File size: 6,965 Bytes
0179eff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b07e2c
0179eff
 
8793a8a
0179eff
 
 
 
 
9de683c
0179eff
 
 
 
 
1d36280
0179eff
 
 
7cf713e
2b07e2c
d42b885
0179eff
 
 
54de5cd
 
 
 
 
0179eff
 
 
 
 
 
 
 
 
 
bd691e6
54de5cd
 
 
 
 
 
44f55c3
54de5cd
44f55c3
 
54de5cd
 
44f55c3
 
54de5cd
44f55c3
0179eff
 
 
 
2b07e2c
0179eff
 
 
 
 
 
 
 
 
 
 
 
 
 
85e86af
0179eff
85e86af
1aaf055
ecf5c6e
8e4e703
ecf5c6e
 
44f55c3
ecf5c6e
995bcea
ecf5c6e
 
0179eff
 
 
 
 
 
02d9707
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0179eff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9beb7dd
9d134d2
9beb7dd
0179eff
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# -*- coding: utf-8 -*-
"""Deploy Barcelo demo.ipynb
Automatically generated by Colaboratory.
Original file is located at
    https://colab.research.google.com/drive/1FxaL8DcYgvjPrWfWruSA5hvk3J81zLY9
![   ](https://www.vicentelopez.gov.ar/assets/images/logo-mvl.png)
# Modelo
YOLO es una familia de modelos de detección de objetos a escala compuesta entrenados en COCO dataset, e incluye una funcionalidad simple para Test Time Augmentation (TTA), model ensembling, hyperparameter evolution, and export to ONNX, CoreML and TFLite.
## Gradio Inferencia
![](https://i.ibb.co/982NS6m/header.png)
Este Notebook se acelera opcionalmente con un entorno de ejecución de GPU
----------------------------------------------------------------------
 YOLOv5 Gradio demo
*Author: Ultralytics LLC and Gradio*
# Código
"""

#!pip install -qr https://raw.githubusercontent.com/ultralytics/yolov5/master/requirements.txt gradio # install dependencies

import os
import re
import json
import numpy as np
import pandas as pd
import gradio as gr
import torch
from PIL import Image
from ultralytics import YOLO
#from ultralyticsplus import render_result

# Images
torch.hub.download_url_to_file('https://huggingface.co/spaces/Municipalidad-de-Vicente-Lopez/Trampas_Barcelo/resolve/main/2024-03-11T10-50-27.jpg', 'ejemplo1.jpg')
torch.hub.download_url_to_file('https://i.pinimg.com/originals/c2/ce/e0/c2cee05624d5477ffcf2d34ca77b47d1.jpg', 'ejemplo2.jpg')

# Model
class YOLODetect():
    def __init__(self, modelo):
        self.modelo = modelo

    def predecir(self, url):
        # conf	float	0.25	umbral de confianza del objeto para la detección
        # iou	float	0.7	umbral de intersección sobre unión (IoU) para NMS
        self.source = url
        self.results = self.modelo.predict(source=self.source, save=True, imgsz=640, conf=0.5, iou=0.40)
        return self.results

    def show(self):
        results = self.results[0]
        render = None #render_result(model=self.modelo, image=self.source, result=self.results[0])
        render = Image.open(f"runs/detect/predict/{results.path}")
        return render

    def to_json(self):
        results = self.results[0]
        img_size = results.orig_shape
        img_name = results.path
        array_numpy = results.boxes.cls.cpu().numpy().astype(np.int32)
        
        # Definir las clases y sus nombres correspondientes
        clases = {
            0: "Aedes",
            1: "Mosquitos",
            2: "Moscas"
        }

        # Contabilizar las clases
        conteo_clases = np.bincount(array_numpy)

        self.json_result = [{'Especie': clases[i], 'Cantidad': str(conteo_clases[i]) if i < len(conteo_clases) else str(0)} for i in range(len(clases))]
        # Crear un diccionario con los elementos necesarios
        result_dict = {
            "image": str(img_name),
            "size": str(img_size),
            "detail": self.json_result
        }
        
        # Convertir el diccionario a una cadena JSON
        result_dict = json.dumps(result_dict)
        #print(f"{type(self.json_result)} - {self.json_result}")

