Spaces:
Build error
Build error
Upload 3 files
Browse files- model/IAT_main.py +133 -0
- model/blocks.py +281 -0
- model/global_net.py +132 -0
model/IAT_main.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
from torch import nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import os
|
6 |
+
import math
|
7 |
+
|
8 |
+
from timm.models.layers import trunc_normal_
|
9 |
+
from model.blocks import CBlock_ln, SwinTransformerBlock
|
10 |
+
from model.global_net import Global_pred
|
11 |
+
|
12 |
+
class Local_pred(nn.Module):
|
13 |
+
def __init__(self, dim=16, number=4, type='ccc'):
|
14 |
+
super(Local_pred, self).__init__()
|
15 |
+
# initial convolution
|
16 |
+
self.conv1 = nn.Conv2d(3, dim, 3, padding=1, groups=1)
|
17 |
+
self.relu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
18 |
+
# main blocks
|
19 |
+
block = CBlock_ln(dim)
|
20 |
+
block_t = SwinTransformerBlock(dim) # head number
|
21 |
+
if type =='ccc':
|
22 |
+
#blocks1, blocks2 = [block for _ in range(number)], [block for _ in range(number)]
|
23 |
+
blocks1 = [CBlock_ln(16, drop_path=0.01), CBlock_ln(16, drop_path=0.05), CBlock_ln(16, drop_path=0.1)]
|
24 |
+
blocks2 = [CBlock_ln(16, drop_path=0.01), CBlock_ln(16, drop_path=0.05), CBlock_ln(16, drop_path=0.1)]
|
25 |
+
elif type =='ttt':
|
26 |
+
blocks1, blocks2 = [block_t for _ in range(number)], [block_t for _ in range(number)]
|
27 |
+
elif type =='cct':
|
28 |
+
blocks1, blocks2 = [block, block, block_t], [block, block, block_t]
|
29 |
+
# block1 = [CBlock_ln(16), nn.Conv2d(16,24,3,1,1)]
|
30 |
+
self.mul_blocks = nn.Sequential(*blocks1, nn.Conv2d(dim, 3, 3, 1, 1), nn.ReLU())
|
31 |
+
self.add_blocks = nn.Sequential(*blocks2, nn.Conv2d(dim, 3, 3, 1, 1), nn.Tanh())
|
32 |
+
|
33 |
+
|
34 |
+
def forward(self, img):
|
35 |
+
img1 = self.relu(self.conv1(img))
|
36 |
+
mul = self.mul_blocks(img1)
|
37 |
+
add = self.add_blocks(img1)
|
38 |
+
|
39 |
+
return mul, add
|
40 |
+
|
41 |
+
# Short Cut Connection on Final Layer
|
42 |
+
class Local_pred_S(nn.Module):
|
43 |
+
def __init__(self, in_dim=3, dim=16, number=4, type='ccc'):
|
44 |
+
super(Local_pred_S, self).__init__()
|
45 |
+
# initial convolution
|
46 |
+
self.conv1 = nn.Conv2d(in_dim, dim, 3, padding=1, groups=1)
|
47 |
+
self.relu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
48 |
+
# main blocks
|
49 |
+
block = CBlock_ln(dim)
|
50 |
+
block_t = SwinTransformerBlock(dim) # head number
|
51 |
+
if type =='ccc':
|
52 |
+
blocks1 = [CBlock_ln(16, drop_path=0.01), CBlock_ln(16, drop_path=0.05), CBlock_ln(16, drop_path=0.1)]
|
53 |
+
blocks2 = [CBlock_ln(16, drop_path=0.01), CBlock_ln(16, drop_path=0.05), CBlock_ln(16, drop_path=0.1)]
|
54 |
+
elif type =='ttt':
|
55 |
+
blocks1, blocks2 = [block_t for _ in range(number)], [block_t for _ in range(number)]
|
56 |
+
elif type =='cct':
|
57 |
+
blocks1, blocks2 = [block, block, block_t], [block, block, block_t]
|
58 |
+
# block1 = [CBlock_ln(16), nn.Conv2d(16,24,3,1,1)]
|
59 |
