Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,204 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
3 |
import pandas as pd
|
|
|
4 |
from apscheduler.schedulers.background import BackgroundScheduler
|
5 |
-
from huggingface_hub import
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
30 |
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
def restart_space():
|
33 |
-
|
34 |
|
35 |
-
### Space initialisation
|
36 |
-
try:
|
37 |
-
print(EVAL_REQUESTS_PATH)
|
38 |
-
snapshot_download(
|
39 |
-
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
40 |
-
)
|
41 |
-
except Exception:
|
42 |
-
restart_space()
|
43 |
-
try:
|
44 |
-
print(EVAL_RESULTS_PATH)
|
45 |
-
snapshot_download(
|
46 |
-
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
47 |
-
)
|
48 |
-
except Exception:
|
49 |
-
restart_space()
|
50 |
-
|
51 |
-
|
52 |
-
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
53 |
-
|
54 |
-
(
|
55 |
-
finished_eval_queue_df,
|
56 |
-
running_eval_queue_df,
|
57 |
-
pending_eval_queue_df,
|
58 |
-
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
59 |
-
|
60 |
-
def init_leaderboard(dataframe):
|
61 |
-
if dataframe is None or dataframe.empty:
|
62 |
-
raise ValueError("Leaderboard DataFrame is empty or None.")
|
63 |
-
return Leaderboard(
|
64 |
-
value=dataframe,
|
65 |
-
datatype=[c.type for c in fields(AutoEvalColumn)],
|
66 |
-
select_columns=SelectColumns(
|
67 |
-
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
|
68 |
-
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
|
69 |
-
label="Select Columns to Display:",
|
70 |
-
),
|
71 |
-
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
72 |
-
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
|
73 |
-
filter_columns=[
|
74 |
-
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
|
75 |
-
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
|
76 |
-
ColumnFilter(
|
77 |
-
AutoEvalColumn.params.name,
|
78 |
-
type="slider",
|
79 |
-
min=0.01,
|
80 |
-
max=150,
|
81 |
-
label="Select the number of parameters (B)",
|
82 |
-
),
|
83 |
-
ColumnFilter(
|
84 |
-
AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
|
85 |
-
),
|
86 |
-
],
|
87 |
-
bool_checkboxgroup_label="Hide models",
|
88 |
-
interactive=False,
|
89 |
-
)
|
90 |
|
|
|
91 |
|
92 |
-
demo = gr.Blocks(css=custom_css)
|
93 |
-
with demo:
|
94 |
-
gr.HTML(TITLE)
|
95 |
-
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
with gr.Column():
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
datatype=EVAL_TYPES,
|
130 |
-
row_count=5,
|
131 |
-
)
|
132 |
-
|
133 |
-
with gr.Accordion(
|
134 |
-
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
135 |
-
open=False,
|
136 |
-
):
|
137 |
-
with gr.Row():
|
138 |
-
pending_eval_table = gr.components.Dataframe(
|
139 |
-
value=pending_eval_queue_df,
|
140 |
-
headers=EVAL_COLS,
|
141 |
-
datatype=EVAL_TYPES,
|
142 |
-
row_count=5,
|
143 |
-
)
|
144 |
-
with gr.Row():
|
145 |
-
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
|
146 |
-
|
147 |
-
with gr.Row():
|
148 |
-
with gr.Column():
|
149 |
-
model_name_textbox = gr.Textbox(label="Model name")
|
150 |
-
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
151 |
-
model_type = gr.Dropdown(
|
152 |
-
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
153 |
-
label="Model type",
|
154 |
-
multiselect=False,
|
155 |
-
value=None,
|
156 |
-
interactive=True,
|
157 |
-
)
|
158 |
-
|
159 |
-
with gr.Column():
|
160 |
-
precision = gr.Dropdown(
|
161 |
-
choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
162 |
-
label="Precision",
|
163 |
-
multiselect=False,
|
164 |
-
value="float16",
|
165 |
-
interactive=True,
|
166 |
-
)
|
167 |
-
weight_type = gr.Dropdown(
|
168 |
-
choices=[i.value.name for i in WeightType],
|
169 |
-
label="Weights type",
|
170 |
-
multiselect=False,
|
171 |
-
value="Original",
|
172 |
-
interactive=True,
|
173 |
-
)
|
174 |
-
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
175 |
-
|
176 |
-
submit_button = gr.Button("Submit Eval")
|
177 |
-
submission_result = gr.Markdown()
|
178 |
-
submit_button.click(
|
179 |
-
add_new_eval,
|
180 |
-
[
|
181 |
-
model_name_textbox,
|
182 |
-
base_model_name_textbox,
|
183 |
-
revision_name_textbox,
|
184 |
-
precision,
|
185 |
-
weight_type,
|
186 |
-
model_type,
|
187 |
-
],
|
188 |
-
submission_result,
|
189 |
-
)
|
190 |
|
191 |
with gr.Row():
|
192 |
with gr.Accordion("📙 Citation", open=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
citation_button = gr.Textbox(
|
194 |
-
value=
|
195 |
-
label=
|
196 |
lines=20,
|
197 |
elem_id="citation-button",
|
198 |
-
show_copy_button=True
|
199 |
)
|
200 |
|
|
|
|
|
|
|
201 |
scheduler = BackgroundScheduler()
|
202 |
-
scheduler.add_job(restart_space, "interval", seconds=
|
203 |
scheduler.start()
|
204 |
-
demo.
