Upload 8 files
Browse files- aggregator.py +259 -0
- app.py +8 -0
- bezinga_caller.py +24 -0
- finub_caller.py +39 -0
- marketaux_caller.py +16 -0
- newsapi_caller.py +31 -0
- newsdata_caller.py +22 -0
- vantage_caller.py +18 -0
aggregator.py
ADDED
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from bezinga_caller import bezinga_get
|
2 |
+
from finub_caller import get_finhub
|
3 |
+
from marketaux_caller import get_marketaux
|
4 |
+
from newsapi_caller import get_newsapi
|
5 |
+
from newsdata_caller import get_newsdata
|
6 |
+
from vantage_caller import get_vantage
|
7 |
+
from transformers import pipeline
|
8 |
+
|
9 |
+
|
10 |
+
def get_articles_sentiment(ticker, model):
|
11 |
+
pipe = pipeline("text-classification", model=model)
|
12 |
+
|
13 |
+
# getting a list of article of given ticket from different sources
|
14 |
+
try:
|
15 |
+
bezinga_list = bezinga_get(ticker)
|
16 |
+
bezinga_results = pipe(bezinga_list)
|
17 |
+
except Exception as e:
|
18 |
+
print(e)
|
19 |
+
bezinga_results = False
|
20 |
+
|
21 |
+
try:
|
22 |
+
newsapi_list = get_newsapi(ticker)
|
23 |
+
newsapi_results = pipe(newsapi_list)
|
24 |
+
except Exception as e:
|
25 |
+
print(e)
|
26 |
+
newsapi_results = False
|
27 |
+
try:
|
28 |
+
newsdata_list = get_newsdata(ticker)
|
29 |
+
newsdata_results = pipe(newsdata_list)
|
30 |
+
except Exception as e:
|
31 |
+
print(e)
|
32 |
+
newsdata_results = False
|
33 |
+
|
34 |
+
try:
|
35 |
+
finhub_list = get_finhub(ticker)
|
36 |
+
finhub_results = pipe(finhub_list)
|
37 |
+
except Exception as e:
|
38 |
+
print(e)
|
39 |
+
finhub_results = False
|
40 |
+
|
41 |
+
try:
|
42 |
+
vantage_list = get_vantage(ticker)
|
43 |
+
vantage_results = pipe(vantage_list)
|
44 |
+
except Exception as e:
|
45 |
+
print(e)
|
46 |
+
vantage_results = False
|
47 |
+
|
48 |
+
try:
|
49 |
+
marketaux_list = get_marketaux(ticker)
|
50 |
+
marketaux_results = pipe(marketaux_list)
|
51 |
+
except Exception as e:
|
52 |
+
print(e)
|
53 |
+
marketaux_results = False
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
# finhub_list = get_finhub(ticker)
|
58 |
+
# marketaux_list = get_marketaux(ticker)
|
59 |
+
# newsapi_list = get_newsapi(ticker)
|
60 |
+
# newsdata_list = get_newsdata(ticker)
|
61 |
+
# vantage_list = get_vantage(ticker)
|
62 |
+
|
63 |
+
|
64 |
+
# calling ai model on each list
|
65 |
+
# finhub_results = pipe(finhub_list)
|
66 |
+
# marketaux_results = pipe(marketaux_list)
|
67 |
+
# newsapi_results = pipe(newsapi_list)
|
68 |
+
# newsdata_results = pipe(newsdata_list)
|
69 |
+
# vantage_results = pipe(vantage_list)
|
70 |
+
|
71 |
+
# replacing values for calculations and doing the sentiment for each source
|
72 |
+
def replace_values(result):
|
73 |
+
# Replace values in the label column
|
74 |
+
for dict in result:
|
75 |
+
if dict["label"] == "LABEL_1":
|
76 |
+
dict["label"] = 2
|
77 |
+
else:
|
78 |
+
dict["label"] = 1
|
79 |
+
|
80 |
+
try:
|
81 |
+
replace_values(bezinga_results)
|
82 |
+
|
83 |
+
bezinga_label_mean = float(sum(d['label'] for d in bezinga_results)) / len(bezinga_results)
|
84 |
+
|
85 |
+
bezinga_positives = []
|
86 |
+
bezinga_negatives = []
|
87 |
+
|
88 |
+
for dict in bezinga_results:
|
89 |
+
if dict["label"] == 2:
