Spaces:
Sleeping
Sleeping
File size: 4,495 Bytes
da59cbe 896e60d da59cbe 896e60d da59cbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
import gradio as gr
from PIL import Image, ImageDraw
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch
from transformers import Pix2StructProcessor, Pix2StructVisionModel
from utils import download_default_font, render_header
class Pix2StructForRegression(nn.Module):
def __init__(self, sourcemodel_path, device):
super(Pix2StructForRegression, self).__init__()
self.model = Pix2StructVisionModel.from_pretrained(sourcemodel_path)
self.regression_layer1 = nn.Linear(768, 1536)
self.dropout1 = nn.Dropout(0.1)
self.regression_layer2 = nn.Linear(1536, 768)
self.dropout2 = nn.Dropout(0.1)
self.regression_layer3 = nn.Linear(768, 2)
self.device = device
def forward(self, *args, **kwargs):
outputs = self.model(*args, **kwargs)
sequence_output = outputs.last_hidden_state
first_token_output = sequence_output[:, 0, :]
x = F.relu(self.regression_layer1(first_token_output))
x = F.relu(self.regression_layer2(x))
regression_output = torch.sigmoid(self.regression_layer3(x))
return regression_output
def load_state_dict_file(self, checkpoint_path, strict=True):
state_dict = torch.load(checkpoint_path, map_location=self.device)
self.load_state_dict(state_dict, strict=strict)
class Inference:
def __init__(self) -> None:
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model, self.processor = self.load_model_and_processor("google/matcha-base", "model/pta-text-v0.1.pt")
def load_model_and_processor(self, model_name, checkpoint_path):
model = Pix2StructForRegression(sourcemodel_path=model_name, device=self.device)
model.load_state_dict_file(checkpoint_path=checkpoint_path)
model.eval()
model = model.to(self.device)
processor = Pix2StructProcessor.from_pretrained(model_name, is_vqa=False)
return model, processor
def prepare_image(self, image, prompt, processor):
image = image.resize((1920, 1080))
download_default_font_path = download_default_font()
rendered_image, _, render_variables = render_header(
image=image,
header=prompt,
bbox={"xmin": 0, "ymin": 0, "xmax": 0, "ymax": 0},
font_path=download_default_font_path,
)
encoding = processor(
images=rendered_image,
max_patches=2048,
add_special_tokens=True,
return_tensors="pt",
)
return encoding, render_variables
def predict_coordinates(self, encoding, model, render_variables):
with torch.no_grad():
pred_regression_outs = model(flattened_patches=encoding["flattened_patches"], attention_mask=encoding["attention_mask"])
new_height = render_variables["height"]
new_header_height = render_variables["header_height"]
new_total_height = render_variables["total_height"]
pred_regression_outs[:, 1] = (
(pred_regression_outs[:, 1] * new_total_height) - new_header_height
) / new_height
pred_coordinates = pred_regression_outs.squeeze().tolist()
return pred_coordinates
def draw_circle_on_image(self, image, coordinates):
x, y = coordinates[0] * image.width, coordinates[1] * image.height
draw = ImageDraw.Draw(image)
radius = 5
draw.ellipse((x-radius, y-radius, x+radius, y+radius), fill="red")
return image
def process_image_and_draw_circle(self, image, prompt):
encoding, render_variables = self.prepare_image(image, prompt, self.processor)
pred_coordinates = self.predict_coordinates(encoding.to(self.device) , self.model, render_variables)
result_image = self.draw_circle_on_image(image, pred_coordinates)
return result_image
def main():
inference = Inference()
# Gradio Interface
iface = gr.Interface(
fn=inference.process_image_and_draw_circle,
inputs=[gr.Image(type="pil", label = "Upload Image"),
gr.Textbox(label = "Prompt", placeholder="Enter prompt here...")],
outputs=gr.Image(type="pil"),
title="Pix2Struct Image Processing",
description="Upload an image and enter a prompt to see the model's prediction."
)
iface.launch(server_name="0.0.0.0", port=7860)
if __name__ == "__main__":
main()
|