Spaces:
Running
Running
Update README.md
#1
by
kai-cl
- opened
README.md
CHANGED
@@ -13,18 +13,18 @@ short_description: Official Repository of Pretrained Models on BigEarthNet v2.0
|
|
13 |
:---:|:---:|:---:|:---:|:---:
|
14 |
<a href="https://www.tu.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/tu-berlin-logo-long-red.svg" style="font-size: 1rem; height: 2em; width: auto" alt="TU Berlin Logo"/> | <a href="https://rsim.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/RSiM_Logo_1.png" style="font-size: 1rem; height: 2em; width: auto" alt="RSiM Logo"> | <a href="https://www.dima.tu-berlin.de/menue/database_systems_and_information_management_group/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/DIMA.png" style="font-size: 1rem; height: 2em; width: auto" alt="DIMA Logo"> | <a href="http://www.bigearth.eu/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/BigEarth.png" style="font-size: 1rem; height: 2em; width: auto" alt="BigEarth Logo"> | <a href="https://bifold.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/BIFOLD_Logo_farbig.png" style="font-size: 1rem; height: 2em; width: auto; margin-right: 1em" alt="BIFOLD Logo">
|
15 |
|
16 |
-
#
|
17 |
We provide pretrained weights for several different models.
|
18 |
-
|
19 |
-
|
20 |
-
All models are available as versions using Sentinel-1 only, Sentinel-2 only or Sentinel-1 and Sentinel-2 data.
|
21 |
|
22 |
-
The
|
23 |
- For models using Sentinel-1 only: Sentinel-1 bands `["VH", "VV"]`
|
24 |
- For models using Sentinel-2 only: Sentinel-2 10m bands and 20m bands `["B02", "B03", "B04", "B08", "B05", "B06", "B07", "B11", "B12", "B8A"]`
|
25 |
- For models using Sentinel-1 and Sentinel-2: Sentinel-2 10m bands and 20m bands and Sentinel-1 bands = `["B02", "B03", "B04", "B08", "B05", "B06", "B07", "B11", "B12", "B8A", "VH", "VV"]`
|
26 |
|
27 |
-
The output
|
|
|
28 |
['Agro-forestry areas', 'Arable land', 'Beaches, dunes, sands', 'Broad-leaved forest', 'Coastal wetlands',
|
29 |
'Complex cultivation patterns', 'Coniferous forest', 'Industrial or commercial units', 'Inland waters',
|
30 |
'Inland wetlands', 'Land principally occupied by agriculture, with significant areas of natural vegetation',
|
@@ -37,20 +37,21 @@ The output classes are always in alphabetical order:
|
|
37 |
|
38 |
| Model | equivalent [`timm`](https://huggingface.co/docs/timm/en/index) model name | Sentinel-1 only | Sentinel-2 only | Sentinel-1 and Sentinel-2 |
|
39 |
|:-----------------|:---------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
|
40 |
-
| ConvMixer-768/32 | `convmixer_768_32` | [
|
41 |
-
| ConvNext v2 Base | `convnextv2_base` | [
|
42 |
-
| MLP-Mixer Base | `mixer_b16_224` | [
|
43 |
-
| MobileViT-S | `mobilevit_s` | [
|
44 |
-
| ResNet-50 | `resnet50` | [
|
45 |
-
| ResNet-101 | `resnet101` | [
|
46 |
-
| ViT Base | `vit_base_patch8_224` | [
|
|
|
47 |
|
48 |
](https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/combined_2000_600_2020_0_wide.jpg)
|
49 |
|
50 |
To use the model, download the codes that define the model architecture from the
|
51 |
[official BigEarthNet v2.0 (reBEN) repository](https://git.tu-berlin.de/rsim/reben-training-scripts) and load the model
|
52 |
-
using the code below. Note that
|
53 |
-
|
54 |
|
55 |
```python
|
56 |
from reben_publication.BigEarthNetv2_0_ImageClassifier import BigEarthNetv2_0_ImageClassifier
|
|
|
13 |
:---:|:---:|:---:|:---:|:---:
|
14 |
<a href="https://www.tu.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/tu-berlin-logo-long-red.svg" style="font-size: 1rem; height: 2em; width: auto" alt="TU Berlin Logo"/> | <a href="https://rsim.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/RSiM_Logo_1.png" style="font-size: 1rem; height: 2em; width: auto" alt="RSiM Logo"> | <a href="https://www.dima.tu-berlin.de/menue/database_systems_and_information_management_group/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/DIMA.png" style="font-size: 1rem; height: 2em; width: auto" alt="DIMA Logo"> | <a href="http://www.bigearth.eu/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/BigEarth.png" style="font-size: 1rem; height: 2em; width: auto" alt="BigEarth Logo"> | <a href="https://bifold.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/BIFOLD_Logo_farbig.png" style="font-size: 1rem; height: 2em; width: auto; margin-right: 1em" alt="BIFOLD Logo">
|
15 |
|
16 |
+
# BigEarthNet v2.0 Pretrained Weights
|
17 |
We provide pretrained weights for several different models.
|
18 |
+
The weights for the best-performing model based on the Macro Average Precision score on the recommended test split are uploaded.
|
19 |
+
All models are available in three different configurations: Using Sentinel-1 only (S1), Sentinel-2 only (S2) or both Sentinel-1 and Sentinel-2 (S1+S2) modalities together.