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import datetime
|
4 |
+
from email.utils import parseaddr
|
5 |
+
|
6 |
import gradio as gr
|
|
|
7 |
import pandas as pd
|
8 |
+
from datasets import load_dataset
|
9 |
from apscheduler.schedulers.background import BackgroundScheduler
|
10 |
+
from huggingface_hub import HfApi
|
11 |
+
from content import format_error, format_warning, format_log, TITLE
|
12 |
+
|
13 |
+
|
14 |
+
# Placeholder for the question_scorer function
|
15 |
+
def question_scorer(prediction, gold_answer):
|
16 |
+
return 1 if prediction == gold_answer else 0
|
17 |
+
|
18 |
+
|
19 |
+
# Constants and Configuration
|
20 |
+
TOKEN = os.environ.get("TOKEN", None)
|
21 |
+
OWNER = "Ori"
|
22 |
+
DATA_DATASET = f"Ori/AssistantBench_V1.0"
|
23 |
+
RESULTS_DATASET = f"Ori/results"
|
24 |
+
SUBMISSION_DATASET = f"{OWNER}/submissions"
|
25 |
+
LEADERBOARD_PATH = f"{OWNER}/leaderboard"
|
26 |
+
api = HfApi()
|
27 |
+
|
28 |
+
YEAR_VERSION = "2024"
|
29 |
+
|
30 |
+
os.makedirs("scored", exist_ok=True)
|
31 |
+
|
32 |
+
# Load datasets
|
33 |
+
eval_results = load_dataset(RESULTS_DATASET, token=TOKEN, download_mode="force_redownload",
|
34 |
+
ignore_verifications=True, trust_remote_code=True)
|
35 |
+
gold_results = load_dataset(DATA_DATASET, token=TOKEN, trust_remote_code=True)
|
36 |
+
gold_answers = {split: {row["id"]: row["answer"] for row in gold_results[split]} for split in ["test"]}
|
37 |
|
38 |
|
39 |
+
# Function to get dataframe from results
|
40 |
+
def get_dataframe_from_results(eval_results, split):
|
41 |
+
local_df = eval_results[split]
|
42 |
+
df = pd.DataFrame(local_df)
|
43 |
+
df = df.sort_values(by=["Accuracy"], ascending=False)
|
44 |
+
numeric_cols = [c for c in local_df.column_names if "score" in c]
|
45 |
+
df[numeric_cols] = df[numeric_cols].multiply(100).round(decimals=2)
|
46 |
+
return df
|
47 |
+
|
48 |
+
|
49 |
+
eval_dataframe_test = get_dataframe_from_results(eval_results=eval_results, split="test")
|
50 |
+
|
51 |
+
|
52 |
+
# Function to restart the space
|
53 |
def restart_space():
|
54 |
+
api.restart_space(repo_id=LEADERBOARD_PATH, token=TOKEN)
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
+
TYPES = ["markdown", "number", "number", "number", "number", "str", "str"]
|
58 |
|
|
|
|
|
|
|
|
|
59 |
|
60 |
+
# Function to add a new evaluation
|
61 |
+
def add_new_eval(
|
62 |
+
model_name: str,
|
63 |
+
model_family: str,
|
64 |
+
url: str,
|
65 |
+
path_to_file: str,
|
66 |
+
organization: str,
|
67 |
+
mail: str,
|
68 |
+
):
|
69 |
+
_, parsed_mail = parseaddr(mail)
|
70 |
+
if "@" not in parsed_mail:
|
71 |
+
return format_warning("Please provide a valid email address.")