+
self.mul_blocks = nn.Sequential(*blocks1)
|
60 |
+
self.add_blocks = nn.Sequential(*blocks2)
|
61 |
+
|
62 |
+
self.mul_end = nn.Sequential(nn.Conv2d(dim, 3, 3, 1, 1), nn.ReLU())
|
63 |
+
self.add_end = nn.Sequential(nn.Conv2d(dim, 3, 3, 1, 1), nn.Tanh())
|
64 |
+
self.apply(self._init_weights)
|
65 |
+
|
66 |
+
def _init_weights(self, m):
|
67 |
+
if isinstance(m, nn.Linear):
|
68 |
+
trunc_normal_(m.weight, std=.02)
|
69 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
70 |
+
nn.init.constant_(m.bias, 0)
|
71 |
+
elif isinstance(m, nn.LayerNorm):
|
72 |
+
nn.init.constant_(m.bias, 0)
|
73 |
+
nn.init.constant_(m.weight, 1.0)
|
74 |
+
elif isinstance(m, nn.Conv2d):
|
75 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
76 |
+
fan_out //= m.groups
|
77 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
78 |
+
if m.bias is not None:
|
79 |
+
m.bias.data.zero_()
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
def forward(self, img):
|
84 |
+
img1 = self.relu(self.conv1(img))
|
85 |
+
# short cut connection
|
86 |
+
mul = self.mul_blocks(img1) + img1
|
87 |
+
add = self.add_blocks(img1) + img1
|
88 |
+
mul = self.mul_end(mul)
|
89 |
+
add = self.add_end(add)
|
90 |
+
|
91 |
+
return mul, add
|
92 |
+
|
93 |
+
class IAT(nn.Module):
|
94 |
+
def __init__(self, in_dim=3, with_global=True, type='lol'):
|
95 |
+
super(IAT, self).__init__()
|
96 |
+
#self.local_net = Local_pred()
|
97 |
+
|
98 |
+
self.local_net = Local_pred_S(in_dim=in_dim)
|
99 |
+
|
100 |
+
self.with_global = with_global
|
101 |
+
if self.with_global:
|
102 |
+
self.global_net = Global_pred(in_channels=in_dim, type=type)
|
103 |
+
|
104 |
+
def apply_color(self, image, ccm):
|
105 |
+
shape = image.shape
|
106 |
+
image = image.view(-1, 3)
|
107 |
+
image = torch.tensordot(image, ccm, dims=[[-1], [-1]])
|
108 |
+
image = image.view(shape)
|
109 |
+
return torch.clamp(image, 1e-8, 1.0)
|
110 |
+
|
111 |
+
def forward(self, img_low):
|
112 |
+
#print(self.with_global)
|
113 |
+
mul, add = self.local_net(img_low)
|
114 |
+
img_high = (img_low.mul(mul)).add(add)
|
115 |
+
|
116 |
+
if not self.with_global:
|
117 |
+
return img_high
|
118 |
+
|
119 |
+
else:
|
120 |
+
gamma, color = self.global_net(img_low)
|
121 |
+
b = img_high.shape[0]
|
122 |
+
img_high = img_high.permute(0, 2, 3, 1) # (B,C,H,W) -- (B,H,W,C)
|
123 |
+
img_high = torch.stack([self.apply_color(img_high[i,:,:,:], color[i,:,:])**gamma[i,:] for i in range(b)], dim=0)
|
124 |
+
img_high = img_high.permute(0, 3, 1, 2) # (B,H,W,C) -- (B,C,H,W)
|
125 |
+
return img_high
|
126 |
+
|
127 |
+
|
128 |
+
if __name__ == "__main__":
|
129 |
+
os.environ['CUDA_VISIBLE_DEVICES']='3'
|
130 |
+
img = torch.Tensor(1, 3, 400, 600)
|
131 |
+
net = IAT()
|
132 |
+
print('total parameters:', sum(param.numel() for param in net.parameters()))
|
133 |
+
_, _, high = net(img)
|
model/blocks.py
ADDED
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Code copy from uniformer source code:
|
3 |
+
