Spaces:
Sleeping
Sleeping
File size: 1,942 Bytes
838216d d92c861 be531b6 6e48fd5 54db18f d92c861 318071e 838216d 318071e 838216d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
from fastapi import FastAPI, HTTPException
from fastapi.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
import data_collector as dc
import pandas as pd
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.post("/get_product_count_prediction")
async def get_product_count_prediction(b_id: int, product_name: str):
try:
# main
data, message = dc.get_data(b_id=b_id, product_name=product_name)
if message == "done":
# Summarize the sales count per month
data['transaction_date'] = pd.to_datetime(data['transaction_date'])
data.set_index('transaction_date', inplace=True)
monthly_sales = data['sell_qty'].resample('M').sum().reset_index()
full_trend, forecasted_value, rounded_value = dc.forecast(monthly_sales)
print(full_trend, forecasted_value, rounded_value)
rounded_value.columns = ["next_month", "y", "predicted_count"]
# Convert to dictionary
result_dict = rounded_value.to_dict(orient="records")[0]
response_content = {
"status": "success",
"message": "Prediction successful",
"data": {
"next_month": str(result_dict["next_month"]),
"predicted_count": result_dict["predicted_count"]
}
}
return JSONResponse(content=response_content, status_code=200)
else:
raise HTTPException(status_code=400, detail=message)
except Exception as e:
response_content = {
"status": "error",
"message": str(e),
"data": None
}
return JSONResponse(content=response_content, status_code=500)
|