices[0].message.content
def search_relevant_articles_arxiv(key_topics, max_articles=100):
articles_by_topic = {}
final_topics = []
def fetch_articles_for_topic(topic):
topic_articles = []
try:
# Fetch articles using arxiv.py based on the topic
search = arxiv.Search(
query=topic,
max_results=max_articles,
sort_by=arxiv.SortCriterion.Relevance
)
for result in search.results():
article_data = {
"title": result.title,
"doi": result.doi,
"summary": result.summary,
"url": result.entry_id,
"pdf_url": result.pdf_url
}
topic_articles.append(article_data)
final_topics.append(topic)
except Exception as e:
print(f"Error fetching articles for topic '{topic}': {e}")
return topic, topic_articles
with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
# Use threads to fetch articles for each topic
futures = {executor.submit(fetch_articles_for_topic, topic): topic for topic in key_topics}
for future in concurrent.futures.as_completed(futures):
topic, articles = future.result()
if articles:
articles_by_topic[topic] = articles
return articles_by_topic, list(set(final_topics))
# Initialize process for text analysis
def init(content, images=[]):
key_topics = extract_key_topics(content, images)
key_topics = [topic.strip("- ") for topic in key_topics.split("\n") if topic]
articles_by_topic, final_topics = search_relevant_articles_arxiv(key_topics)
result_json = json.dumps(articles_by_topic, indent=4)
return final_topics, result_json
# Summarization function
def process_article_for_summary(text, images=[], compression_percentage=30):
prompt = f"""
You are a commentator.
# article:
{text}
# Instructions:
## Summarize IN RUSSIAN:
In clear and concise language, summarize the key points and themes presented in the article by cutting it by {compression_percentage} percent in the markdown format.
"""
message_content = [{"type": "text", "text": prompt}] + images
response = client_3.chat.complete(
model="pixtral-12b-2409",
messages=[{"role": "user", "content": message_content}]
)
return response.choices[0].message.content
# Question answering function
def ask_question_to_mistral(text, question, images=[]):
prompt = f"Answer the following question without mentioning it or repeating the original text on which the question is asked in style markdown.IN RUSSIAN:\nQuestion: {question}\n\nText:\n{text}"
message_content = [{"type": "text", "text": prompt}] + images
search_tool, tool = setup_search(question)
context = ''
if search_tool:
if tool == 'tavily_tool':
for result in search_tool:
context += f"{result.get('url', 'N/A')} : {result.get('content', 'No content')} \n"
elif tool == 'jina_tool':
for result in search_tool:
context += f"{result.get('link', 'N/A')} : {result.get('snippet', 'No snippet')} : {result.get('content', 'No content')} \n"
response = client_2.chat.complete(
model="pixtral-12b-2409",
messages=[{"role": "user", "content": f'{message_content}\n\nAdditional Context from Web Search:\n{context}'}]
)
return response.choices[0].message.content
# Gradio interface
def gradio_interface(text_input, images_base64, task, question, compression_percentage):
text, images = process_input(text_input, images_base64)
topics, articles_json = init(text, images)
if task == "Summarization":
summary = process_article_for_summary(text, images, compression_percentage)
return {"Topics": topics, "Summary": summary, "Articles": articles_json}
elif task == "Question Answering":
if question:
answer = ask_question_to_mistral(text, question, images)
return {"Topics": topics, "Answer": answer, "Articles": articles_json}
else:
return {"Topics": topics, "Answer": "No question provided.", "Articles": articles_json}
with gr.Blocks() as demo:
gr.Markdown("## Text Analysis: Summarization or Question Answering")
with gr.Row():
text_input = gr.Textbox(label="Input Text")
images_base64 = gr.Textbox(label="Base64 Images (comma-separated, if any)", placeholder="data:image/jpeg;base64,...", lines=2)
task_choice = gr.Radio(["Summarization", "Question Answering"], label="Select Task")
question_input = gr.Textbox(label="Question (for Question Answering)", visible=False)
compression_input = gr.Slider(label="Compression Percentage (for Summarization)", minimum=10, maximum=90, value=30, visible=False)
task_choice.change(lambda choice: (gr.update(visible=choice == "Question Answering"),
gr.update(visible=choice == "Summarization")),
inputs=task_choice, outputs=[question_input, compression_input])
with gr.Row():
result_output = gr.JSON(label="Results")
submit_button = gr.Button("Submit")
submit_button.click(gradio_interface, [text_input, images_base64, task_choice, question_input, compression_input], result_output)
demo.launch()
|