|
72 |
+
|
73 |
+
print("Adding new eval")
|
74 |
+
|
75 |
+
if model_name.lower() in set(
|
76 |
+
[m.lower() for m in eval_results["test"]["Model Name"]]) and organization.lower() in set(
|
77 |
+
[o.lower() for o in eval_results["test"]["Organization"]]):
|
78 |
+
return format_warning("This model has already been submitted.")
|
79 |
|
80 |
+
if path_to_file is None:
|
81 |
+
return format_warning("Please attach a file.")
|
82 |
+
|
83 |
+
api.upload_file(
|
84 |
+
repo_id=SUBMISSION_DATASET,
|
85 |
+
path_or_fileobj=path_to_file.name,
|
86 |
+
path_in_repo=f"{organization}/{model_name}/{YEAR_VERSION}_test_raw_{datetime.datetime.today()}.jsonl",
|
87 |
+
repo_type="dataset",
|
88 |
+
token=TOKEN
|
89 |
+
)
|
90 |
+
|
91 |
+
file_path = path_to_file.name
|
92 |
+
scores = 0
|
93 |
+
num_questions = 0
|
94 |
+
with open(f"scored/{organization}_{model_name}.jsonl", "w") as scored_file:
|
95 |
+
with open(file_path, 'r') as f:
|
96 |
+
for ix, line in enumerate(f):
|
97 |
+
try:
|
98 |
+
task = json.loads(line)
|
99 |
+
except Exception:
|
100 |
+
return format_error(f"Line {ix} is incorrectly formatted. Please fix it and resubmit your file.")
|
101 |
+
|
102 |
+
if "answer" not in task:
|
103 |
+
return format_error(
|
104 |
+
f"Line {ix} contains no answer key. Please fix it and resubmit your file.")
|
105 |
+
|
106 |
+
answer = task["answer"]
|
107 |
+
task_id = task["id"]
|
108 |
+
if task_id not in gold_answers["test"]:
|
109 |
+
return format_error(
|
110 |
+
f"{task_id} not found in test set. Are you sure you submitted the correct file?")
|
111 |
+
|
112 |
+
score = question_scorer(task['answer'], gold_answers["test"][task_id])
|
113 |
+
scored_file.write(
|
114 |
+
json.dumps({
|
115 |
+
"id": task_id,
|
116 |
+
"model_answer": answer,
|
117 |
+
"score": score
|
118 |
+
}) + "\n"
|
119 |
+
)
|
120 |
+
scores += score
|
121 |
+
num_questions += 1
|
122 |
+
|
123 |
+
api.upload_file(
|
124 |
+
repo_id=SUBMISSION_DATASET,
|
125 |
+
path_or_fileobj=f"scored/{organization}_{model_name}.jsonl",
|
126 |
+
path_in_repo=f"{organization}/{model_name}/{YEAR_VERSION}_test_scored_{datetime.datetime.today()}.jsonl",
|
127 |
+
repo_type="dataset",
|
128 |
+
token=TOKEN
|
129 |
+
)
|
130 |
|
131 |
+
eval_entry = {
|
132 |
+
"Model Name": model_name,
|
133 |
+
"Model Family": model_family,
|
134 |
+
"URL": url,
|
135 |
+
"Organization": organization,
|
136 |
+
"Accuracy": scores / num_questions if num_questions > 0 else 0,
|
137 |
+
"Answer rate": scores / num_questions if num_questions > 0 else 0,
|
138 |
+
"Precision": scores / num_questions if num_questions > 0 else 0,
|
139 |
+
"EM": scores if num_questions > 0 else 0,
|
140 |
+
"Cost": 0, # Placeholder for cost, update with actual value if needed
|
141 |
+
}
|
142 |
+
eval_results["test"] = eval_results["test"].add_item(eval_entry)
|
143 |
+
eval_results.push_to_hub(RESULTS_DATASET, config_name=YEAR_VERSION, token=TOKEN)
|
144 |
+
|
145 |
+
return format_log(
|
146 |
+
f"Model {model_name} submitted by {organization} successfully.\nPlease wait a few hours and refresh the leaderboard to see your score displayed.")
|
147 |
+
|
148 |
+
|
149 |
+
# Function to refresh the results
|
150 |
+
def refresh():
|
151 |
+
eval_results = load_dataset(RESULTS_DATASET, YEAR_VERSION, token=TOKEN, download_mode="force_redownload",
|
152 |
+
ignore_verifications=True, trust_remote_code=True)
|
153 |
+
eval_dataframe_test = get_dataframe_from_results(eval_results=eval_results, split="test")
|
154 |
+
return eval_dataframe_test
|
155 |
+
|
156 |
+
|
157 |
+
# Gradio interface
|
158 |
+
demo = gr.Blocks()
|
159 |
+
with demo:
|
160 |
+
gr.HTML("<h1>AssistantBench</h1>")
|
161 |
+
gr.Markdown("""
|
162 |
+
AssistantBench aims to evaluate the ability of web agents to assist with real and time-consuming tasks.
