Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.utils.data import DataLoader
|
3 |
+
import numpy as np
|
4 |
+
from tqdm import tqdm
|
5 |
+
from transformers import SpeechT5HifiGan
|
6 |
+
from datasets import load_dataset
|
7 |
+
from tqdm import tqdm
|
8 |
+
import soundfile as sf
|
9 |
+
import librosa
|
10 |
+
|
11 |
+
dataset = load_dataset('pourmand1376/asr-farsi-youtube-chunked-10-seconds', split = "test")
|
12 |
+
|
13 |
+
|
14 |
+
import librosa
|
15 |
+
from datasets import load_dataset, Audio
|
16 |
+
|
17 |
+
def resample_audio(example):
|
18 |
+
# Resample to 16 kHz
|
19 |
+
y_resampled = librosa.resample(example["audio"]["array"], orig_sr=example["audio"]["sampling_rate"], target_sr=16000)
|
20 |
+
|
21 |
+
# Update the example with the resampled audio and new sample rate
|
22 |
+
example["audio"]["array"] = y_resampled
|
23 |
+
example["audio"]["sampling_rate"] = 16000
|
24 |
+
|
25 |
+
return example
|
26 |
+
|
27 |
+
|
28 |
+
dataset = dataset.select(range(1000))
|
29 |
+
dataset = dataset.map(resample_audio)
|
30 |
+
|
31 |
+
|
32 |
+
import torch
|
33 |
+
from torch.utils.data import DataLoader
|
34 |
+
import numpy as np
|
35 |
+
from tqdm import tqdm
|
36 |
+
from transformers import SpeechT5HifiGan
|
37 |
+
from datasets import load_dataset
|
38 |
+
from tqdm import tqdm
|
39 |
+
import soundfile as sf
|
40 |
+
import librosa
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
def set_seed(seed):
|
45 |
+
torch.manual_seed(seed)
|
46 |
+
if torch.cuda.is_available():
|
47 |
+
torch.cuda.manual_seed_all(seed)
|
48 |
+
|
49 |
+
set_seed(1)
|
50 |
+
# Load model directly
|
51 |
+
from transformers import AutoProcessor, AutoModelForTextToSpectrogram
|
52 |
+
|
53 |
+
processor = AutoProcessor.from_pretrained("Alidr79/speecht5_v3_youtube")
|
54 |
+
model = AutoModelForTextToSpectrogram.from_pretrained("Alidr79/speecht5_v3_youtube")
|
55 |
+
|
56 |
+
|
57 |
+
from speechbrain.inference.classifiers import EncoderClassifier
|
58 |
+
import os
|
59 |
+
|
60 |
+
spk_model_name = "speechbrain/spkrec-xvect-voxceleb"
|
61 |
+
|
62 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
63 |
+
speaker_model = EncoderClassifier.from_hparams(
|
64 |
+
source=spk_model_name,
|
65 |
+
run_opts={"device": device},
|
66 |
+
savedir=os.path.join("/tmp", spk_model_name),
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
def create_speaker_embedding(waveform):
|
71 |
+
with torch.no_grad():
|
72 |
+
speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform))
|
73 |
+
speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2)
|
74 |
+
speaker_embeddings = speaker_embeddings.squeeze().cpu().numpy()
|
75 |
+
return speaker_embeddings
|
76 |
+
|
77 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
78 |
+
|
79 |
+
from PersianG2p import Persian_g2p_converter
|
80 |
+
from scipy.io import wavfile
|
81 |
+
import soundfile as sf
|
82 |
+
|
83 |
+
|
84 |
+
PersianG2Pconverter = Persian_g2p_converter(use_large = True)
|
85 |
+
|
86 |
+
import noisereduce as nr
|
87 |
+
|
88 |
+
def denoise_audio(audio, sr):
|
89 |
+
# Perform noise reduction
|
90 |
+
denoised_audio = nr.reduce_noise(y=audio, sr=sr)
|
91 |
+
return denoised_audio
|
92 |
+
|
93 |
+
|
94 |
+