https://github.com/Sense-X/UniFormer
|
4 |
+
"""
|
5 |
+
import os
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
from functools import partial
|
9 |
+
import math
|
10 |
+
from timm.models.vision_transformer import VisionTransformer, _cfg
|
11 |
+
from timm.models.registry import register_model
|
12 |
+
from timm.models.layers import trunc_normal_, DropPath, to_2tuple
|
13 |
+
|
14 |
+
# ResMLP's normalization
|
15 |
+
class Aff(nn.Module):
|
16 |
+
def __init__(self, dim):
|
17 |
+
super().__init__()
|
18 |
+
# learnable
|
19 |
+
self.alpha = nn.Parameter(torch.ones([1, 1, dim]))
|
20 |
+
self.beta = nn.Parameter(torch.zeros([1, 1, dim]))
|
21 |
+
|
22 |
+
def forward(self, x):
|
23 |
+
x = x * self.alpha + self.beta
|
24 |
+
return x
|
25 |
+
|
26 |
+
# Color Normalization
|
27 |
+
class Aff_channel(nn.Module):
|
28 |
+
def __init__(self, dim, channel_first = True):
|
29 |
+
super().__init__()
|
30 |
+
# learnable
|
31 |
+
self.alpha = nn.Parameter(torch.ones([1, 1, dim]))
|
32 |
+
self.beta = nn.Parameter(torch.zeros([1, 1, dim]))
|
33 |
+
self.color = nn.Parameter(torch.eye(dim))
|
34 |
+
self.channel_first = channel_first
|
35 |
+
|
36 |
+
def forward(self, x):
|
37 |
+
if self.channel_first:
|
38 |
+
x1 = torch.tensordot(x, self.color, dims=[[-1], [-1]])
|
39 |
+
x2 = x1 * self.alpha + self.beta
|
40 |
+
else:
|
41 |
+
x1 = x * self.alpha + self.beta
|
42 |
+
x2 = torch.tensordot(x1, self.color, dims=[[-1], [-1]])
|
43 |
+
return x2
|
44 |
+
|
45 |
+
class Mlp(nn.Module):
|
46 |
+
# taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
|
47 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
48 |
+
super().__init__()
|
49 |
+
out_features = out_features or in_features
|
50 |
+
hidden_features = hidden_features or in_features
|
51 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
52 |
+
self.act = act_layer()
|
53 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
54 |
+
self.drop = nn.Dropout(drop)
|
55 |
+
|
56 |
+
def forward(self, x):
|
57 |
+
x = self.fc1(x)
|
58 |
+
x = self.act(x)
|
59 |
+
x = self.drop(x)
|
60 |
+
x = self.fc2(x)
|
61 |
+
x = self.drop(x)
|
62 |
+
return x
|
63 |
+
|
64 |
+
class CMlp(nn.Module):
|
65 |
+
# taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
|
66 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
67 |
+
super().__init__()
|
68 |
+
out_features = out_features or in_features
|
69 |
+
hidden_features = hidden_features or in_features
|
70 |
+
self.fc1 = nn.Conv2d(in_features, hidden_features, 1)
|
71 |
+
self.act = act_layer()
|
72 |
+
self.fc2 = nn.Conv2d(hidden_features, out_features, 1)
|
73 |
+
self.drop = nn.Dropout(drop)
|
74 |
+
|
75 |
+
def forward(self, x):
|
76 |
+
x = self.fc1(x)
|
77 |
+
x = self.act(x)
|
78 |
+
x = self.drop(x)
|
79 |
+
x = self.fc2(x)
|
80 |
+
x = self.drop(x)
|
81 |
+
return x
|
82 |
+
|
83 |
+
class CBlock_ln(nn.Module):
|
84 |
+
def __init__(self, dim, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
85 |
+