|
163 |
+
For more information, please check out our paper or the official website.
|
164 |
+
To download AssistantBench, press [here](https://huggingface.co/datasets/Ori/AssistantBench_V1.0).
|
165 |
+
""")
|
166 |
+
|
167 |
+
gr.HTML("<h2>AssistantBench Leaderboard</h2>")
|
168 |
+
with gr.Tab("Results: Test"):
|
169 |
+
leaderboard_table_test = gr.Dataframe(
|
170 |
+
value=eval_dataframe_test, datatype=TYPES, interactive=False,
|
171 |
+
column_widths=["20%"]
|
172 |
+
)
|
173 |
+
|
174 |
+
refresh_button = gr.Button("Refresh")
|
175 |
+
refresh_button.click(
|
176 |
+
refresh,
|
177 |
+
inputs=[],
|
178 |
+
outputs=[
|
179 |
+
leaderboard_table_test,
|
180 |
+
],
|
181 |
+
)
|
182 |
+
|
183 |
+
gr.HTML("<h2>Making a New Submission</h2>")
|
184 |
+
with gr.Accordion("Submit a new model for evaluation"):
|
185 |
+
with gr.Row():
|
186 |
+
gr.Markdown("""
|
187 |
+
To make a new submission, upload a predictions file. We support JSONL files with the following format:
|
188 |
+
```
|
189 |
+
{"id": "task_id_1", "answer": "Answer 1 from your model"}
|
190 |
+
{"id": "task_id_2", "answer": "Answer 2 from your model"}
|
191 |
+
```
|
192 |
+
Our scoring function can be found [here](https://huggingface.co/spaces/AssistantBench/leaderboard/blob/main/scorer.py).
|
193 |
+
""")
|
194 |
+
with gr.Row():
|
195 |
with gr.Column():
|
196 |
+
model_name_textbox = gr.Textbox(label="Model Name")
|
197 |
+
model_family_textbox = gr.Textbox(label="Model Family")
|
198 |
+
url_textbox = gr.Textbox(label="URL to Model Information")
|
199 |
+
with gr.Column():
|
200 |
+
organization = gr.Textbox(label="Organization")
|
201 |
+
mail = gr.Textbox(
|
202 |
+
label="Contact Email (will be stored privately & used if there is an issue with your submission)")
|
203 |
+
file_output = gr.File()
|
204 |
+
|
205 |
+
submit_button = gr.Button("Submit Eval")
|
206 |
+
submission_result = gr.Markdown()
|
207 |
+
submit_button.click(
|
208 |
+
add_new_eval,
|
209 |
+
[
|
210 |
+
model_name_textbox,
|
211 |
+
model_family_textbox,
|
212 |
+
url_textbox,
|
213 |
+
file_output,
|
214 |
+
organization,
|
215 |
+
mail
|
216 |
+
],
|
217 |
+
submission_result,
|
218 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
|
220 |
with gr.Row():
|
221 |
with gr.Accordion("📙 Citation", open=False):
|
222 |
+
citation_text = """@article{yoran-etal-2023-assistantbench,
|
223 |
+
title={AssistantBench: Can Web Agents Solve Realistic and Time-Consuming Tasks?},
|
224 |
+
author={Ori Yoran and Samuel Amouyal and Chaitanya Malaviya and Ben Bogin and Ofir Press and Jonathan Berant},
|
225 |
+
year={2024},
|
226 |
+
eprint={TODO},
|
227 |
+
archivePrefix={arXiv},
|
228 |
+
primaryClass={cs.CL}
|
229 |
+
}"""
|
230 |
citation_button = gr.Textbox(
|
231 |
+
value=citation_text,
|
232 |
+
label="Citation",
|
233 |
lines=20,
|
234 |
elem_id="citation-button",
|
235 |
+
show_copy_button=True
|
236 |
)
|
237 |
|
238 |
+
gr.HTML(
|
239 |
+
"<p>We would like to thank the GAIA team on which this leaderboard is based on their template and HuggingFace for hosting the leaderboard.</p>")
|
240 |
+
|
241 |
scheduler = BackgroundScheduler()
|
242 |
+
scheduler.add_job(restart_space, "interval", seconds=3600)
|
243 |
scheduler.start()
|
244 |
+
demo.launch(debug=True)
|