|
90 |
+
bezinga_positives.append(dict)
|
91 |
+
else:
|
92 |
+
bezinga_negatives.append(dict)
|
93 |
+
|
94 |
+
if len(bezinga_positives) > 0:
|
95 |
+
bezinga_positive_score_mean = float(sum(d['score'] for d in bezinga_positives)) / len(bezinga_positives)
|
96 |
+
|
97 |
+
if len(bezinga_negatives) > 0:
|
98 |
+
bezinga_negative_score_mean = float(sum(d['score'] for d in bezinga_negatives)) / len(bezinga_negatives)
|
99 |
+
except Exception as e:
|
100 |
+
print(e)
|
101 |
+
|
102 |
+
# finhub
|
103 |
+
if finhub_results:
|
104 |
+
replace_values(finhub_results)
|
105 |
+
|
106 |
+
finhub_label_mean = float(sum(d['label'] for d in finhub_results)) / len(finhub_results)
|
107 |
+
|
108 |
+
finhub_positives = []
|
109 |
+
finhub_negatives = []
|
110 |
+
|
111 |
+
for dict in finhub_results:
|
112 |
+
if dict["label"] == 2:
|
113 |
+
finhub_positives.append(dict)
|
114 |
+
else:
|
115 |
+
finhub_negatives.append(dict)
|
116 |
+
|
117 |
+
if len(finhub_positives) > 0:
|
118 |
+
finhub_positive_score_mean = float(sum(d['score'] for d in finhub_positives)) / len(finhub_positives)
|
119 |
+
|
120 |
+
if len(finhub_negatives) > 0:
|
121 |
+
finhub_negative_score_mean = float(sum(d['score'] for d in finhub_negatives)) / len(finhub_negatives)
|
122 |
+
|
123 |
+
# marketaux
|
124 |
+
if marketaux_results:
|
125 |
+
replace_values(marketaux_results)
|
126 |
+
|
127 |
+
marketaux_label_mean = float(sum(d['label'] for d in marketaux_results)) / len(marketaux_results)
|
128 |
+
|
129 |
+
marketaux_positives = []
|
130 |
+
marketaux_negatives = []
|
131 |
+
|
132 |
+
for dict in marketaux_results:
|
133 |
+
if dict["label"] == 2:
|
134 |
+
marketaux_positives.append(dict)
|
135 |
+
else:
|
136 |
+
marketaux_negatives.append(dict)
|
137 |
+
|
138 |
+
if len(marketaux_positives) > 0:
|
139 |
+
marketaux_positive_score_mean = float(sum(d['score'] for d in marketaux_positives)) / len(marketaux_positives)
|
140 |
+
|
141 |
+
if len(marketaux_negatives) > 0:
|
142 |
+
marketaux_negative_score_mean = float(sum(d['score'] for d in marketaux_negatives)) / len(marketaux_negatives)
|
143 |
+
|
144 |
+
# newsapi
|
145 |
+
if newsapi_results:
|
146 |
+
replace_values(newsapi_results)
|
147 |
+
|
148 |
+
newsapi_label_mean = float(sum(d['label'] for d in newsapi_results) + 1) / (len(newsapi_results) + 2)
|
149 |
+
|
150 |
+
newsapi_positives = []
|
151 |
+
newsapi_negatives = []
|
152 |
+
|
153 |
+
for dict in newsapi_results:
|
154 |
+
if dict["label"] == 2:
|
155 |
+
newsapi_positives.append(dict)
|
156 |
+
else:
|
157 |
+
newsapi_negatives.append(dict)
|
158 |
+
|
159 |
+
if len(newsapi_positives) > 0:
|
160 |
+
newsapi_positive_score_mean = float(sum(d['score'] for d in newsapi_positives)) / len(newsapi_positives)
|
161 |
+
|
162 |
+
if len(newsapi_negatives) > 0:
|
163 |
+
newsapi_negative_score_mean = float(sum(d['score'] for d in newsapi_negatives)) / len(newsapi_negatives)
|
164 |
+
|
165 |
+
|
166 |
+
# newsdata
|
167 |
+
if newsdata_results:
|
168 |
+
replace_values(newsdata_results)
|
169 |
+
|
170 |
+
newsdata_label_mean = float(sum(d['label'] for d in newsdata_results)) / len(newsdata_results)
|
171 |
+
|
172 |
+
newsdata_positives = []
|
173 |
+
newsdata_negatives = []
|