drop_path=0., act_layer=nn.GELU, norm_layer=Aff_channel, init_values=1e-4):
|
86 |
+
super().__init__()
|
87 |
+
self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim)
|
88 |
+
#self.norm1 = Aff_channel(dim)
|
89 |
+
self.norm1 = norm_layer(dim)
|
90 |
+
self.conv1 = nn.Conv2d(dim, dim, 1)
|
91 |
+
self.conv2 = nn.Conv2d(dim, dim, 1)
|
92 |
+
self.attn = nn.Conv2d(dim, dim, 5, padding=2, groups=dim)
|
93 |
+
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
94 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
95 |
+
#self.norm2 = Aff_channel(dim)
|
96 |
+
self.norm2 = norm_layer(dim)
|
97 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
98 |
+
self.gamma_1 = nn.Parameter(init_values * torch.ones((1, dim, 1, 1)), requires_grad=True)
|
99 |
+
self.gamma_2 = nn.Parameter(init_values * torch.ones((1, dim, 1, 1)), requires_grad=True)
|
100 |
+
self.mlp = CMlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
101 |
+
|
102 |
+
def forward(self, x):
|
103 |
+
x = x + self.pos_embed(x)
|
104 |
+
B, C, H, W = x.shape
|
105 |
+
#print(x.shape)
|
106 |
+
norm_x = x.flatten(2).transpose(1, 2)
|
107 |
+
#print(norm_x.shape)
|
108 |
+
norm_x = self.norm1(norm_x)
|
109 |
+
norm_x = norm_x.view(B, H, W, C).permute(0, 3, 1, 2)
|
110 |
+
|
111 |
+
|
112 |
+
x = x + self.drop_path(self.gamma_1*self.conv2(self.attn(self.conv1(norm_x))))
|
113 |
+
norm_x = x.flatten(2).transpose(1, 2)
|
114 |
+
norm_x = self.norm2(norm_x)
|
115 |
+
norm_x = norm_x.view(B, H, W, C).permute(0, 3, 1, 2)
|
116 |
+
x = x + self.drop_path(self.gamma_2*self.mlp(norm_x))
|
117 |
+
return x
|
118 |
+
|
119 |
+
|
120 |
+
def window_partition(x, window_size):
|
121 |
+
"""
|
122 |
+
Args:
|
123 |
+
x: (B, H, W, C)
|
124 |
+
window_size (int): window size
|
125 |
+
Returns:
|
126 |
+
windows: (num_windows*B, window_size, window_size, C)
|
127 |
+
"""
|
128 |
+
B, H, W, C = x.shape
|
129 |
+
#print(x.shape)
|
130 |
+
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
131 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
132 |
+
return windows
|
133 |
+
|
134 |
+
|
135 |
+
def window_reverse(windows, window_size, H, W):
|
136 |
+
"""
|
137 |
+
Args:
|
138 |
+
windows: (num_windows*B, window_size, window_size, C)
|
139 |
+
window_size (int): Window size
|
140 |
+
H (int): Height of image
|
141 |
+
W (int): Width of image
|
142 |
+
Returns:
|
143 |
+
x: (B, H, W, C)
|
144 |
+
"""
|
145 |
+
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
146 |
+
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
147 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
148 |
+
return x
|
149 |
+
|
150 |
+
|
151 |
+
class WindowAttention(nn.Module):
|
152 |
+
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
|
153 |
+
It supports both of shifted and non-shifted window.
|
154 |
+
Args:
|
155 |
+
dim (int): Number of input channels.
|
156 |
+
window_size (tuple[int]): The height and width of the window.
|
157 |
+
num_heads (int): Number of attention heads.
