File size: 11,138 Bytes
415516b 259c7f2 415516b 259c7f2 415516b 259c7f2 415516b 259c7f2 415516b 259c7f2 415516b 259c7f2 415516b 7221dc5 415516b 7221dc5 415516b 259c7f2 415516b 259c7f2 415516b 259c7f2 415516b 259c7f2 415516b 259c7f2 415516b 259c7f2 7221dc5 415516b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
from bezinga_caller import bezinga_get
from finub_caller import get_finhub
from marketaux_caller import get_marketaux
from newsapi_caller import get_newsapi
from newsdata_caller import get_newsdata
from vantage_caller import get_vantage
from transformers import pipeline
def get_articles_sentiment(ticker, model):
pipe = pipeline("text-classification", model=model)
# getting a list of article of given ticket from different sources
try:
bezinga_list = bezinga_get(ticker)
bezinga_results = pipe(bezinga_list)
except Exception as e:
print(e)
bezinga_results = 0
try:
newsapi_list = get_newsapi(ticker)
newsapi_results = pipe(newsapi_list)
except Exception as e:
print(e)
newsapi_results = 0
try:
newsdata_list = get_newsdata(ticker)
newsdata_results = pipe(newsdata_list)
except Exception as e:
print(e)
newsdata_results = 0
try:
finhub_list = get_finhub(ticker)
finhub_results = pipe(finhub_list)
except Exception as e:
print(e)
finhub_results = 0
try:
vantage_list = get_vantage(ticker)
vantage_results = pipe(vantage_list)
except Exception as e:
print(e)
vantage_results = 0
try:
marketaux_list = get_marketaux(ticker)
marketaux_results = pipe(marketaux_list)
except Exception as e:
print(e)
marketaux_results = 0
# finhub_list = get_finhub(ticker)
# marketaux_list = get_marketaux(ticker)
# newsapi_list = get_newsapi(ticker)
# newsdata_list = get_newsdata(ticker)
# vantage_list = get_vantage(ticker)
# calling ai model on each list
# finhub_results = pipe(finhub_list)
# marketaux_results = pipe(marketaux_list)
# newsapi_results = pipe(newsapi_list)
# newsdata_results = pipe(newsdata_list)
# vantage_results = pipe(vantage_list)
# replacing values for calculations and doing the sentiment for each source
def replace_values(result):
# Replace values in the label column
for dict in result:
if dict["label"] == "LABEL_1":
dict["label"] = 2
else:
dict["label"] = 1
total_articles = len(bezinga_results) + len(finhub_results) + len(marketaux_results) + len(newsapi_results) + len(newsdata_results) + len(vantage_results)
try:
replace_values(bezinga_results)
bezinga_label_mean = float(sum(d['label'] for d in bezinga_results)) / len(bezinga_results)
bezinga_positives = []
bezinga_negatives = []
for dict in bezinga_results:
if dict["label"] == 2:
bezinga_positives.append(dict)
else:
bezinga_negatives.append(dict)
if len(bezinga_positives) > 0:
bezinga_positive_score_mean = float(sum(d['score'] for d in bezinga_positives)) / len(bezinga_positives)
if len(bezinga_negatives) > 0:
bezinga_negative_score_mean = float(sum(d['score'] for d in bezinga_negatives)) / len(bezinga_negatives)
except Exception as e:
print(e)
# finhub
if finhub_results:
replace_values(finhub_results)
finhub_label_mean = float(sum(d['label'] for d in finhub_results)) / len(finhub_results)
finhub_positives = []
finhub_negatives = []
for dict in finhub_results:
if dict["label"] == 2:
finhub_positives.append(dict)
else:
finhub_negatives.append(dict)
if len(finhub_positives) > 0:
finhub_positive_score_mean = float(sum(d['score'] for d in finhub_positives)) / len(finhub_positives)
if len(finhub_negatives) > 0:
finhub_negative_score_mean = float(sum(d['score'] for d in finhub_negatives)) / len(finhub_negatives)
# marketaux
if marketaux_results:
replace_values(marketaux_results)
marketaux_label_mean = float(sum(d['label'] for d in marketaux_results)) / len(marketaux_results)
marketaux_positives = []
marketaux_negatives = []
for dict in marketaux_results:
if dict["label"] == 2:
marketaux_positives.append(dict)
else:
marketaux_negatives.append(dict)
if len(marketaux_positives) > 0:
marketaux_positive_score_mean = float(sum(d['score'] for d in marketaux_positives)) / len(marketaux_positives)
if len(marketaux_negatives) > 0:
marketaux_negative_score_mean = float(sum(d['score'] for d in marketaux_negatives)) / len(marketaux_negatives)
# newsapi
if newsapi_results:
replace_values(newsapi_results)
newsapi_label_mean = float(sum(d['label'] for d in newsapi_results) + 1) / (len(newsapi_results) + 2)
newsapi_positives = []
newsapi_negatives = []
for dict in newsapi_results:
if dict["label"] == 2:
newsapi_positives.append(dict)
else:
newsapi_negatives.append(dict)
if len(newsapi_positives) > 0:
newsapi_positive_score_mean = float(sum(d['score'] for d in newsapi_positives)) / len(newsapi_positives)
if len(newsapi_negatives) > 0:
newsapi_negative_score_mean = float(sum(d['score'] for d in newsapi_negatives)) / len(newsapi_negatives)