        # Convertir la cadena JSON a un objeto Python (diccionario)
        result_dict = json.loads(result_dict)
        #print(f"{type(self.json_result)} - {self.json_result}")

        return result_dict

    def to_dataframe(self):
        return pd.DataFrame(self.json_result)

modelo_yolo = YOLO('best.pt')

def yolo(size, iou, conf, im):
    '''Wrapper fn for gradio'''
    g = (int(size) / max(im.size))  # gain
    im = im.resize((int(x * g) for x in im.size), Image.LANCZOS) # resize with antialiasing


    # model.iou = iou
    
    # model.conf = conf

   
    # results2 = model(im)  # inference
    # #print(type(results2))
    print(type(im))

    source = im#Image.open(im)
    model = YOLODetect(modelo_yolo)
    results = model.predecir(source)

    result_json = model.to_json()
    print(result_json)
    result_df = model.to_dataframe()
    print(result_df)
    result_img = model.show()
    
    #result_img, result_df, result_json = source, None, None
    return result_img, result_df, result_json
    
#------------ Interface-------------



#in1 = gr.inputs.Radio(['640', '1280'], label="Tamaño de la imagen", type='value')
#in2 = gr.inputs.Slider(minimum=0, maximum=1, step=0.05, label='NMS IoU threshold')
#in3 = gr.inputs.Slider(minimum=0, maximum=1, step=0.05, label='Umbral o  threshold')
#in4 = gr.inputs.Image(type='pil', label="Original Image")

#out2 = gr.outputs.Image(type="pil", label="YOLOv5")
#out3 = gr.outputs.Dataframe(label="Cantidad_especie", headers=['Cantidad','Especie'], type="pandas")  
#out4 = gr.outputs.JSON(label="JSON")
in1 = gr.Radio(['640', '1280'], label="Tamaño de la imagen", type='value')
in2 = gr.Slider(minimum=0, maximum=1, step=0.05, label='NMS IoU threshold')
in3 = gr.Slider(minimum=0, maximum=1, step=0.05, label='Umbral o  threshold')
in4 = gr.Image(type='pil', label="Original Image")

out2 = gr.Image(type="pil", label="YOLOv5")
out3 = gr.Dataframe(label="Cantidad_especie", headers=['Cantidad','Especie'], type="pandas")  
out4 = gr.JSON(label="JSON")
#-------------- Text-----
title = 'Trampas Barceló'
description = """
<p>
<center>
Sistemas de Desarrollado por Subsecretaría de Modernización del Municipio de Vicente López. Advertencia solo usar fotos provenientes de las trampas Barceló, no de celular o foto de internet.
<img src="https://www.vicentelopez.gov.ar/assets/images/logo-mvl.png" alt="logo" width="250"/>
</center>
</p>
"""
article ="<p style='text-align: center'><a href='https://docs.google.com/presentation/d/1T5CdcLSzgRe8cQpoi_sPB4U170551NGOrZNykcJD0xU/edit?usp=sharing' target='_blank'>Para mas info, clik para ir al white paper</a></p><p style='text-align: center'><a href='https://drive.google.com/drive/folders/1owACN3HGIMo4zm2GQ_jf-OhGNeBVRS7l?usp=sharing ' target='_blank'>Google Colab Demo</a></p><p style='text-align: center'><a href='https://github.com/Municipalidad-de-Vicente-Lopez/Trampa_Barcelo' target='_blank'>Repo Github</a></p></center></p>"
          
examples = [['640',0.45, 0.75,'ejemplo1.jpg'], ['640',0.45, 0.75,'ejemplo2.jpg']]

iface = gr.Interface(yolo, 
                    inputs=[in1, in2, in3, in4], 
                    outputs=[out2,out3,out4], title=title, 
					description=description, 
					article=article, 
					examples=examples, 
					analytics_enabled=False, 
					allow_flagging="manual",
					flagging_options=["Correcto", "Incorrecto", "Casi correcto", "Error", "Otro"],
					#flagging_callback=hf_writer
                    )
					
#iface.launch(enable_queue=True, debug=True)
iface.queue()
iface.launch(debug=True)

"""For YOLOv5 PyTorch Hub inference with **PIL**, **OpenCV**, **Numpy** or **PyTorch** inputs please see the full [YOLOv5 PyTorch Hub Tutorial](https://github.com/ultralytics/yolov5/issues/36).
## Citation
[![DOI](https://zenodo.org/badge/264818686.svg)](https://zenodo.org/badge/latestdoi/264818686)
"""