File size: 5,465 Bytes
2b8a3f4
 
 
 
 
 
 
 
 
f7906d2
2b8a3f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7906d2
 
 
 
 
 
 
 
4d7721d
2b8a3f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9113cab
 
 
2b8a3f4
9113cab
2b8a3f4
 
 
 
 
 
 
 
ba21052
2b8a3f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd9c4b2
 
2b8a3f4
 
07601c1
 
 
2b8a3f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import torch
from torch.utils.data import DataLoader
import numpy as np
from tqdm import tqdm
from transformers import SpeechT5HifiGan
from datasets import load_dataset
from tqdm import tqdm
import soundfile as sf
import librosa
import random

dataset = load_dataset('pourmand1376/asr-farsi-youtube-chunked-10-seconds', split = "test")


import librosa
from datasets import load_dataset, Audio

def resample_audio(example):
    # Resample to 16 kHz
    y_resampled = librosa.resample(example["audio"]["array"], orig_sr=example["audio"]["sampling_rate"], target_sr=16000)
    
    # Update the example with the resampled audio and new sample rate
    example["audio"]["array"] = y_resampled
    example["audio"]["sampling_rate"] = 16000
    
    return example


dataset = dataset.select(range(1000))
dataset = dataset.map(resample_audio)


import torch
from torch.utils.data import DataLoader
import numpy as np
from tqdm import tqdm
from transformers import SpeechT5HifiGan
from datasets import load_dataset
from tqdm import tqdm
import soundfile as sf
import librosa



def set_seed(seed):
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(seed)
    np.random.seed(seed)
    random.seed(seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False

set_seed(42)
# Load model directly
from transformers import AutoProcessor, AutoModelForTextToSpectrogram

processor = AutoProcessor.from_pretrained("Alidr79/speecht5_v3_youtube")
model = AutoModelForTextToSpectrogram.from_pretrained("Alidr79/speecht5_v3_youtube")


from speechbrain.inference.classifiers import EncoderClassifier
import os

spk_model_name = "speechbrain/spkrec-xvect-voxceleb"

device = "cuda" if torch.cuda.is_available() else "cpu"
speaker_model = EncoderClassifier.from_hparams(
    source=spk_model_name,
    run_opts={"device": device},
    savedir=os.path.join("/tmp", spk_model_name),
)


def create_speaker_embedding(waveform):
    with torch.no_grad():
        speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform))
        speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2)
        speaker_embeddings = speaker_embeddings.squeeze().cpu().numpy()
    return speaker_embeddings

vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")

from PersianG2p import Persian_g2p_converter
from scipy.io import wavfile
import soundfile as sf


PersianG2Pconverter = Persian_g2p_converter(use_large = True)

import noisereduce as nr

def denoise_audio(audio, sr):
    # Perform noise reduction
    denoised_audio = nr.reduce_noise(y=audio, sr=sr)
    return denoised_audio


import noisereduce as nr
from pydub import AudioSegment
def match_target_amplitude(sound, target_dBFS):
    change_in_dBFS = target_dBFS - sound.dBFS
    return sound.apply_gain(change_in_dBFS)

import librosa
def tts_fn(slider_value, input_text):
    audio_embedding = dataset[slider_value]['audio']['array']
    sample_rate_embedding = dataset[slider_value]['audio']['sampling_rate']
    if sample_rate_embedding != 16000:
        audio_embedding = librosa.resample(audio_embedding, orig_sr=sample_rate_embedding, target_sr=16_000)
        
    
    with torch.no_grad():
        speaker_embedding = create_speaker_embedding(audio_embedding)
        speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0)

    phonemes = PersianG2Pconverter.transliterate(input_text, tidy = False, secret = True)
    # text = "</s>"
    # for i in phonemes.replace(' .', '').split(" "):
    #     text += i + " <pad> "

    text = phonemes
    
    print("sentence:", input_text)
    print("sentence phonemes:", text)

    with torch.no_grad():
        inputs = processor(text = text, return_tensors="pt")

    with torch.no_grad():
        spectrogram = model.generate_speech(inputs["input_ids"], speaker_embedding, minlenratio = 2, maxlenratio = 4, threshold = 0.35)

    with torch.no_grad():
        speech = vocoder(spectrogram)

    speech = speech.numpy().reshape(-1)
    speech_denoised = denoise_audio(speech, 16000)
    sf.write("in_speech.wav", speech_denoised, 16000)

    sound = AudioSegment.from_wav("in_speech.wav", "wav")
    normalized_sound = match_target_amplitude(sound, -20.0)
    normalized_sound.export("out_sound.wav", format="wav")

    sample_rate_out, audio_out = wavfile.read("out_sound.wav")

    assert sample_rate_out == 16_000

    return 16000, (audio_out.reshape(-1)).astype(np.int16)


def master_fn(slider_value, input_text):
    if "." not in input_text:
        input_text += '.'

    print(f"speaker_id = {slider_value}")
    all_speech = []
    for sentence in input_text.split("."):
        if sentence != '' and sentence != ' ' and sentence != '\n':
            sampling_rate_response, audio_chunk_response = tts_fn(slider_value, sentence)
            all_speech.append(audio_chunk_response)
       
    audio_response = np.concatenate(all_speech)
    return sampling_rate_response, audio_response

import gradio as gr

slider = gr.Slider(
    minimum=0,
    maximum=(len(dataset)-1),
    value=600,
    step=1,
    label="Select a speaker(Good examples : 600, 604, 910, 7, 13)"
)

# Create the text input component
text_input = gr.Textbox(
    label="Enter some text",
    placeholder="Type something here..."
)


demo = gr.Interface(
    fn = master_fn,
    inputs=[slider, text_input],  # List of inputs
    outputs = "audio"
)

demo.launch()