|
158 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
159 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
|
160 |
+
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
161 |
+
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
162 |
+
"""
|
163 |
+
|
164 |
+
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
|
165 |
+
super().__init__()
|
166 |
+
self.dim = dim
|
167 |
+
self.window_size = window_size # Wh, Ww
|
168 |
+
self.num_heads = num_heads
|
169 |
+
head_dim = dim // num_heads
|
170 |
+
self.scale = qk_scale or head_dim ** -0.5
|
171 |
+
|
172 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
173 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
174 |
+
self.proj = nn.Linear(dim, dim)
|
175 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
176 |
+
|
177 |
+
self.softmax = nn.Softmax(dim=-1)
|
178 |
+
|
179 |
+
def forward(self, x):
|
180 |
+
B_, N, C = x.shape
|
181 |
+
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
182 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
183 |
+
|
184 |
+
q = q * self.scale
|
185 |
+
attn = (q @ k.transpose(-2, -1))
|
186 |
+
|
187 |
+
attn = self.softmax(attn)
|
188 |
+
|
189 |
+
attn = self.attn_drop(attn)
|
190 |
+
|
191 |
+
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
192 |
+
x = self.proj(x)
|
193 |
+
x = self.proj_drop(x)
|
194 |
+
return x
|
195 |
+
|
196 |
+
## Layer_norm, Aff_norm, Aff_channel_norm
|
197 |
+
class SwinTransformerBlock(nn.Module):
|
198 |
+
r""" Swin Transformer Block.
|
199 |
+
Args:
|
200 |
+
dim (int): Number of input channels.
|
201 |
+
input_resolution (tuple[int]): Input resulotion.
|
202 |
+
num_heads (int): Number of attention heads.
|
203 |
+
window_size (int): Window size.
|
204 |
+
shift_size (int): Shift size for SW-MSA.
|
205 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
206 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
207 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
208 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
209 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
210 |
+
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
211 |
+
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
212 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
213 |
+
"""
|
214 |
+
|
215 |
+
def __init__(self, dim, num_heads=2, window_size=8, shift_size=0,
|
216 |
+
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
|
217 |
+
act_layer=nn.GELU, norm_layer=Aff_channel):
|
218 |
+
super().__init__()
|
219 |
+
self.dim = dim
|
220 |
+
self.num_heads = num_heads
|
221 |
+
self.window_size = window_size
|
222 |
+
self.shift_size = shift_size
|
223 |
+
self.mlp_ratio = mlp_ratio
|
224 |
+
|
225 |
+
self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim)
|
226 |
+
#self.norm1 = norm_layer(dim)
|
227 |
+
self.norm1 = norm_layer(dim)
|
228 |
+
self.attn = WindowAttention(
|
229 |
+
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
|
230 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
231 |
+
|
232 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
233 |
+
#self.norm2 = norm_layer(dim)
|
234 |
+
self.norm2 = norm_layer(dim)
|
235 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
236 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
237 |
+
|
238 |
+
def forward(self, x):
|
239 |
+
x = x + self.pos_embed(x)
|
240 |
+
B, C, H, W = x.shape
|
241 |
+
x = x.flatten(2).transpose(1, 2)
|
242 |
+
|
243 |
+
shortcut = x
|
244 |
+
x = self.norm1(x)
|
245 |
+
x = x.view(B, H, W, C)
|
246 |
+
|
