Spaces:
Running
Running
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import whisper
|
2 |
+
import gradio as gr
|
3 |
+
import datetime
|
4 |
+
|
5 |
+
import subprocess
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import pyannote.audio
|
9 |
+
from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding
|
10 |
+
|
11 |
+
from pyannote.audio import Audio
|
12 |
+
from pyannote.core import Segment
|
13 |
+
|
14 |
+
import wave
|
15 |
+
import contextlib
|
16 |
+
|
17 |
+
from sklearn.cluster import AgglomerativeClustering
|
18 |
+
import numpy as np
|
19 |
+
|
20 |
+
model = whisper.load_model("large-v2")
|
21 |
+
embedding_model = PretrainedSpeakerEmbedding(
|
22 |
+
"speechbrain/spkrec-ecapa-voxceleb",
|
23 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
24 |
+
)
|
25 |
+
|
26 |
+
def transcribe(audio, num_speakers):
|
27 |
+
path, error = convert_to_wav(audio)
|
28 |
+
if error is not None:
|
29 |
+
return error
|
30 |
+
|
31 |
+
duration = get_duration(path)
|
32 |
+
if duration > 4 * 60 * 60:
|
33 |
+
return "Audio duration too long"
|
34 |
+
|
35 |
+
result = model.transcribe(path)
|
36 |
+
segments = result["segments"]
|
37 |
+
|
38 |
+
num_speakers = min(max(round(num_speakers), 1), len(segments))
|
39 |
+
if len(segments) == 1:
|
40 |
+
segments[0]['speaker'] = 'SPEAKER 1'
|
41 |
+
else:
|
42 |
+
embeddings = make_embeddings(path, segments, duration)
|
43 |
+
add_speaker_labels(segments, embeddings, num_speakers)
|
44 |
+
output = get_output(segments)
|
45 |
+
return output
|
46 |
+
|
47 |
+
def convert_to_wav(path):
|
48 |
+
if path[-3:] != 'wav':
|
49 |
+
new_path = '.'.join(path.split('.')[:-1]) + '.wav'
|
50 |
+
try:
|
51 |
+
subprocess.call(['ffmpeg', '-i', path, new_path, '-y'])
|
52 |
+
except:
|
53 |
+
return path, 'Error: Could not convert file to .wav'
|
54 |
+
path = new_path
|
55 |
+
return path, None
|
56 |
+
|
57 |
+
def get_duration(path):
|
58 |
+
with contextlib.closing(wave.open(path,'r')) as f:
|
59 |
+
frames = f.getnframes()
|
60 |
+
rate = f.getframerate()
|
61 |
+
return frames / float(rate)
|
62 |
+
|
63 |
+
def make_embeddings(path, segments, duration):
|
64 |
+
embeddings = np.zeros(shape=(len(segments), 192))
|
65 |
+
for i, segment in enumerate(segments):
|
66 |
+
embeddings[i] = segment_embedding(path, segment, duration)
|
67 |
+
return np.nan_to_num(embeddings)
|
68 |
+
|
69 |
+
audio = Audio()
|
70 |
+
|
71 |
+
def segment_embedding(path, segment, duration):
|
72 |
+
start = segment["start"]
|
73 |
+
# Whisper overshoots the end timestamp in the last segment
|
74 |
+
end = min(duration, segment["end"])
|
75 |
+
clip = Segment(start, end)
|
76 |
+
waveform, sample_rate = audio.crop(path, clip)
|
77 |
+
return embedding_model(waveform[None])
|
78 |
+
|
79 |
+
def add_speaker_labels(segments, embeddings, num_speakers):
|
80 |
+
clustering = AgglomerativeClustering(num_speakers).fit(embeddings)
|
81 |
+
labels = clustering.labels_
|
82 |
+
for i in range(len(segments)):
|
83 |
+
segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1)
|
84 |
+
|
85 |
+
def time(secs):
|
86 |
+
return datetime.timedelta(seconds=round(secs))
|
87 |
+
|
88 |
+
def get_output(segments):
|
89 |
+
output = ''
|
90 |
+
for (i, segment) in enumerate(segments):
|
91 |
+
if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]:
|
92 |
+
if i != 0:
|
93 |
+
output += '\n\n'
|
94 |
+
output += segment["speaker"] + ' ' + str(time(segment["start"])) + '\n\n'
|
95 |
+
output += segment["text"][1:] + ' '
|
96 |
+
return output
|
97 |
+
|
98 |
+
gr.Interface(
|
99 |
+
title = 'Whisper with Speaker Recognition',
|
100 |
+
fn=transcribe,
|
101 |
+
inputs=[
|
102 |
+
gr.inputs.Audio(source="upload", type="filepath"),
|
103 |
+
gr.inputs.Number(default=2, label="Number of Speakers")
|
104 |
+
|
105 |
+
],
|
106 |
+
outputs=[
|
107 |
+
gr.outputs.Textbox(label='Transcript')
|
108 |
+
]
|
109 |
+
).launch()
|