174 |
+
|
175 |
+
for dict in newsdata_results:
|
176 |
+
if dict["label"] == 2:
|
177 |
+
newsdata_positives.append(dict)
|
178 |
+
else:
|
179 |
+
newsdata_negatives.append(dict)
|
180 |
+
|
181 |
+
if len(newsdata_positives) > 0:
|
182 |
+
newsdata_positive_score_mean = float(sum(d['score'] for d in newsdata_positives)) / len(newsdata_positives)
|
183 |
+
|
184 |
+
if len(newsdata_negatives) > 0:
|
185 |
+
newsdata_negative_score_mean = float(sum(d['score'] for d in newsdata_negatives)) / len(newsdata_negatives)
|
186 |
+
|
187 |
+
# vantage
|
188 |
+
if vantage_results:
|
189 |
+
replace_values(vantage_results)
|
190 |
+
|
191 |
+
vantage_label_mean = float(sum(d['label'] for d in vantage_results)) / len(vantage_results)
|
192 |
+
|
193 |
+
vantage_positives = []
|
194 |
+
vantage_negatives = []
|
195 |
+
|
196 |
+
for dict in vantage_results:
|
197 |
+
if dict["label"] == 2:
|
198 |
+
vantage_positives.append(dict)
|
199 |
+
else:
|
200 |
+
vantage_negatives.append(dict)
|
201 |
+
|
202 |
+
if len(vantage_positives) > 0:
|
203 |
+
vantage_positive_score_mean = float(sum(d['score'] for d in vantage_positives)) / len(vantage_positives)
|
204 |
+
|
205 |
+
if len(vantage_negatives) > 0:
|
206 |
+
vantage_negative_score_mean = float(sum(d['score'] for d in vantage_negatives)) / len(vantage_negatives)
|
207 |
+
|
208 |
+
results_dict = {
|
209 |
+
"bezinga": {
|
210 |
+
"bezinga_articles": len(bezinga_results) if bezinga_results else 0,
|
211 |
+
"bezinga_positives": len(bezinga_positives) if bezinga_results else 0,
|
212 |
+
"bezinga_negatives": len(bezinga_negatives) if bezinga_results else 0,
|
213 |
+
"bezinga_sentiment_mean": bezinga_label_mean if bezinga_results else 0,
|
214 |
+
"bezinga_positive_score_mean": bezinga_positive_score_mean if bezinga_results else 0,
|
215 |
+
"bezinga_negative_score_mean": bezinga_negative_score_mean if bezinga_results else 0
|
216 |
+
},
|
217 |
+
"finhub": {
|
218 |
+
"finhub_articles": len(finhub_results) if finhub_results else 0,
|
219 |
+
"finhub_positives": len(finhub_positives) if finhub_results else 0,
|
220 |
+
"finhub_negatives": len(finhub_negatives) if finhub_results else 0,
|
221 |
+
"finhub_sentiment_mean": finhub_label_mean if finhub_results else 0,
|
222 |
+
"finhub_positive_score_mean": finhub_positive_score_mean if finhub_results else 0,
|
223 |
+
"finhub_negative_score_mean": finhub_negative_score_mean if finhub_results else 0
|
224 |
+
},
|
225 |
+
"marketaux": {
|
226 |
+
"marketaux_articles": len(marketaux_results) if marketaux_results else 0,
|
227 |
+
"marketaux_positives": len(marketaux_positives) if marketaux_results else 0,
|
228 |
+
"marketaux_negatives": len(marketaux_negatives) if marketaux_results else 0,
|
229 |
+
"marketaux_sentiment_mean": marketaux_label_mean if marketaux_results else 0,
|
230 |
+
"marketaux_positive_score_mean": marketaux_positive_score_mean if marketaux_results else 0,
|
231 |
+
"marketaux_negative_score_mean": marketaux_negative_score_mean if marketaux_results else 0
|
232 |
+
},
|
233 |
+
"newsapi": {
|
234 |
+
"newsapi_articles": len(newsapi_results) if newsapi_results else 0,
|
235 |
+
"newsapi_positives": len(newsapi_positives) if newsapi_results else 0,
|
236 |
+