247 |
+
# cyclic shift
|
248 |
+
if self.shift_size > 0:
|
249 |
+
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
250 |
+
else:
|
251 |
+
shifted_x = x
|
252 |
+
|
253 |
+
# partition windows
|
254 |
+
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
|
255 |
+
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
|
256 |
+
|
257 |
+
# W-MSA/SW-MSA
|
258 |
+
attn_windows = self.attn(x_windows) # nW*B, window_size*window_size, C
|
259 |
+
|
260 |
+
# merge windows
|
261 |
+
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
262 |
+
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
|
263 |
+
|
264 |
+
x = shifted_x
|
265 |
+
x = x.view(B, H * W, C)
|
266 |
+
|
267 |
+
# FFN
|
268 |
+
x = shortcut + self.drop_path(x)
|
269 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
270 |
+
x = x.transpose(1, 2).reshape(B, C, H, W)
|
271 |
+
|
272 |
+
return x
|
273 |
+
|
274 |
+
|
275 |
+
if __name__ == "__main__":
|
276 |
+
os.environ['CUDA_VISIBLE_DEVICES']='1'
|
277 |
+
cb_blovk = CBlock_ln(dim = 16)
|
278 |
+
x = torch.Tensor(1, 16, 400, 600)
|
279 |
+
swin = SwinTransformerBlock(dim=16, num_heads=4)
|
280 |
+
x = cb_blovk(x)
|
281 |
+
print(x.shape)
|
model/global_net.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import imp
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from timm.models.layers import trunc_normal_, DropPath, to_2tuple
|
5 |
+
import os
|
6 |
+
from model.blocks import Mlp
|
7 |
+
|
8 |
+
|
9 |
+
class query_Attention(nn.Module):
|
10 |
+
def __init__(self, dim, num_heads=2, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
|
11 |
+
super().__init__()
|
12 |
+
self.num_heads = num_heads
|
13 |
+
head_dim = dim // num_heads
|
14 |
+
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
|
15 |
+
self.scale = qk_scale or head_dim ** -0.5
|
16 |
+
|
17 |
+
self.q = nn.Parameter(torch.ones((1, 10, dim)), requires_grad=True)
|
18 |
+
self.k = nn.Linear(dim, dim, bias=qkv_bias)
|
19 |
+
self.v = nn.Linear(dim, dim, bias=qkv_bias)
|
20 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
21 |
+
self.proj = nn.Linear(dim, dim)
|
22 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
23 |
+
|
24 |
+
def forward(self, x):
|
25 |
+
B, N, C = x.shape
|
26 |
+
k = self.k(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
|
27 |
+
v = self.v(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
|
28 |
+
q = self.q.expand(B, -1, -1).view(B, -1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
|
29 |
+
|
30 |
+
# k = self.k(x).reshape(B, N, self.num_heads, torch.div(C,self.num_heads, rounding_mode='floor')).permute(0, 2, 1, 3)
|
31 |
+
# v = self.v(x).reshape(B, N, self.num_heads, torch.div(C,self.num_heads, rounding_mode='floor')).permute(0, 2, 1, 3)
|
32 |
+
# q = self.q.expand(B, -1, -1).view(B, -1, self.num_heads, torch.div(C,self.num_heads, rounding_mode='floor')).permute(0, 2, 1, 3)
|
33 |
+
attn = (q @ k.transpose(-2, -1)) * self.scale
|
34 |
+
attn = attn.softmax(dim=-1)
|
35 |
+
attn = self.attn_drop(attn)
|
36 |
+
|
37 |
+
x = (attn @ v).transpose(1, 2).reshape(B, 10, C)
|
38 |
+
x = self.proj(x)
|
39 |
+
x = self.proj_drop(x)
|
40 |
+
return x
|
41 |
+
|
42 |
+
|
43 |
+
class query_SABlock(nn.Module):
|
44 |
+
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
45 |
+
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
46 |
+
super().__init__()
|
47 |
+
self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim)
|
48 |
+
self.norm1 = norm_layer(dim)
|
49 |
+
self.attn = query_Attention(
|
50 |
+
dim,
