Spaces:
Running
Running
File size: 3,116 Bytes
f018e8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
import whisper
import gradio as gr
import datetime
import subprocess
import torch
import pyannote.audio
from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding
from pyannote.audio import Audio
from pyannote.core import Segment
import wave
import contextlib
from sklearn.cluster import AgglomerativeClustering
import numpy as np
model = whisper.load_model("large-v2")
embedding_model = PretrainedSpeakerEmbedding(
"speechbrain/spkrec-ecapa-voxceleb",
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
)
def transcribe(audio, num_speakers):
path, error = convert_to_wav(audio)
if error is not None:
return error
duration = get_duration(path)
if duration > 4 * 60 * 60:
return "Audio duration too long"
result = model.transcribe(path)
segments = result["segments"]
num_speakers = min(max(round(num_speakers), 1), len(segments))
if len(segments) == 1:
segments[0]['speaker'] = 'SPEAKER 1'
else:
embeddings = make_embeddings(path, segments, duration)
add_speaker_labels(segments, embeddings, num_speakers)
output = get_output(segments)
return output
def convert_to_wav(path):
if path[-3:] != 'wav':
new_path = '.'.join(path.split('.')[:-1]) + '.wav'
try:
subprocess.call(['ffmpeg', '-i', path, new_path, '-y'])
except:
return path, 'Error: Could not convert file to .wav'
path = new_path
return path, None
def get_duration(path):
with contextlib.closing(wave.open(path,'r')) as f:
frames = f.getnframes()
rate = f.getframerate()
return frames / float(rate)
def make_embeddings(path, segments, duration):
embeddings = np.zeros(shape=(len(segments), 192))
for i, segment in enumerate(segments):
embeddings[i] = segment_embedding(path, segment, duration)
return np.nan_to_num(embeddings)
audio = Audio()
def segment_embedding(path, segment, duration):
start = segment["start"]
# Whisper overshoots the end timestamp in the last segment
end = min(duration, segment["end"])
clip = Segment(start, end)
waveform, sample_rate = audio.crop(path, clip)
return embedding_model(waveform[None])
def add_speaker_labels(segments, embeddings, num_speakers):
clustering = AgglomerativeClustering(num_speakers).fit(embeddings)
labels = clustering.labels_
for i in range(len(segments)):
segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1)
def time(secs):
return datetime.timedelta(seconds=round(secs))
def get_output(segments):
output = ''
for (i, segment) in enumerate(segments):
if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]:
if i != 0:
output += '\n\n'
output += segment["speaker"] + ' ' + str(time(segment["start"])) + '\n\n'
output += segment["text"][1:] + ' '
return output
gr.Interface(
title = 'Whisper with Speaker Recognition',
fn=transcribe,
inputs=[
gr.inputs.Audio(source="upload", type="filepath"),
gr.inputs.Number(default=2, label="Number of Speakers")
],
outputs=[
gr.outputs.Textbox(label='Transcript')
]
).launch() |