# newsdata
if newsdata_results:
replace_values(newsdata_results)
newsdata_label_mean = float(sum(d['label'] for d in newsdata_results)) / len(newsdata_results)
newsdata_positives = []
newsdata_negatives = []
for dict in newsdata_results:
if dict["label"] == 2:
newsdata_positives.append(dict)
else:
newsdata_negatives.append(dict)
if len(newsdata_positives) > 0:
newsdata_positive_score_mean = float(sum(d['score'] for d in newsdata_positives)) / len(newsdata_positives)
if len(newsdata_negatives) > 0:
newsdata_negative_score_mean = float(sum(d['score'] for d in newsdata_negatives)) / len(newsdata_negatives)
# vantage
if vantage_results:
replace_values(vantage_results)
vantage_label_mean = float(sum(d['label'] for d in vantage_results)) / len(vantage_results)
vantage_positives = []
vantage_negatives = []
for dict in vantage_results:
if dict["label"] == 2:
vantage_positives.append(dict)
else:
vantage_negatives.append(dict)
if len(vantage_positives) > 0:
vantage_positive_score_mean = float(sum(d['score'] for d in vantage_positives)) / len(vantage_positives)
if len(vantage_negatives) > 0:
vantage_negative_score_mean = float(sum(d['score'] for d in vantage_negatives)) / len(vantage_negatives)
total_positives = len(bezinga_positives) + len(finhub_positives) + len(marketaux_positives) + len(newsapi_positives) + len(newsdata_positives) + len(vantage_positives)
total_negatives = len(bezinga_negatives) + len(finhub_negatives) + len(marketaux_negatives) + len(newsapi_negatives) + len(newsdata_negatives) + len(vantage_negatives)
results_dict = {
"bezinga": {
"bezinga_articles": len(bezinga_results) if bezinga_results > 0 else 0,
"bezinga_positives": len(bezinga_positives) if bezinga_results > 0 else 0,
"bezinga_negatives": len(bezinga_negatives) if bezinga_results > 0 else 0,
"bezinga_sentiment_mean": bezinga_label_mean if bezinga_results > 0 else 0,
"bezinga_positive_score_mean": bezinga_positive_score_mean if bezinga_results > 0 else 0,
"bezinga_negative_score_mean": bezinga_negative_score_mean if bezinga_results > 0 else 0
},
"finhub": {
"finhub_articles": len(finhub_results) if finhub_results > 0 else 0,
"finhub_positives": len(finhub_positives) if finhub_results > 0 else 0,
"finhub_negatives": len(finhub_negatives) if finhub_results > 0 else 0,
"finhub_sentiment_mean": finhub_label_mean if finhub_results > 0 else 0,
"finhub_positive_score_mean": finhub_positive_score_mean if finhub_results > 0 else 0,
"finhub_negative_score_mean": finhub_negative_score_mean if finhub_results > 0 else 0
},
"marketaux": {
"marketaux_articles": len(marketaux_results) if marketaux_results > 0 else 0,
"marketaux_positives": len(marketaux_positives) if marketaux_results > 0 else 0,
"marketaux_negatives": len(marketaux_negatives) if marketaux_results > 0 else 0,
"marketaux_sentiment_mean": marketaux_label_mean if marketaux_results > 0 else 0,
"marketaux_positive_score_mean": marketaux_positive_score_mean if marketaux_results > 0 else 0,
"marketaux_negative_score_mean": marketaux_negative_score_mean if marketaux_results > 0 else 0
},
"newsapi": {
"newsapi_articles": len(newsapi_results) if newsapi_results > 0 else 0,
"newsapi_positives": len(newsapi_positives) if newsapi_results > 0 else 0,
"newsapi_negatives": len(newsapi_negatives) if newsapi_results > 0 else 0,
"newsapi_sentiment_mean": newsapi_label_mean if newsapi_results > 0 else 0,
"newsapi_positive_score_mean": newsapi_positive_score_mean if newsapi_results > 0 else 0,
"newsapi_negative_score_mean": newsapi_negative_score_mean if newsapi_results > 0 else 0
},
"newsdata": {
"newsdata_articles": len(newsdata_results) if newsdata_results > 0 else 0,
"newsdata_positives": len(newsdata_positives) if newsdata_results > 0 else 0,
"newsdata_negatives": len(newsdata_negatives) if newsdata_results > 0 else 0,
"newsdata_sentiment_mean": newsdata_label_mean if newsdata_results > 0 else 0,
"newsdata_positive_score_mean": newsdata_positive_score_mean if newsdata_results > 0 else 0,
"newsdata_negative_score_mean": newsdata_negative_score_mean if newsdata_results > 0 else 0
},
"vantage": {
"vantage_articles": len(vantage_results) if vantage_results > 0 else 0,
"vantage_positives": len(vantage_positives) if vantage_results > 0 else 0,
"vantage_negatives": len(vantage_negatives) if vantage_results > 0 else 0,
"vantage_sentiment_mean": vantage_label_mean if vantage_results > 0 else 0,
"vantage_positive_score_mean": vantage_positive_score_mean if vantage_results > 0 else 0,
"vantage_negative_score_mean": vantage_negative_score_mean if vantage_results > 0 else 0
},
"total_articles": total_articles,
"total_positives": total_positives,
"total_negatives": total_negatives
}
return results_dict |