|
51 |
+
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
52 |
+
attn_drop=attn_drop, proj_drop=drop)
|
53 |
+
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
54 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
55 |
+
self.norm2 = norm_layer(dim)
|
56 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
57 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
58 |
+
|
59 |
+
def forward(self, x):
|
60 |
+
x = x + self.pos_embed(x)
|
61 |
+
x = x.flatten(2).transpose(1, 2)
|
62 |
+
x = self.drop_path(self.attn(self.norm1(x)))
|
63 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
64 |
+
return x
|
65 |
+
|
66 |
+
|
67 |
+
class conv_embedding(nn.Module):
|
68 |
+
def __init__(self, in_channels, out_channels):
|
69 |
+
super(conv_embedding, self).__init__()
|
70 |
+
self.proj = nn.Sequential(
|
71 |
+
nn.Conv2d(in_channels, out_channels // 2, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)),
|
72 |
+
nn.BatchNorm2d(out_channels // 2),
|
73 |
+
nn.GELU(),
|
74 |
+
# nn.Conv2d(out_channels // 2, out_channels // 2, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
|
75 |
+
# nn.BatchNorm2d(out_channels // 2),
|
76 |
+
# nn.GELU(),
|
77 |
+
nn.Conv2d(out_channels // 2, out_channels, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)),
|
78 |
+
nn.BatchNorm2d(out_channels),
|
79 |
+
)
|
80 |
+
|
81 |
+
def forward(self, x):
|
82 |
+
x = self.proj(x)
|
83 |
+
return x
|
84 |
+
|
85 |
+
|
86 |
+
class Global_pred(nn.Module):
|
87 |
+
def __init__(self, in_channels=3, out_channels=64, num_heads=4, type='exp'):
|
88 |
+
super(Global_pred, self).__init__()
|
89 |
+
if type == 'exp':
|
90 |
+
self.gamma_base = nn.Parameter(torch.ones((1)), requires_grad=False) # False in exposure correction
|
91 |
+
else:
|
92 |
+
self.gamma_base = nn.Parameter(torch.ones((1)), requires_grad=True)
|
93 |
+
self.color_base = nn.Parameter(torch.eye((3)), requires_grad=True) # basic color matrix
|
94 |
+
# main blocks
|
95 |
+
self.conv_large = conv_embedding(in_channels, out_channels)
|
96 |
+
self.generator = query_SABlock(dim=out_channels, num_heads=num_heads)
|
97 |
+
self.gamma_linear = nn.Linear(out_channels, 1)
|
98 |
+
self.color_linear = nn.Linear(out_channels, 1)
|
99 |
+
|
100 |
+
self.apply(self._init_weights)
|
101 |
+
|
102 |
+
for name, p in self.named_parameters():
|
103 |
+
if name == 'generator.attn.v.weight':
|
104 |
+
nn.init.constant_(p, 0)
|
105 |
+
|
106 |
+
def _init_weights(self, m):
|
107 |
+
if isinstance(m, nn.Linear):
|
108 |
+
trunc_normal_(m.weight, std=.02)
|
109 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
110 |
+
nn.init.constant_(m.bias, 0)
|
111 |
+
elif isinstance(m, nn.LayerNorm):
|
112 |
+
nn.init.constant_(m.bias, 0)
|
113 |
+
nn.init.constant_(m.weight, 1.0)
|
114 |
+
|
115 |
+
|
116 |
+
def forward(self, x):
|
117 |
+
#print(self.gamma_base)
|
118 |
+
x = self.conv_large(x)
|
119 |
+
x = self.generator(x)
|
120 |
+
gamma, color = x[:, 0].unsqueeze(1), x[:, 1:]
|
121 |
+
gamma = self.gamma_linear(gamma).squeeze(-1) + self.gamma_base
|
122 |
+
#print(self.gamma_base, self.gamma_linear(gamma))
|
123 |
+
color = self.color_linear(color).squeeze(-1).view(-1, 3, 3) + self.color_base
|
124 |
+
return gamma, color
|
125 |
+
|
126 |
+
if __name__ == "__main__":
|
127 |
+
os.environ['CUDA_VISIBLE_DEVICES']='3'
|
128 |
+
#net = Local_pred_new().cuda()
|
129 |
+
img = torch.Tensor(8, 3, 400, 600)
|
130 |
+
global_net = Global_pred()
|
131 |
+
gamma, color = global_net(img)
|
132 |
+
print(gamma.shape, color.shape)
|