"newsapi_negatives": len(newsapi_negatives) if newsapi_results else 0,
|
237 |
+
"newsapi_sentiment_mean": newsapi_label_mean if newsapi_results else 0,
|
238 |
+
"newsapi_positive_score_mean": newsapi_positive_score_mean if newsapi_results else 0,
|
239 |
+
"newsapi_negative_score_mean": newsapi_negative_score_mean if newsapi_results else 0
|
240 |
+
},
|
241 |
+
"newsdata": {
|
242 |
+
"newsdata_articles": len(newsdata_results) if newsdata_results else 0,
|
243 |
+
"newsdata_positives": len(newsdata_positives) if newsdata_results else 0,
|
244 |
+
"newsdata_negatives": len(newsdata_negatives) if newsdata_results else 0,
|
245 |
+
"newsdata_sentiment_mean": newsdata_label_mean if newsdata_results else 0,
|
246 |
+
"newsdata_positive_score_mean": newsdata_positive_score_mean if newsdata_results else 0,
|
247 |
+
"newsdata_negative_score_mean": newsdata_negative_score_mean if newsdata_results else 0
|
248 |
+
},
|
249 |
+
"vantage": {
|
250 |
+
"vantage_articles": len(vantage_results) if vantage_results else 0,
|
251 |
+
"vantage_positives": len(vantage_positives) if vantage_results else 0,
|
252 |
+
"vantage_negatives": len(vantage_negatives) if vantage_results else 0,
|
253 |
+
"vantage_sentiment_mean": vantage_label_mean if vantage_results else 0,
|
254 |
+
"vantage_positive_score_mean": vantage_positive_score_mean if vantage_results else 0,
|
255 |
+
"vantage_negative_score_mean": vantage_negative_score_mean if vantage_results else 0
|
256 |
+
}
|
257 |
+
}
|
258 |
+
|
259 |
+
return results_dict
|
app.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from aggregator import get_articles_sentiment
|
3 |
+
|
4 |
+
st.title("Real time financial news fast sentiment")
|
5 |
+
|
6 |
+
results = get_articles_sentiment("AAPL", "Andreagus/fin_miniLM_16")
|
7 |
+
|
8 |
+
st.write(results)
|
bezinga_caller.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
from streamlit import secrets
|
3 |
+
|
4 |
+
bezinga_api = secrets["bezinga_api"]
|
5 |
+
|
6 |
+
|
7 |
+
def bezinga_get(ticker):
|
8 |
+
|
9 |
+
bezinga_list = []
|
10 |
+
|
11 |
+
url = f"https://api.benzinga.com/api/v2/news?token={bezinga_api}&pageSize=1000&tickers={ticker}"
|
12 |
+
|
13 |
+
headers = {"accept": "application/json"}
|
14 |
+
|
15 |
+
r = requests.request("GET", url, headers=headers)
|
16 |
+
|
17 |
+
data = r.json()
|
18 |
+
print(data)
|
19 |
+
for article in data:
|
20 |
+
print(article)
|
21 |
+
bezinga_list.append(article['title'])
|
22 |
+
|
23 |
+
return bezinga_list
|
24 |
+
|
finub_caller.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import finnhub
|
2 |
+
from streamlit import secrets
|
3 |
+
|
4 |
+
finhub_api = secrets["finhub_api"]
|
5 |
+
|
6 |
+
from datetime import datetime, timedelta
|
7 |
+
|
8 |
+
def get_finhub(ticker):
|
9 |
+
|
10 |
+
finhub_list = []
|
11 |
+
|
12 |
+
def get_yesterday(frmt='%Y-%m-%d', string=True):
|
13 |
+
yesterday = datetime.now() - timedelta(days=1)
|
14 |
+
if string:
|
15 |
+
return yesterday.strftime(frmt)
|
16 |
+
return yesterday
|
17 |
+
from datetime import datetime
|
18 |
+
|
19 |
+
def get_today(frmt='%Y-%m-%d'):
|
20 |
+
today = datetime.now()
|
21 |
+
return today.strftime(frmt)
|
22 |
+
|
23 |
+
# Example usage:
|
24 |
+