import noisereduce as nr
|
95 |
+
from pydub import AudioSegment
|
96 |
+
def match_target_amplitude(sound, target_dBFS):
|
97 |
+
change_in_dBFS = target_dBFS - sound.dBFS
|
98 |
+
return sound.apply_gain(change_in_dBFS)
|
99 |
+
|
100 |
+
import librosa
|
101 |
+
def tts_fn(slider_value, input_text):
|
102 |
+
audio_embedding = dataset[slider_value]['audio']['array']
|
103 |
+
sample_rate_embedding = dataset[slider_value]['audio']['sampling_rate']
|
104 |
+
if sample_rate_embedding != 16000:
|
105 |
+
audio_embedding = librosa.resample(audio_embedding, orig_sr=sample_rate_embedding, target_sr=16_000)
|
106 |
+
|
107 |
+
|
108 |
+
with torch.no_grad():
|
109 |
+
speaker_embedding = create_speaker_embedding(audio_embedding)
|
110 |
+
speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0)
|
111 |
+
|
112 |
+
phonemes = PersianG2Pconverter.transliterate(input_text, tidy = False, secret = True)
|
113 |
+
# text = "</s>"
|
114 |
+
# for i in phonemes.replace(' .', '').split(" "):
|
115 |
+
# text += i + " <pad> "
|
116 |
+
|
117 |
+
text = phonemes
|
118 |
+
|
119 |
+
print("sentence:", input_text)
|
120 |
+
print("sentence phonemes:", text)
|
121 |
+
|
122 |
+
with torch.no_grad():
|
123 |
+
inputs = processor(text = text, return_tensors="pt")
|
124 |
+
|
125 |
+
with torch.no_grad():
|
126 |
+
spectrogram = model.generate_speech(inputs["input_ids"], speaker_embedding, minlenratio = 2, maxlenratio = 4, threshold = 0.35)
|
127 |
+
|
128 |
+
with torch.no_grad():
|
129 |
+
speech = vocoder(spectrogram)
|
130 |
+
|
131 |
+
speech = speech.numpy().reshape(-1)
|
132 |
+
speech_denoised = denoise_audio(speech, 16000)
|
133 |
+
sf.write("in_speech.wav", speech_denoised, 16000)
|
134 |
+
|
135 |
+
sound = AudioSegment.from_wav("in_speech.wav", "wav")
|
136 |
+
normalized_sound = match_target_amplitude(sound, -20.0)
|
137 |
+
normalized_sound.export("out_sound.wav", format="wav")
|
138 |
+
|
139 |
+
sample_rate_out, audio_out = wavfile.read("out_sound.wav")
|
140 |
+
|
141 |
+
assert sample_rate_out == 16_000
|
142 |
+
|
143 |
+
return 16000, (audio_out.reshape(-1)).astype(np.int16)
|
144 |
+
|
145 |
+
|
146 |
+
def master_fn(slider_value, input_text):
|
147 |
+
if "." not in input_text:
|
148 |
+
input_text += '.'
|
149 |
+
|
150 |
+
all_speech = []
|
151 |
+
for sentence in input_text.split("."):
|
152 |
+
sampling_rate_response, audio_chunk_response = tts_fn(slider_value, sentence)
|
153 |
+
all_speech.append(audio_chunk_response)
|
154 |
+
|
155 |
+
audio_response = np.concatenate(all_speech)
|
156 |
+
return sampling_rate_response, audio_response
|
157 |
+
|
158 |
+
import gradio as gr
|
159 |
+
|
160 |
+
slider = gr.Slider(
|
161 |
+
minimum=0,
|
162 |
+
maximum=(len(dataset)-1),
|
163 |
+
value=600,
|
164 |
+
step=1,
|
165 |
+
label="Select a speaker(Good examples : 600, 604, 910, 7, 13)"
|
166 |
+
)
|
167 |
+
|
168 |
+
# Create the text input component
|
169 |
+
text_input = gr.Textbox(
|
170 |
+
label="Enter some text",
|
171 |
+
placeholder="Type something here..."
|
172 |
+
)
|
173 |
+
|
174 |
+
|
175 |
+
demo = gr.Interface(
|
176 |
+
fn = master_fn,
|
177 |
+
inputs=[slider, text_input], # List of inputs
|
178 |
+
outputs = "audio"
|
179 |
+
)
|
180 |
+
|
181 |
+
demo.launch()
|