File size: 10,865 Bytes
12ca829
 
 
 
 
437869e
 
12ca829
6b8fd7d
437869e
12ca829
 
 
 
 
6b8fd7d
12ca829
 
 
 
 
 
 
c5f30ce
12ca829
 
 
fa72a9a
12ca829
 
 
 
 
 
 
c1ec713
12ca829
c1ec713
437869e
 
12ca829
 
 
 
 
 
 
 
 
c1ec713
 
 
 
 
 
 
 
 
12ca829
 
c1ec713
12ca829
 
 
437869e
12ca829
437869e
 
c1ec713
437869e
 
12ca829
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
437869e
12ca829
 
 
 
 
 
 
 
 
 
 
 
 
 
c1ec713
 
 
 
12ca829
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1ec713
 
12ca829
 
 
 
90a7ae2
 
12ca829
 
c1ec713
12ca829
 
c1ec713
 
 
 
 
 
12ca829
 
 
 
 
 
 
 
437869e
90a7ae2
 
 
 
 
12ca829
 
c1ec713
12ca829
 
90a7ae2
c1ec713
 
 
90a7ae2
 
 
12ca829
 
 
 
 
 
 
 
 
 
 
 
 
c1ec713
12ca829
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1ec713
12ca829
 
 
 
 
 
437869e
12ca829
c1ec713
12ca829
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
437869e
 
 
c1ec713
12ca829
 
 
c1ec713
12ca829
 
 
437869e
12ca829
 
437869e
 
12ca829
437869e
 
12ca829
c1ec713
12ca829
437869e
12ca829
437869e
c1ec713
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import os
import json
import datetime
from email.utils import parseaddr

import gradio as gr
import pandas as pd
from datasets import load_dataset
from evaluation.evaluator import question_scorer as eval_scorer
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import HfApi
from content import format_error, format_warning, format_log, TITLE

# Placeholder for the question_scorer function
def question_scorer(prediction, gold_answer):
    return eval_scorer(prediction, gold_answer)


# Constants and Configuration
TOKEN = os.environ.get("TOKEN", None)
OWNER = "Ori"
DATA_DATASET = f"Ori/AssistantBench_V1.0"
RESULTS_DATASET = f"Ori/results"
SUBMISSION_DATASET = f"AssistantBench/submissions"
LEADERBOARD_PATH = f"{OWNER}/leaderboard"
api = HfApi()

YEAR_VERSION = "default"

os.makedirs("scored", exist_ok=True)

# Load datasets
eval_results = load_dataset(RESULTS_DATASET, token=TOKEN, download_mode="force_redownload",
                            ignore_verifications=True, trust_remote_code=True)
gold_results = load_dataset(DATA_DATASET, token=TOKEN, trust_remote_code=True)

gold_answers = {split: {row["id"]: row["answer"] for row in gold_results[split]} for split in ["test"]}
gold_difficulties = {split: {row["id"]: row["difficulty"] for row in gold_results[split]} for split in ["test"]}


# Function to get dataframe from results
def get_dataframe_from_results(eval_results, split):
    local_df = eval_results[split]
    df = pd.DataFrame(local_df)
    df = df.sort_values(by=["Accuracy"], ascending=False)
    numeric_cols = [c for c in local_df.column_names if "score" in c]
    df[numeric_cols] = df[numeric_cols].multiply(100).round(decimals=2)
    return df

# Update function to format dataframe
def format_dataframe(df):
    df["Accuracy"] = df["Accuracy"].apply(lambda x: f"**{x:.2f}**")
    if "URL" in df.columns:
        df["Model Name"] = df.apply(lambda row: f"[{row['Model Name']}]({row['URL']})", axis=1)
        df = df.drop(columns=["URL"])
    df = df.rename(columns={"Model Family": "Base Model"})
    df = df[["Model Name", "Accuracy", "Accuracy (easy)", "Accuracy (medium)", "Accuracy (hard)", "Answer rate", "Precision", "EM", "Base Model", "Organization"]]
    return df

eval_dataframe_test = get_dataframe_from_results(eval_results=eval_results, split="test")
eval_dataframe_test = format_dataframe(eval_dataframe_test)