today = get_today() # Output: '2024-02-04'
|
25 |
+
|
26 |
+
# Example usage:
|
27 |
+
yesterday = get_yesterday()
|
28 |
+
|
29 |
+
finnhub_client = finnhub.Client(api_key=f"{finhub_api}")
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
data = finnhub_client.company_news(ticker, _from=yesterday, to=today)
|
34 |
+
|
35 |
+
for article in data:
|
36 |
+
finhub_list.append(article['headline'])
|
37 |
+
|
38 |
+
return finhub_list
|
39 |
+
|
marketaux_caller.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
from streamlit import secrets
|
3 |
+
|
4 |
+
marketaux_api = secrets["marketaux_api"]
|
5 |
+
|
6 |
+
def get_marketaux(ticker):
|
7 |
+
|
8 |
+
marketaux_list = []
|
9 |
+
url = f'https://api.marketaux.com/v1/news/all?symbols={ticker}&filter_entities=true&language=en&api_token={marketaux_api}'
|
10 |
+
r = requests.get(url)
|
11 |
+
data = r.json()
|
12 |
+
|
13 |
+
for article in data['data']:
|
14 |
+
marketaux_list.append(article['title'])
|
15 |
+
|
16 |
+
return marketaux_list
|
newsapi_caller.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datetime
|
2 |
+
from api_keys import news_api
|
3 |
+
import requests
|
4 |
+
from streamlit import secrets
|
5 |
+
|
6 |
+
news_api = secrets["news_api"]
|
7 |
+
|
8 |
+
def get_newsapi(company):
|
9 |
+
|
10 |
+
newsapi_list = []
|
11 |
+
|
12 |
+
def get_today(frmt='%Y-%m-%d'):
|
13 |
+
today = datetime.date.today()
|
14 |
+
return today.strftime(frmt)
|
15 |
+
|
16 |
+
today = get_today()
|
17 |
+
|
18 |
+
url = f"https://newsapi.org/v2/everything?q={company}&from={today}&sortBy=popularity&apiKey={news_api}"
|
19 |
+
|
20 |
+
headers = {"accept": "application/json"}
|
21 |
+
|
22 |
+
r = requests.request("GET", url, headers=headers)
|
23 |
+
|
24 |
+
data = r.json()
|
25 |
+
|
26 |
+
for article in data['articles']:
|
27 |
+
newsapi_list.append(article['title'])
|
28 |
+
|
29 |
+
return newsapi_list
|
30 |
+
|
31 |
+
|
newsdata_caller.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from api_keys import newsdata_api
|
2 |
+
import requests
|
3 |
+
from streamlit import secrets
|
4 |
+
|
5 |
+
newsdata_api = secrets["newsdata_api"]
|
6 |
+
|
7 |
+
def get_newsdata(company):
|
8 |
+
|
9 |
+
newsdata_list = []
|
10 |
+
|
11 |
+
url = f"https://newsdata.io/api/1/news?apikey={newsdata_api}&q={company}&language=en"
|
12 |
+
|
13 |
+
headers = {"accept": "application/json"}
|
14 |
+
|
15 |
+
r = requests.request("GET", url, headers=headers)
|
16 |
+
|
17 |
+
data = r.json()
|
18 |
+
|
19 |
+
for article in data['results']:
|
20 |
+
newsdata_list.append(article['title'])
|
21 |
+
|
22 |
+
return newsdata_list
|
vantage_caller.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from api_keys import vantage_api
|
2 |
+
import requests
|
3 |
+
from streamlit import secrets
|
4 |
+
|
5 |
+
vantage_api = secrets["vantage_api"]
|
6 |
+
|
7 |
+
def get_vantage(ticker):
|
8 |
+
|
9 |
+
vantage_list = []
|
10 |
+
|
11 |
+
url = f'https://www.alphavantage.co/query?function=NEWS_SENTIMENT&tickers={ticker}&apikey={vantage_api}&limit=1000'
|
12 |
+
r = requests.get(url)
|
13 |
+
data = r.json()
|
14 |
+
|
15 |
+
for article in data['feed']:
|
16 |
+
vantage_list.append(article['title'])
|
17 |
+
|
18 |
+
return vantage_list
|