Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -1,11 +1,6 @@
|
|
1 |
-
from fastapi import FastAPI,
|
2 |
-
from fastapi.responses import
|
3 |
-
from fastapi.responses import StreamingResponse
|
4 |
-
from fastapi.responses import FileResponse
|
5 |
from fastapi.middleware.cors import CORSMiddleware
|
6 |
-
from io import StringIO
|
7 |
-
import os
|
8 |
-
import uuid,requests
|
9 |
import data_collector as dc
|
10 |
import pandas as pd
|
11 |
|
@@ -18,25 +13,41 @@ app.add_middleware(
|
|
18 |
allow_headers=["*"],
|
19 |
)
|
20 |
|
21 |
-
|
22 |
-
|
23 |
@app.post("/get_product_count_prediction")
|
24 |
-
async def get_product_count_prediction(b_id:int,product_name:str):
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
if message=="done":
|
29 |
-
# Summarize the sales count per month
|
30 |
-
data['transaction_date'] = pd.to_datetime(data['transaction_date'])
|
31 |
-
data.set_index('transaction_date', inplace=True)
|
32 |
-
monthly_sales = data['sell_qty'].resample('M').sum().reset_index()
|
33 |
-
|
34 |
-
full_trend,forecasted_value,rounded_value = dc.forecast(monthly_sales)
|
35 |
-
print(full_trend,forecasted_value,rounded_value)
|
36 |
-
|
37 |
-
rounded_value.columns = ["next_month", "y", "predicted_count"]
|
38 |
-
|
39 |
-
# Convert to dictionary
|
40 |
-
result_dict = rounded_value.to_dict(orient="records")[0]
|
41 |
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from fastapi.responses import JSONResponse
|
|
|
|
|
3 |
from fastapi.middleware.cors import CORSMiddleware
|
|
|
|
|
|
|
4 |
import data_collector as dc
|
5 |
import pandas as pd
|
6 |
|
|
|
13 |
allow_headers=["*"],
|
14 |
)
|
15 |
|
|
|
|
|
16 |
@app.post("/get_product_count_prediction")
|
17 |
+
async def get_product_count_prediction(b_id: int, product_name: str):
|
18 |
+
try:
|
19 |
+
# main
|
20 |
+
data, message = dc.get_data(b_id=b_id, product_name=product_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
if message == "done":
|
23 |
+
# Summarize the sales count per month
|
24 |
+
data['transaction_date'] = pd.to_datetime(data['transaction_date'])
|
25 |
+
data.set_index('transaction_date', inplace=True)
|
26 |
+
monthly_sales = data['sell_qty'].resample('M').sum().reset_index()
|
27 |
+
|
28 |
+
full_trend, forecasted_value, rounded_value = dc.forecast(monthly_sales)
|
29 |
+
print(full_trend, forecasted_value, rounded_value)
|
30 |
+
|
31 |
+
rounded_value.columns = ["next_month", "y", "predicted_count"]
|
32 |
+
|
33 |
+
# Convert to dictionary
|
34 |
+
result_dict = rounded_value.to_dict(orient="records")[0]
|
35 |
+
|
36 |
+
response_content = {
|
37 |
+
"status": "success",
|
38 |
+
"message": "Prediction successful",
|
39 |
+
"data": {
|
40 |
+
"next_month": str(result_dict["next_month"]),
|
41 |
+
"predicted_count": result_dict["predicted_count"]
|
42 |
+
}
|
43 |
+
}
|
44 |
+
return JSONResponse(content=response_content, status_code=200)
|
45 |
+
else:
|
46 |
+
raise HTTPException(status_code=400, detail=message)
|
47 |
+
except Exception as e:
|
48 |
+
response_content = {
|
49 |
+
"status": "error",
|
50 |
+
"message": str(e),
|
51 |
+
"data": None
|
52 |
+
}
|
53 |
+
return JSONResponse(content=response_content, status_code=500)
|