File size: 12,540 Bytes
10e9b7d f39b9f0 10e9b7d eccf8e4 7d65c66 3c4371f 613febe 04d6a3b 0a90602 c5c801f b174c80 c96996b 0c49195 a5c3011 18a30f9 b30f209 02baec0 2fae9eb 10e9b7d b30f209 d59f015 e80aab9 3db6293 e80aab9 31243f4 a5c3011 255c9a6 99e27b1 255c9a6 f11b0ca 02baec0 f11b0ca 02baec0 f11b0ca 255c9a6 2fae9eb f11b0ca 2fae9eb f11b0ca 2fae9eb f11b0ca 2fae9eb 82c6447 01baa0c cd08fb6 39dee32 9bd2e43 80dfd2a c5c801f fee0f4a 741e44b 04ec2ea 31243f4 c568a3c b5d8c35 bb6295c 82c6447 bb6295c 31243f4 2be3981 31243f4 2fae9eb ddcbb93 c568a3c 75dbf87 17c6308 2fab9e1 c568a3c 4021bf3 c568a3c b90251f 31243f4 7d65c66 b177367 3c4371f 7e4a06b 1ca9f65 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 b177367 31243f4 a9870f3 31243f4 3c4371f 31243f4 b177367 36ed51a c1fd3d2 3c4371f 7d65c66 31243f4 eccf8e4 f39b9f0 31243f4 3c4371f 31243f4 e80aab9 31243f4 3c4371f 7d65c66 3c4371f 7d65c66 31243f4 e80aab9 b177367 7d65c66 3c4371f 31243f4 7d65c66 31243f4 7d65c66 31243f4 3c4371f 31243f4 b177367 7d65c66 3c4371f 31243f4 e80aab9 7d65c66 31243f4 e80aab9 e217ebb e80aab9 31243f4 e80aab9 3c4371f e80aab9 31243f4 e80aab9 3c4371f e80aab9 3c4371f e80aab9 7d65c66 3c4371f 31243f4 7d65c66 31243f4 3c4371f e80aab9 31243f4 7d65c66 31243f4 e80aab9 31243f4 0ee0419 e514fd7 81917a3 e514fd7 e80aab9 7e4a06b e80aab9 31243f4 e80aab9 9088b99 7d65c66 e80aab9 31243f4 e80aab9 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 31243f4 3c4371f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
import os
import json
import gradio as gr
import requests
import inspect
import pandas as pd
from tools import multiply, divide, add, subtract, modulus, wiki_search, tavily_search, arxiv_search, youtube_video_loader
from typing import TypedDict, Annotated
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.graph.message import add_messages
from langgraph.prebuilt import ToolNode, tools_condition
from langchain_core.messages import AnyMessage, SystemMessage, HumanMessage
from langchain_groq import ChatGroq
from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace
from langchain_huggingface.llms import HuggingFacePipeline
from langchain_ollama import ChatOllama
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_core.rate_limiters import InMemoryRateLimiter
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Basic Agent Definition ---
#llm = ChatGroq(model="qwen-qwq-32b", temperature=0)
#llm = HuggingFaceEndpoint(repo_id="HuggingFaceTB/SmolLM-135M-Instruct")
#llm = HuggingFaceEndpoint(
# repo_id="mistralai/Mistral-7B-Instruct-v0.2",
# task="text-generation", # for chat‐style use “text-generation”
# max_new_tokens=1024,
# do_sample=False,
# repetition_penalty=1.03,
# temperature=0,
# huggingfacehub_api_token=HF_TOKEN,
# provider='auto'
#)
#checkpoint = "meta-llama/Llama-3.2-3B-Instruct"
#tokenizer = AutoTokenizer.from_pretrained(checkpoint)
#model = AutoModelForCausalLM.from_pretrained(checkpoint, token=HF_TOKEN)
#messages = [{"role": "user", "content": "Hello."}]
#input_text=tokenizer.apply_chat_template(messages, tokenize=False)
#print(input_text)
#inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
#outputs = model.generate(inputs, max_new_tokens=50, temperature=0.2, top_p=0.9, do_sample=True)
#print(tokenizer.decode(outputs[0]))
#pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, max_new_tokens=1000)
#hf_pipe = HuggingFacePipeline(pipeline=pipe)
#chat = ChatHuggingFace(llm=llm, verbose=True)
#chat = ChatOllama(llm=hf_pipe).bind(skip_prompt=True)
#openai_api_key = os.getenv("OPENAI_API_KEY")
#model = OpenAIServerModel(
# api_key=openai_api_key,
# model_id="gpt-4.1"
#)
#tools = [
# DuckDuckGoSearchTool(),
# PythonInterpreterTool(),
#]
rate_limiter = InMemoryRateLimiter(
# <-- Super slow! We can only make a request once every 4 seconds!!
requests_per_second=15/60,
# Wake up every 100 ms to check whether allowed to make a request,
check_every_n_seconds=0.1,
max_bucket_size=10, # Controls the maximum burst size.
)
chat = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0, rate_limiter=rate_limiter)
tools_list = [
tavily_search
]
chat_with_tools = chat.bind_tools(tools_list)
# load the system prompt from the file
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
print(system_prompt)
def assistant(state: MessagesState):
return {
"messages": [chat_with_tools.invoke(state["messages"])],
}
class BasicAgent:
def __init__(self):
graph = StateGraph(MessagesState)
graph.add_node("assistant", assistant)
graph.add_node("tools", ToolNode(tools_list))
graph.add_edge(START, "assistant")
graph.add_conditional_edges("assistant", tools_condition)
graph.add_edge("tools", "assistant")
self.graph = graph.compile()
print("BasicAgent initialized.")
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
messages = [
SystemMessage(content=system_prompt),
HumanMessage(content=question)]
response = self.graph.invoke({"messages": messages})
response = response['messages'][-1].content
print(f"Agent returning answer: {response}")
print(response)
final_answer_idx = response.find("FINAL ANSWER: ")
if final_answer_idx != -1:
return response[final_answer_idx + len("FINAL ANSWER: "):]
return response
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
# response = requests.get(questions_url, timeout=60)
# response.raise_for_status()
# questions_data = response.json()
with open('questions.json') as f:
questions_data = json.load(f)
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=90)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False) |