Spaces:
Build error
Build error
File size: 5,696 Bytes
d03bb00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
import imp
import torch
import torch.nn as nn
from timm.models.layers import trunc_normal_, DropPath, to_2tuple
import os
from model.blocks import Mlp
class query_Attention(nn.Module):
def __init__(self, dim, num_heads=2, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim ** -0.5
self.q = nn.Parameter(torch.ones((1, 10, dim)), requires_grad=True)
self.k = nn.Linear(dim, dim, bias=qkv_bias)
self.v = nn.Linear(dim, dim, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
k = self.k(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
v = self.v(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
q = self.q.expand(B, -1, -1).view(B, -1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
# k = self.k(x).reshape(B, N, self.num_heads, torch.div(C,self.num_heads, rounding_mode='floor')).permute(0, 2, 1, 3)
# v = self.v(x).reshape(B, N, self.num_heads, torch.div(C,self.num_heads, rounding_mode='floor')).permute(0, 2, 1, 3)
# q = self.q.expand(B, -1, -1).view(B, -1, self.num_heads, torch.div(C,self.num_heads, rounding_mode='floor')).permute(0, 2, 1, 3)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, 10, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class query_SABlock(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim)
self.norm1 = norm_layer(dim)
self.attn = query_Attention(
dim,
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
attn_drop=attn_drop, proj_drop=drop)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x):
x = x + self.pos_embed(x)
x = x.flatten(2).transpose(1, 2)
x = self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class conv_embedding(nn.Module):
def __init__(self, in_channels, out_channels):
super(conv_embedding, self).__init__()
self.proj = nn.Sequential(
nn.Conv2d(in_channels, out_channels // 2, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)),
nn.BatchNorm2d(out_channels // 2),
nn.GELU(),
# nn.Conv2d(out_channels // 2, out_channels // 2, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
# nn.BatchNorm2d(out_channels // 2),
# nn.GELU(),
nn.Conv2d(out_channels // 2, out_channels, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)),
nn.BatchNorm2d(out_channels),
)
def forward(self, x):
x = self.proj(x)
return x
class Global_pred(nn.Module):
def __init__(self, in_channels=3, out_channels=64, num_heads=4, type='exp'):
super(Global_pred, self).__init__()
if type == 'exp':
self.gamma_base = nn.Parameter(torch.ones((1)), requires_grad=False) # False in exposure correction
else:
self.gamma_base = nn.Parameter(torch.ones((1)), requires_grad=True)
self.color_base = nn.Parameter(torch.eye((3)), requires_grad=True) # basic color matrix
# main blocks
self.conv_large = conv_embedding(in_channels, out_channels)
self.generator = query_SABlock(dim=out_channels, num_heads=num_heads)
self.gamma_linear = nn.Linear(out_channels, 1)
self.color_linear = nn.Linear(out_channels, 1)
self.apply(self._init_weights)
for name, p in self.named_parameters():
if name == 'generator.attn.v.weight':
nn.init.constant_(p, 0)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward(self, x):
#print(self.gamma_base)
x = self.conv_large(x)
x = self.generator(x)
gamma, color = x[:, 0].unsqueeze(1), x[:, 1:]
gamma = self.gamma_linear(gamma).squeeze(-1) + self.gamma_base
#print(self.gamma_base, self.gamma_linear(gamma))
color = self.color_linear(color).squeeze(-1).view(-1, 3, 3) + self.color_base
return gamma, color
if __name__ == "__main__":
os.environ['CUDA_VISIBLE_DEVICES']='3'
#net = Local_pred_new().cuda()
img = torch.Tensor(8, 3, 400, 600)
global_net = Global_pred()
gamma, color = global_net(img)
print(gamma.shape, color.shape)
|