# Function to restart the space
def restart_space():
    api.restart_space(repo_id=LEADERBOARD_PATH, token=TOKEN)


TYPES = ["markdown", "markdown", "number", "number", "number", "number", "number", "number", "str", "str"]


# Function to add a new evaluation
def add_new_eval(
        model_name: str,
        model_family: str,
        url: str,
        path_to_file: str,
        organization: str,
        mail: str,
):
    _, parsed_mail = parseaddr(mail)
    if "@" not in parsed_mail:
        return format_warning("Please provide a valid email address.")

    print("Adding new eval")

    if model_name.lower() in set(
            [m.lower() for m in eval_results["test"]["Model Name"]]) and organization.lower() in set(
            [o.lower() for o in eval_results["test"]["Organization"]]):
        return format_warning("This model has already been submitted.")

    if path_to_file is None:
        return format_warning("Please attach a file.")

    api.upload_file(
        repo_id=SUBMISSION_DATASET,
        path_or_fileobj=path_to_file.name,
        path_in_repo=f"{organization}/{model_name}/{YEAR_VERSION}_test_raw_{datetime.datetime.today()}.jsonl",
        repo_type="dataset",
        token=TOKEN
    )

    file_path = path_to_file.name
    scores = 0
    num_questions = 0

    difficulty_scores = {"Easy": 0, "Medium": 0, "Hard": 0}
    difficulty_counts = {"Easy": 0, "Medium": 0, "Hard": 0}

    with open(f"scored/{organization}_{model_name}.jsonl", "w") as scored_file:
        with open(file_path, 'r') as f:
            for ix, line in enumerate(f):
                try:
                    task = json.loads(line)
                except Exception:
                    return format_error(f"Line {ix} is incorrectly formatted. Please fix it and resubmit your file.")

                if "answer" not in task:
                    return format_error(
                        f"Line {ix} contains no answer key. Please fix it and resubmit your file.")

                answer = task["answer"]
                task_id = task["id"]
                if task_id not in gold_answers["test"]:
                    return format_error(
                        f"{task_id} not found in test set. Are you sure you submitted the correct file?")

                score = question_scorer(task['answer'], gold_answers["test"][task_id])
                difficulty = gold_difficulties["test"][task_id]

                scored_file.write(
                    json.dumps({
                        "id": task_id,
                        "model_answer": answer,
                        "score": score,
                        "has_ans": has_ans
                    }) + "\n"
                )

                scores += score
                num_questions += 1
                difficulty_scores[difficulty] += score
                difficulty_counts[difficulty] += 1

    accuracy_easy = difficulty_scores["Easy"] / difficulty_counts["Easy"] if difficulty_counts["Easy"] > 0 else 0
    accuracy_medium = difficulty_scores["Medium"] / difficulty_counts["Medium"] if difficulty_counts["Medium"] > 0 else 0
    accuracy_hard = difficulty_scores["Hard"] / difficulty_counts["Hard"] if difficulty_counts["Hard"] > 0 else 0

    api.upload_file(
        repo_id=SUBMISSION_DATASET,
        path_or_fileobj=f"scored/{organization}_{model_name}.jsonl",
        path_in_repo=f"{organization}/{model_name}/{YEAR_VERSION}_test_scored_{datetime.datetime.today()}.jsonl",
        repo_type="dataset",
        token=TOKEN
    )

    accuracy = float("{:.1f}".format(np.average([x["acc"] for x in scored_file]) * 100))
    coverage = float("{:.1f}".format(np.average([x["has_ans"] for x in scored_file])))
    em = float("{:.1f}".format(np.average([1 if x["acc"] == 1 else 0 for x in scored_file])))
    precision = float("{:.1f}".format(np.average([x["acc"] for x in scored_file if x["has_ans"] == 1])))

