Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,23 +4,11 @@ from langchain_community.tools import TavilySearchResults, JinaSearch
|
|
4 |
import concurrent.futures
|
5 |
import json
|
6 |
import os
|
7 |
-
|
8 |
-
UPLOAD_FOLDER = 'uploads'
|
9 |
-
if not os.path.exists(UPLOAD_FOLDER):
|
10 |
-
os.makedirs(UPLOAD_FOLDER)
|
11 |
-
UPLOAD_FOLDER = 'static'
|
12 |
-
if not os.path.exists(UPLOAD_FOLDER):
|
13 |
-
os.makedirs(UPLOAD_FOLDER)
|
14 |
-
|
15 |
import arxiv
|
16 |
-
import fitz # PyMuPDF
|
17 |
from docx import Document
|
18 |
from PIL import Image
|
19 |
import io
|
20 |
import base64
|
21 |
-
import mimetypes
|
22 |
-
|
23 |
-
|
24 |
|
25 |
# Set environment variables for Tavily API
|
26 |
os.environ["TAVILY_API_KEY"] = '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'
|
@@ -34,55 +22,26 @@ client_3 = Mistral(api_key='cvyu5Rdk2lS026epqL4VB6BMPUcUMSgt')
|
|
34 |
def encode_image_bytes(image_bytes):
|
35 |
return base64.b64encode(image_bytes).decode('utf-8')
|
36 |
|
37 |
-
#
|
38 |
-
def
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
elif mime_type == 'text/plain':
|
45 |
-
return process_txt(file_path)
|
46 |
-
else:
|
47 |
-
print(f"Unsupported file type: {mime_type}")
|
48 |
-
return None, []
|
49 |
-
|
50 |
-
def process_pdf(file_path):
|
51 |
-
text = ""
|
52 |
-
images = []
|
53 |
-
pdf_document = fitz.open(file_path)
|
54 |
-
for page_num in range(len(pdf_document)):
|
55 |
-
text += pdf_document[page_num].get_text("text")
|
56 |
-
for _, img in enumerate(pdf_document.get_page_images(page_num, full=True)):
|
57 |
-
xref = img[0]
|
58 |
-
base_image = pdf_document.extract_image(xref)
|
59 |
-
image_bytes = base_image["image"]
|
60 |
-
image_ext = base_image["ext"]
|
61 |
-
base64_image = encode_image_bytes(image_bytes)
|
62 |
-
image_data = f"data:image/{image_ext};base64,{base64_image}"
|
63 |
-
images.append({"type": "image_url", "image_url": image_data})
|
64 |
-
return text, images
|
65 |
-
|
66 |
-
def process_docx(file_path):
|
67 |
-
doc = Document(file_path)
|
68 |
-
text = ""
|
69 |
images = []
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
def process_txt(file_path):
|
83 |
-
with open(file_path, "r", encoding="utf-8") as file:
|
84 |
-
text = file.read()
|
85 |
-
return text, []
|
86 |
|
87 |
# Search setup function
|
88 |
def setup_search(question):
|
@@ -204,11 +163,8 @@ def ask_question_to_mistral(text, question, images=[]):
|
|
204 |
return response.choices[0].message.content
|
205 |
|
206 |
# Gradio interface
|
207 |
-
def gradio_interface(
|
208 |
-
|
209 |
-
text, images = process_file(file.name)
|
210 |
-
else:
|
211 |
-
text, images = "", []
|
212 |
|
213 |
topics, articles_json = init(text, images)
|
214 |
|
@@ -225,7 +181,8 @@ def gradio_interface(file, task, question, compression_percentage):
|
|
225 |
with gr.Blocks() as demo:
|
226 |
gr.Markdown("## Text Analysis: Summarization or Question Answering")
|
227 |
with gr.Row():
|
228 |
-
|
|
|
229 |
task_choice = gr.Radio(["Summarization", "Question Answering"], label="Select Task")
|
230 |
question_input = gr.Textbox(label="Question (for Question Answering)", visible=False)
|
231 |
compression_input = gr.Slider(label="Compression Percentage (for Summarization)", minimum=10, maximum=90, value=30, visible=False)
|
@@ -238,6 +195,6 @@ with gr.Blocks() as demo:
|
|
238 |
result_output = gr.JSON(label="Results")
|
239 |
|
240 |
submit_button = gr.Button("Submit")
|
241 |
-
submit_button.click(gradio_interface, [
|
242 |
|
243 |
demo.launch()
|
|
|
4 |
import concurrent.futures
|
5 |
import json
|
6 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
import arxiv
|
|
|
8 |
from docx import Document
|
9 |
from PIL import Image
|
10 |
import io
|
11 |
import base64
|
|
|
|
|
|
|
12 |
|
13 |
# Set environment variables for Tavily API
|
14 |
os.environ["TAVILY_API_KEY"] = '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'
|
|
|
22 |
def encode_image_bytes(image_bytes):
|
23 |
return base64.b64encode(image_bytes).decode('utf-8')
|
24 |
|
25 |
+
# Function to decode base64 images
|
26 |
+
def decode_base64_image(base64_str):
|
27 |
+
image_data = base64.b64decode(base64_str)
|
28 |
+
return Image.open(io.BytesIO(image_data))
|
29 |
+
|
30 |
+
# Process text and images provided by the user
|
31 |
+
def process_input(text_input, images_base64):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
images = []
|
33 |
+
if images_base64:
|
34 |
+
for img_data in images_base64:
|
35 |
+
try:
|
36 |
+
img = decode_base64_image(img_data)
|
37 |
+
buffered = io.BytesIO()
|
38 |
+
img.save(buffered, format="JPEG")
|
39 |
+
image_base64 = encode_image_bytes(buffered.getvalue())
|
40 |
+
images.append({"type": "image_url", "image_url": f"data:image/jpeg;base64,{image_base64}"})
|
41 |
+
except Exception as e:
|
42 |
+
print(f"Error decoding image: {e}")
|
43 |
+
|
44 |
+
return text_input, images
|
|
|
|
|
|
|
|
|
45 |
|
46 |
# Search setup function
|
47 |
def setup_search(question):
|
|
|
163 |
return response.choices[0].message.content
|
164 |
|
165 |
# Gradio interface
|
166 |
+
def gradio_interface(text_input, images_base64, task, question, compression_percentage):
|
167 |
+
text, images = process_input(text_input, images_base64)
|
|
|
|
|
|
|
168 |
|
169 |
topics, articles_json = init(text, images)
|
170 |
|
|
|
181 |
with gr.Blocks() as demo:
|
182 |
gr.Markdown("## Text Analysis: Summarization or Question Answering")
|
183 |
with gr.Row():
|
184 |
+
text_input = gr.Textbox(label="Input Text")
|
185 |
+
images_base64 = gr.Textbox(label="Base64 Images (comma-separated, if any)", placeholder="data:image/jpeg;base64,...", lines=2)
|
186 |
task_choice = gr.Radio(["Summarization", "Question Answering"], label="Select Task")
|
187 |
question_input = gr.Textbox(label="Question (for Question Answering)", visible=False)
|
188 |
compression_input = gr.Slider(label="Compression Percentage (for Summarization)", minimum=10, maximum=90, value=30, visible=False)
|
|
|
195 |
result_output = gr.JSON(label="Results")
|
196 |
|
197 |
submit_button = gr.Button("Submit")
|
198 |
+
submit_button.click(gradio_interface, [text_input, images_base64, task_choice, question_input, compression_input], result_output)
|
199 |
|
200 |
demo.launch()
|