|
|
|
20 |
|
21 |
+
The following bands were used to train the models:
|
22 |
- For models using Sentinel-1 only: Sentinel-1 bands `["VH", "VV"]`
|
23 |
- For models using Sentinel-2 only: Sentinel-2 10m bands and 20m bands `["B02", "B03", "B04", "B08", "B05", "B06", "B07", "B11", "B12", "B8A"]`
|
24 |
- For models using Sentinel-1 and Sentinel-2: Sentinel-2 10m bands and 20m bands and Sentinel-1 bands = `["B02", "B03", "B04", "B08", "B05", "B06", "B07", "B11", "B12", "B8A", "VH", "VV"]`
|
25 |
|
26 |
+
The multi-hot encoded output of the model indicates the predicted multi-class label.
|
27 |
+
The multi-hot encoded output relates to the following classes sorted in alphabetical order:
|
28 |
['Agro-forestry areas', 'Arable land', 'Beaches, dunes, sands', 'Broad-leaved forest', 'Coastal wetlands',
|
29 |
'Complex cultivation patterns', 'Coniferous forest', 'Industrial or commercial units', 'Inland waters',
|
30 |
'Inland wetlands', 'Land principally occupied by agriculture, with significant areas of natural vegetation',
|
|
|
37 |
|
38 |
| Model | equivalent [`timm`](https://huggingface.co/docs/timm/en/index) model name | Sentinel-1 only | Sentinel-2 only | Sentinel-1 and Sentinel-2 |
|
39 |
|:-----------------|:---------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
|
40 |
+
| ConvMixer-768/32 | `convmixer_768_32` | [ConvMixer-768/32 S1](https://huggingface.co/BIFOLD-BigEarthNetv2-0/convmixer_768_32-s1-v0.1.1) | [ConvMixer-768/32 S2](https://huggingface.co/BIFOLD-BigEarthNetv2-0/convmixer_768_32-s2-v0.1.1) | [ConvMixer-768/32 S1+S2](https://huggingface.co/BIFOLD-BigEarthNetv2-0/convmixer_768_32-all-v0.1.1) |
|
41 |
+
| ConvNext v2 Base | `convnextv2_base` | [ConvNext v2 Base S1](https://huggingface.co/BIFOLD-BigEarthNetv2-0/convnextv2_base-s1-v0.1.1) | [ConvNext v2 Base S2](https://huggingface.co/BIFOLD-BigEarthNetv2-0/convnextv2_base-s2-v0.1.1) | [ConvNext v2 Base S1+S2](https://huggingface.co/BIFOLD-BigEarthNetv2-0/convnextv2_base-all-v0.1.1) |
|
42 |
+
| MLP-Mixer Base | `mixer_b16_224` | [MLP-Mixer Base S1](https://huggingface.co/BIFOLD-BigEarthNetv2-0/mixer_b16_224-s1-v0.1.1) | [MLP-Mixer Base S2](https://huggingface.co/BIFOLD-BigEarthNetv2-0/mixer_b16_224-s2-v0.1.1) | [MLP-Mixer Base S1+S2](https://huggingface.co/BIFOLD-BigEarthNetv2-0/mixer_b16_224-all-v0.1.1) |
|
43 |
+
| MobileViT-S | `mobilevit_s` | [MobileViT-S S1](https://huggingface.co/BIFOLD-BigEarthNetv2-0/mobilevit_s-s1-v0.1.1) | [MobileViT-S S2](https://huggingface.co/BIFOLD-BigEarthNetv2-0/mobilevit_s-s2-v0.1.1) | [MobileViT-S S1+S2](https://huggingface.co/BIFOLD-BigEarthNetv2-0/mobilevit_s-all-v0.1.1) |
|
44 |
+
| ResNet-50 | `resnet50` | [ResNet-50 S1](https://huggingface.co/BIFOLD-BigEarthNetv2-0/resnet50-s1-v0.1.1) | [ResNet-50 S2](https://huggingface.co/BIFOLD-BigEarthNetv2-0/resnet50-s2-v0.1.1) | [ResNet-50 S1+S2](https://huggingface.co/BIFOLD-BigEarthNetv2-0/resnet50-all-v0.1.1) |
|
45 |
+
| ResNet-101 | `resnet101` | [ResNet-101 S1](https://huggingface.co/BIFOLD-BigEarthNetv2-0/resnet101-s1-v0.1.1) | [ResNet-101 S2](https://huggingface.co/BIFOLD-BigEarthNetv2-0/resnet101-s2-v0.1.1) | [ResNet-101 S1+S2](https://huggingface.co/BIFOLD-BigEarthNetv2-0/resnet101-all-v0.1.1) |
|
46 |
+
| ViT Base | `vit_base_patch8_224` | [ViT Base S1](https://huggingface.co/BIFOLD-BigEarthNetv2-0/vit_base_patch8_224-s1-v0.1.1) | [ViT Base S2](https://huggingface.co/BIFOLD-BigEarthNetv2-0/vit_base_patch8_224-s2-v0.1.1) | [ViT Base S1+S2](https://huggingface.co/BIFOLD-BigEarthNetv2-0/vit_base_patch8_224-all-v0.1.1) |
|
47 |
+
|
48 |
|
49 |
](https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/combined_2000_600_2020_0_wide.jpg)
|
50 |
|
51 |
To use the model, download the codes that define the model architecture from the
|
52 |
[official BigEarthNet v2.0 (reBEN) repository](https://git.tu-berlin.de/rsim/reben-training-scripts) and load the model
|
53 |
+
using the code below. Note that [`configilm`](https://pypi.org/project/configilm/) is a requirement to use the
|
54 |
+
code below.
|
55 |
|
56 |
```python
|
57 |
from reben_publication.BigEarthNetv2_0_ImageClassifier import BigEarthNetv2_0_ImageClassifier
|