    eval_entry = {
        "Model Name": model_name,
        "Base Model": model_family,
        "URL": url,
        "Organization": organization,
        "Accuracy": accuracy,
        "Accuracy (easy)": accuracy_easy,
        "Accuracy (medium)": accuracy_medium,
        "Accuracy (hard)": accuracy_hard,
        "Answer rate": coverage,
        "Precision": precision,
        "EM": em
    }
    eval_results["test"] = eval_results["test"].add_item(eval_entry)
    eval_results.push_to_hub(RESULTS_DATASET, config_name=YEAR_VERSION, token=TOKEN)

    return format_log(
        f"Model {model_name} submitted by {organization} successfully.\nPlease wait a few hours and refresh the leaderboard to see your score displayed.")


# Function to refresh the results
def refresh():
    eval_results = load_dataset(RESULTS_DATASET, YEAR_VERSION, token=TOKEN, download_mode="force_redownload",
                                ignore_verifications=True, trust_remote_code=True)
    eval_dataframe_test = get_dataframe_from_results(eval_results=eval_results, split="test")
    eval_dataframe_test = format_dataframe(eval_dataframe_test)
    return eval_dataframe_test


# Gradio interface
demo = gr.Blocks()
with demo:
    gr.HTML("<h1>AssistantBench</h1>")
    gr.Markdown("""
        AssistantBench aims to evaluate the ability of web agents to assist with real and time-consuming tasks.
        For more information, please check out our paper or the official website.
        To download AssistantBench, press [here](https://huggingface.co/datasets/Ori/AssistantBench_V1.0).
    """)

    gr.HTML("<h2>AssistantBench Leaderboard</h2>")
    with gr.Tab("Results: Test"):
        leaderboard_table_test = gr.Dataframe(
            value=eval_dataframe_test, datatype=TYPES, interactive=False,
            column_widths=["20%"]
        )

    refresh_button = gr.Button("Refresh")
    refresh_button.click(
        refresh,
        inputs=[],
        outputs=[
            leaderboard_table_test,
        ],
    )

    gr.HTML("<h2>Making a New Submission</h2>")
    with gr.Accordion("Submit a new model for evaluation"):
        with gr.Row():
            gr.Markdown("""
                To make a new submission, upload a predictions file. Our scoring function can be found [here](https://huggingface.co/spaces/AssistantBench/leaderboard/blob/main/scorer.py). We support JSONL files with the following format:
                ```
                {"id": "task_id_1", "answer": "Answer 1 from your model"}
                {"id": "task_id_2", "answer": "Answer 2 from your model"}
                ```
            """)
        with gr.Row():
            with gr.Column():
                model_name_textbox = gr.Textbox(label="Model Name")
                model_family_textbox = gr.Textbox(label="Base Model")
                url_textbox = gr.Textbox(label="URL to Model Information")
            with gr.Column():
                organization = gr.Textbox(label="Organization")
                mail = gr.Textbox(
                    label="Contact Email (will be stored privately & used if there is an issue with your submission)")
                file_output = gr.File()

        submit_button = gr.Button("Submit Eval")
        submission_result = gr.Markdown()
        submit_button.click(
            add_new_eval,
            [
                model_name_textbox,
                model_family_textbox,
                url_textbox,
                file_output,
                organization,
                mail
            ],
            submission_result,
        )

    with gr.Row():
        with gr.Accordion("📙 Citation", open=False):
            citation_text = """@article{yoran-etal-2024-assistantbench,
    title={AssistantBench: Can Web Agents Solve Realistic and Time-Consuming Tasks?}, 
    author={Ori Yoran and Samuel Amouyal and Chaitanya Malaviya and Ben Bogin and Ofir Press and Jonathan Berant},
    year={2024},
    eprint={?},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}"""
            citation_button = gr.Textbox(
                value=citation_text,
                label="Citation",
                lines=20,
                elem_id="citation-button",
                show_copy_button=True
            )

    gr.HTML(
        "<p>We would like to thank the GAIA team for sharing the source code for their leaderboard which we used as a template and HuggingFace for hosting the leaderboard.</p>")

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=3600)
scheduler.start()
demo.launch(debug=True)