File size: 12,540 Bytes
10e9b7d
f39b9f0
10e9b7d
eccf8e4
7d65c66
3c4371f
613febe
04d6a3b
0a90602
c5c801f
b174c80
c96996b
0c49195
a5c3011
18a30f9
b30f209
02baec0
2fae9eb
 
10e9b7d
b30f209
d59f015
e80aab9
3db6293
e80aab9
31243f4
a5c3011
255c9a6
99e27b1
 
 
 
 
 
 
 
 
 
255c9a6
f11b0ca
 
 
02baec0
 
 
 
 
 
 
 
f11b0ca
 
02baec0
 
f11b0ca
255c9a6
2fae9eb
f11b0ca
2fae9eb
 
 
 
 
 
 
 
f11b0ca
2fae9eb
 
 
 
 
 
f11b0ca
2fae9eb
 
82c6447
01baa0c
cd08fb6
39dee32
9bd2e43
 
 
 
 
 
80dfd2a
c5c801f
fee0f4a
741e44b
04ec2ea
 
31243f4
c568a3c
b5d8c35
bb6295c
 
82c6447
bb6295c
 
 
 
31243f4
2be3981
31243f4
 
2fae9eb
 
 
ddcbb93
c568a3c
75dbf87
17c6308
2fab9e1
 
 
c568a3c
4021bf3
c568a3c
b90251f
31243f4
 
 
 
7d65c66
b177367
3c4371f
7e4a06b
1ca9f65
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
b177367
31243f4
a9870f3
31243f4
3c4371f
31243f4
b177367
36ed51a
c1fd3d2
3c4371f
7d65c66
31243f4
eccf8e4
f39b9f0
 
 
 
 
31243f4
3c4371f
 
31243f4
e80aab9
31243f4
 
3c4371f
 
7d65c66
3c4371f
7d65c66
31243f4
 
e80aab9
b177367
7d65c66
 
3c4371f
31243f4
 
 
 
 
 
 
7d65c66
 
 
31243f4
 
7d65c66
31243f4
 
3c4371f
31243f4
 
b177367
7d65c66
3c4371f
31243f4
e80aab9
7d65c66
31243f4
e80aab9
e217ebb
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
 
31243f4
 
e80aab9
3c4371f
e80aab9
 
3c4371f
e80aab9
7d65c66
3c4371f
31243f4
7d65c66
31243f4
3c4371f
 
 
 
 
e80aab9
31243f4
 
 
 
7d65c66
31243f4
 
 
 
e80aab9
 
 
 
31243f4
0ee0419
e514fd7
 
 
81917a3
e514fd7
 
 
 
 
 
 
 
e80aab9
 
7e4a06b
e80aab9
31243f4
e80aab9
9088b99
7d65c66
 
e80aab9
31243f4
 
 
e80aab9
 
 
3c4371f
7d65c66
3c4371f
7d65c66
 
3c4371f
 
7d65c66
3c4371f
7d65c66
 
 
 
 
 
 
 
 
3c4371f
 
31243f4
3c4371f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import os
import json
import gradio as gr
import requests
import inspect
import pandas as pd
from tools import multiply, divide, add, subtract, modulus, wiki_search, tavily_search, arxiv_search, youtube_video_loader
from typing import TypedDict, Annotated
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.graph.message import add_messages
from langgraph.prebuilt import ToolNode, tools_condition
from langchain_core.messages import AnyMessage, SystemMessage, HumanMessage
from langchain_groq import ChatGroq
from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace
from langchain_huggingface.llms import HuggingFacePipeline
from langchain_ollama import ChatOllama
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_core.rate_limiters import InMemoryRateLimiter


# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Basic Agent Definition ---
#llm = ChatGroq(model="qwen-qwq-32b", temperature=0)
#llm = HuggingFaceEndpoint(repo_id="HuggingFaceTB/SmolLM-135M-Instruct")
#llm = HuggingFaceEndpoint(
#        repo_id="mistralai/Mistral-7B-Instruct-v0.2",
#        task="text-generation",  # for chat‐style use “text-generation”
#        max_new_tokens=1024,
#        do_sample=False,
#        repetition_penalty=1.03,
#        temperature=0,
#        huggingfacehub_api_token=HF_TOKEN,
#        provider='auto'
#)

#checkpoint = "meta-llama/Llama-3.2-3B-Instruct"
#tokenizer = AutoTokenizer.from_pretrained(checkpoint)
#model = AutoModelForCausalLM.from_pretrained(checkpoint, token=HF_TOKEN)

#messages = [{"role": "user", "content": "Hello."}]
#input_text=tokenizer.apply_chat_template(messages, tokenize=False)
#print(input_text)
#inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
#outputs = model.generate(inputs, max_new_tokens=50, temperature=0.2, top_p=0.9, do_sample=True)
#print(tokenizer.decode(outputs[0]))

#pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, max_new_tokens=1000)
#hf_pipe = HuggingFacePipeline(pipeline=pipe)

#chat = ChatHuggingFace(llm=llm, verbose=True)
#chat = ChatOllama(llm=hf_pipe).bind(skip_prompt=True)

#openai_api_key = os.getenv("OPENAI_API_KEY")

#model = OpenAIServerModel(
#    api_key=openai_api_key,
#    model_id="gpt-4.1"
#)
#tools = [
#    DuckDuckGoSearchTool(),
#    PythonInterpreterTool(),
#]

rate_limiter = InMemoryRateLimiter(
    # <-- Super slow! We can only make a request once every 4 seconds!!
    requests_per_second=15/60,
    # Wake up every 100 ms to check whether allowed to make a request,
    check_every_n_seconds=0.1,
    max_bucket_size=10,  # Controls the maximum burst size.
)

chat = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0, rate_limiter=rate_limiter)
tools_list = [
    tavily_search
]
chat_with_tools = chat.bind_tools(tools_list)

# load the system prompt from the file
with open("system_prompt.txt", "r", encoding="utf-8") as f:
    system_prompt = f.read()

print(system_prompt)
    
def assistant(state: MessagesState):
    return {
        "messages": [chat_with_tools.invoke(state["messages"])],
    }   

class BasicAgent:
    
    def __init__(self):
        graph = StateGraph(MessagesState)
        graph.add_node("assistant", assistant)
        graph.add_node("tools", ToolNode(tools_list))
        graph.add_edge(START, "assistant")
        graph.add_conditional_edges("assistant", tools_condition)
        graph.add_edge("tools", "assistant")
        self.graph = graph.compile()
        print("BasicAgent initialized.")
        
    def __call__(self, question: str) -> str:
        print(f"Agent received question (first 50 chars): {question[:50]}...")
        messages = [
            SystemMessage(content=system_prompt),
            HumanMessage(content=question)]
        response = self.graph.invoke({"messages": messages})
        response = response['messages'][-1].content
        print(f"Agent returning answer: {response}")
        print(response)
        final_answer_idx = response.find("FINAL ANSWER: ")
        if final_answer_idx != -1:
            return response[final_answer_idx + len("FINAL ANSWER: "):]
        return response

    
def run_and_submit_all( profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent ( modify this part to create your agent)
    try:
        agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        # response = requests.get(questions_url, timeout=60)
        # response.raise_for_status()
        # questions_data = response.json()
        with open('questions.json') as f:
            questions_data = json.load(f)
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=90)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**

        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.

        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)